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Abstract

Motivation: A key benefit of long-read nanopore sequencing
technology is the ability to detect modified DNA bases, such as
5-methylcytosine. Tools for effective visualization of data gener-
ated by this platform to assess changes in methylation profiles
between samples from different experimental groups remains a
challenge.

Results: To make visualization of methylation changes more
straightforward, we developed the R/Bioconductor package
NanoMethViz. Our software can handle methylation calls gen-
erated from a range of different methylation callers and man-
ages large datasets using a compressed data format. To fully
explore the methylation patterns in a dataset, NanoMethViz al-
lows plotting of data at various resolutions. At the sample-level,
we use multidimensional scaling to look at the relationships be-
tween methylation profiles in an unsupervised way. We visual-
ize methylation profiles of classes of features such as genes or
CpG islands by scaling them to relative positions and aggregat-
ing their profiles. At the finest resolution, we visualize methy-
lation patterns across individual reads along the genome using
the spaghetti plot, allowing users to explore particular genes or
genomic regions of interest.

In summary, our software makes the handling of methyla-
tion signal more convenient, expands upon the visualization
options for nanopore data and works seamlessly with existing
methylation analysis tools available in the Bioconductor project.
Our software is available at https://bioconductor.org/
packages/NanoMethViz.
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Introduction

Recent advances from Oxford Nanopore Technologies
(ONT) have enabled high-throughput, genome-wide long-
read DNA methylation profiling using nanopore sequencers,
without the need for bisulfite conversion (1, 2).

A common goal of genome-wide profiling of DNA methyla-
tion is to discover differentially methylated regions (DMRs)
between experimental groups. There is currently no soft-
ware in the R/Bioconductor collection (3) for easily creat-
ing plots of methylation profiles in genomic regions of in-
terest from the output of popular ONT-based methylation

callers. We have developed NanoMethViz to create visualiza-
tions that give high resolution insights into the data to allow
visual inspection of regions identified as differentially methy-
lated by statistical methods. This software has been devel-
oped for compatibility with other software in the Bioconduc-
tor ecosystem (3), allowing for access to a wealth of exist-
ing statistical and genomic analysis methods. Specifically,
this provides compatibility with the comprehensive toolkit
for representing and manipulating genomic regions provided
by GenomicRanges (4), and the statistical methods for DMR
analysis available in packages such as bsseq (5), DSS (6) and
edgeR (7).

The size of the data produced by ONT based methylation
callers is the primary challenge in creating plots within de-
fined genomic regions. It is not feasible to load entire methy-
lation data-sets into memory on a standard computer, and for
regions spanning the average length of a human or mouse
gene, there are often enough data points to make smooth-
ing visualizations computationally prohibitive. Together, this
makes the analysis of methylation data difficult without ac-
cess to high-performance computing (HPC), restricting the
accessibility of methylation research using ONT sequencers.

Design and Implementation

The NanoMethViz package provides conversion of data for-
mats output by popular methylation callers nanopolish (5),
f5c (8), and Megalodon into formats compatible with Bio-
conductor packages for DMR analysis.

At the time of writing, there is no consensus on the format for
storing nanopore methylation data. The methylation callers
nanopolish, f5c and Megalodon all produce slightly different
outputs to represent similar information. Methylation calling
from nanopore sequencing is still an active area of research
and more formats are expected to arise. From the workflow
presented in Figure 1A, NanoMethViz provides conversion
functions from the output of various methylation callers into
an intermediate format shown in Figure 1B, containing the
minimal information for downstream processes. This inter-
mediate format is used to create plots, and can be converted
into various methylation count table formats and objects used
by DMR detection functions using provided functions.
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Fig. 1. Nanopore methylation workflow and data format. A) The workflow used to perform differential methylation analysis. The red arrows indicate steps where fur-
ther NanoMethViz provides conversion functions to bridge workflow steps. NanoMethViz performs visualization at the end of the workflow. B) Functions are provided in
NanoMethViz to import the output of various methylation callers into a format used for visualization. This can be further converted by provided functions into formats suitable
for various DMR detection methods provided in Bioconductor. C) The bgzip-tabix format compresses rows of tabular genomic information into blocks, and indexes the blocks
with the range of genomic positions contained. This index is used for fast access the relevant blocks for decompression and reading.

NanoMethViz converts results from methylation caller into
a tabular format containing the sample name, 1-based sin-
gle nucleotide chromosome position, log-likelihood-ratio of
methylation and read name. We choose log-likelihood of
methylation as the statistic following the convention of na-
nopolish. This statistic can be converted to a methylation
probability via the sigmoid transform as shown in Gigante
et al. (2019) (9). The intermediate format and import-
ing functions provided by NanoMethViz enables compatibil-
ity with existing methylation callers, as well as simplifying
extension of support for future methylation caller formats.
The information contained in this format is sufficient to per-
form genome wide methylation analysis as well as retain the
molecule identities that are an advantage of long reads.

As shown in 1C, we compress the imported data using bgzip
with tabix indexing. We use the tools bgzip and tabix in-
cluded in Rsamtools toolkit (10, 11) to process the interme-
diate format; bgzip performs block-wise gzip compression
such that individual blocks can be decompressed to retrieve
data without decompressing the entire file, and tabix creates
indices on position-sorted bgzip files to rapidly identify the
blocks containing data within some genomic region. Hav-
ing a format that is compressed with support for querying
of data without loading in the whole data-set makes it feasi-
ble to analyse the data without the use of HPC, and allowing
analysis to be performed on more widely available hardware.

Conversion is performed using block-wise streaming algo-
rithms from the readr (12) package, this limits the amount

of memory required to convert inputs of arbitrary size. Cur-
rently we support the import of methylation calls from na-
nopolish, f5c and Megalodon, and we also provide conver-
sion functions from the tabix format into formats suitable for
differentially methylated region analysis using bsseq, DSS or
edgeR using methy_to_bsseq and bsseq_to_edger.

Results

The primary plots provided by NanoMethViz are shown in
Figure 2. They are the multidimensional scaling (MDS) plot
for dimensionality reduced representation of differences in
methylation profiles, the aggregate profile plot for methyla-
tion profiles of a set of features, and the spaghetti plot (9),
for visualizing methylation profiles within specific genomic
regions. While we have focused our development on 5mC
methylation, in principle our work can be applied to any form
of DNA or RNA modification.

We demonstrate the plots of NanoMethViz using a pilot
dataset generated from triplicate female mouse placental
tissues from F1 crosses between homozygous C57BL/6J
mothers and CAST/EiJ fathers. Well characterized ho-
mozygous parents provided known SNPs for haplotyping
reads (13), and the paternal X-chromosome is preferen-
tially inactivated in female mouse placental tissue (14).
Together these two properties allow the parent of origin
and X-inactivation state of each read to be known a pri-
ori when performing analysis of methylation profiles. The
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Fig. 2. Summary of the plotting capabilities of NanoMethViz. A) Multidimensional scaling plot of haplotyped samples. B) Aggregated methylation profile across all genes
in the X-chromosome, scaled to relative positions. C) Box plot of methylation probabilities over promoter and non-promoter regions for the BL6 and CAST haplotypes. D)
Spaghetti plots of known imprinted genes Peg3, Meg3, Peg10 and Peg13. Thin lines show the smoothed methylation probability on individual long reads, the thick lines
show aggregated trend across the all the reads. The shaded regions are annotated as DMR by bsseq, and the tick marks along the x-axis show the location of CpG motifs.
E) Spaghetti plot of Gnas, which shows two adjacent regions of opposite imprinting patterns. F) Spaghetti plot of Xist. The transcription start site of the gene has visually
apparently differential methylation but is not identified as such by bsseq.

three samples of E14.5 placental tissue were harvested
and each sequenced using a single PromethION flow cell,
the data was basecalled using Guppy (v3.2.2) using the
dna_r9.4.1_450bps_hac_prom.cfg high accuracy
profile. Reads were aligned to the GRCm38 primary assem-
bly obtained from GENCODE (15), using minimap2 (16)
(v2.16) with the ONT profile set by -x map-ont argu-
ment. The output of minimap2 was sorted and indexed us-
ing samtools (v1.9), and only primary alignments were re-
tained for analysis. The retained reads were haplotyped us-
ing WhatsHap (17) using mouse variant information provided
by the Sanger Institute (13). Methylation calling was per-
formed by f5c (8) and associated with the haplotype infor-
mation through the read IDs. bsseq (v1.22.0) (18) was used
to identify differentially methylated regions and all visuali-
sations in NanoMethViz were created using CRAN packages
ggplot2 (19) and patchwork.

The MDS plot shown in figure 2A is commonly used in dif-
ferential expression analysis to summarize the differences
between samples in terms of their expression profiles. It
represents high dimensional data in lower dimensions while
retaining the high dimensional similarity between samples.
We use the log-methylation-ratio to represent the methyla-
tion profiles of samples and provide the conversion func-
tion bsseq_to_log_methy_ratio to convert from a
BSseq object to a matrix of log-methylation ratios. This ma-
trix can be used with the plotMDS function from the limma
(20) Bioconductor package to compute MDS components for
the most variable sites following the edgeR bisulphite se-
quencing analysis workflow (21). In Figure 2A, we see this
approach shows separation of the haplotypes along the first
dimension and according to sample (1,2,3) in the second di-
mension.
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The aggregation plot shows aggregate methylation pro-
files across a class of features, revealing trends within a
given class, such as promoters or repeat regions with fixed
width flanking regions. It is produced by the function
plot_agg_regions, which requires a table of genomic
features or a GRanges object, and then plots the aggregate
methylation profile scaled to the lengths of each feature such
that they have the same start and end positions along the
x-axis. The aggregation is an average of methylation pro-
files, with equal weights given to each feature as opposed
to read, such that the aggregate is not biased towards fea-
tures with higher coverage. This can be used to investigate
specific classes of features such as genes or promoters. Fig-
ure 2B shows methylation profiles across all annotated genes
in the X-chromosome, with the active X-chromosome (Xa)
showing a higher level of methylation overall compared to
the inactive X-chromosome (Xi). Genes from both chromo-
somes dip in methylation at the transcription start site, with
Xi dipping below Xa by a small amount. This is further in-
vestigated in Figure 2C using the query_methy function
to extract methylation data using ENSEMBL predicted pro-
moters annotation to create a box plot. We see in the box plot
higher levels of methylation in the maternal X-chromosome
outside of promoter regions and lower levels of methylation
within promoter regions. This matches previous observations
in human fibroblast cells. (22)

The spaghetti plot created by the functions plot_region
or plot_gene visualize the methylation profile of exper-
imental groups within specific genomic regions. The plot
shows methylation profiles of individual reads, annotations of
CpG sites shown in tick marks along the x-axis, gene exons
below the x-axis and top 500 most differentially methylated
regions shaded in light grey. In 2D the well known family
of Peg and Meg genes are shown, which are paternally ex-
pressed genes and maternally expressed genes, respectively.
In the case of paternally expressed genes Peg3, Peg10 and
Peg13, we see a drop in methylation in the paternal chro-
mosomes near the TSS with an increase in methylation of
the maternal chromosome. In the maternally expressed gene
Meg3 we see a drop in methylation in the maternal chromo-
some but a relatively small increase in methylation in the pa-
ternal chromosome. Figure 2E shows the methylation pro-
file of Gnas, with two oppositely imprinted regions adjacent
to each other. Figure 2F shows the gene Xist, which is ex-
pressed from the inactive paternal X-chromosome, we can
see reduced methylation near the TSS of the gene but it is not
present in the top DMR results found by bsseq.

The aggregate plots and spaghetti plots both use
geom_smooth from ggplot2 to create smoothed methy-
lation profiles. Of the smoothing methods provided by
geom_smooth, we found loess gave the most aesthetically
pleasing fits. However, we found that loess scales poorly
with the number of data points typically found in this type of
data. To resolve this, the spaghetti plot takes per-site means
before calling geom_smooth to significantly improve per-
formance. In the aggregation plot, the methylation profiles

are aggregated across the features, with relative positions
within feature bodies and the two fixed width flanking
regions without scaling. It was found that the feature region
tends to have a much higher density of data points than
flanking regions, leading to poor smoothing behavior as
loess selects N nearest points for fitting, with N being a fixed
portion of the total data. Many more points from the model
fitting will be taken from the feature region than the flanking
regions near the boundary between feature and flanking
regions. To overcome this issue, we take binned means
along the relative genomic positions, which results in data of
uniform density along the x-axis. These optimizations allow
smoothed plots of the genomic regions or aggregate features
to be created where it would otherwise be infeasible by naive
usage of the geom_smooth function.

The features provided by NanoMethViz fill current gaps in
the data flow between software in the nanopore methylation
analysis pipeline. The performance focused implementation
of the plotting allows them to be generated without the need
of high performance computers, facilitating more accessible
analysis.

Other major software for visualization of long-read methy-
lation data includes Python packages pycoMeth and Meth-
plotlib. pycoMeth provides a full workflow that produces a
comprehensive interactive report on differentially methylated
regions. Methplotlib is purely a plotting package for specified
genomic regions.

Both pycoMeth and Methplotlib produce interactive plots of
methylation data. pycoMeth produces summaries focused on
CpG intervals, including a bar-plot with the count of methy-
lation intervals, a heatmap of the methylation status of CpG
intervals, density plot of the methylation log-likelihood of
significant intervals, and a karyoplot of the density of signif-
icant CpG intervals along the chromosomes. It also provides
a higher resolution heatmap and density plot for significant
intervals. The significance testing uses the Mann-Whitney
U test for two samples or Kruskal-Wallis H test for three or
more samples, with Benjamini and Hochberg correction for
multiple testing. Methplotlib creates detailed plots of specific
genomic regions, including a line plot of the methylation fre-
quencies of individual samples and a heatmap of the methy-
lation profiles on individual reads.

Compared with pycoMeth, NanoMethViz does not provide
a complete pipeline for analysis; rather it is intended to be
used as a modular component of a workflow that includes
other Bioconductor software for a more flexible and pow-
erful analysis. NanoMethViz contains conversion functions
to import data from methylation callers into its standard for-
mat, then conversions from the standard format into formats
appropriate for DMR callers from Bioconductor, including
bsseq, DSS and edgeR.

Methplotlib is similar in operation to NanoMethViz when
plotting genomic regions. However, Methplotlib does not
provide higher-level summaries such as the MDS plot or the
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feature aggregate plot. NanoMethViz also operates within
interactive R sessions, as opposed to the command-line
calls used by Methplotlib, which requires expensive repars-
ing of annotation files each time a new plot is created.
NanoMethViz, therefore, better facilitates interactive explo-
ration of long-read methylation data.

Availability and Future Directions

The R/Bioconductor package NanoMethViz is available
from https://bioconductor.org/packages/
NanoMethViz. Vignettes are provided with examples of
how to import data from methylation callers and how to
create the basic plots. Example data is included with the
package including data from genes Peg3, Meg3, Impact,
Xist, Brca1 and Brca2.

In conclusion, NanoMethViz provides conversion functions,
an efficient data storage format and a set of visualizations
that allows the user to summarize their results at different
resolutions. This work unlocks the potential for established
Bioconductor DMR callers to be applied to data generated by
ONT based methylation callers, lowers the hardware require-
ments for downstream analysis of the data, and provides key
visualizations for understanding methylation patterns using
ONT long reads.

Future development will support a wider range of plots, in-
cluding some of the ones currently found in pycoMeth and
Methplotlib and support will be added for any new, popular
methylation callers that arise with differing formats to exist-
ing callers.
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