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Abstract 

Resting-state functional MRI (rs-fMRI) allows estimation of individual-specific cortical 

parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-

HBM) for estimating high-quality individual-specific network-level parcellations. Here, we 

extend the model to estimate individual-specific areal-level parcellations. While network-level 

parcellations comprise spatially distributed networks spanning the cortex, the consensus is that 

areal-level parcels should be spatially localized, i.e., should not span multiple lobes. There is 

disagreement about whether areal-level parcels should be strictly contiguous or comprise 

multiple non-contiguous components, therefore we considered three areal-level MS-HBM 

variants spanning these range of possibilities. Individual-specific MS-HBM parcellations 

estimated using 10min of data generalized better than other approaches using 150min of data to 

out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional 

connectivity (RSFC) derived from MS-HBM parcellations also achieved the best behavioral 

prediction performance. Among the three MS-HBM variants, the strictly contiguous MS-HBM 

(cMS-HBM) exhibited the best resting-state homogeneity and most uniform within-parcel task 

activation. In terms of behavioral prediction, the gradient-infused MS-HBM (gMS-HBM) was 

numerically the best, but differences among MS-HBM variants were not statistically significant. 

Overall, these results suggest that areal-level MS-HBMs can capture behaviorally meaningful 

individual-specific parcellation features beyond group-level parcellations. Multi-resolution 

trained models and parcellations are publicly available (GITHUB_LINK). 
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Introduction 

The human cerebral cortex comprises hundreds of cortical areas with distinct function, 

architectonics, connectivity, and topography (Kaas, 1987; Felleman and Van Essen, 1991; 

Eickhoff et al., 2018a). These areas are thought to be organized into at least six to twenty 

spatially distributed large-scale networks that broadly subserve distinct aspects of human 

cognition (Goldman-Rakic, 1988; Mesulam, 1990; Smith et al., 2009; Bressler and Menon, 2010; 

Uddin et al., 2019). Accurate parcellation of the cerebral cortex into areas and networks is 

therefore an important problem in systems neuroscience. The advent of in-vivo non-invasive 

brain imaging techniques, such as functional magnetic resonance imaging (fMRI), has enabled 

the delineation of cortical parcels that approximate these cortical areas (Sereno et al., 1995; Van 

Essen and Glasser, 2014; Eickhoff et al., 2018b).  

A widely used approach for estimating network-level and areal-level cortical 

parcellations is resting-state functional connectivity (RSFC). RSFC reflects the synchrony of 

fMRI signals between brain regions, while a participant is lying at rest without performing any 

explicit task, i.e., resting-state fMRI (rs-fMRI; Biswal et al., 1995; Fox and Raichle, 2007; 

Buckner et al., 2013). Most RSFC studies have focused on estimating group-level parcellations 

obtained by averaging data across many individuals (Power et al., 2011; Yeo et al., 2011; 

Craddock et al., 2012; Zuo et al., 2012; Gordon et al., 2016). These group-level parcellations 

have provided important insights into brain network organization, but fail to capture individual-

specific parcellation features (Harrison et al., 2015; Laumann et al., 2015; Braga and Buckner, 

2017; Gordon et al., 2017a). Furthermore, recent studies have shown that individual-specific 

parcellation topography is behaviorally relevant (Salehi et al., 2018; Bijsterbosch et al., 2019; 

Kong et al., 2019; Li et al., 2019b; Mwilambwe-Tshilobo et al., 2019; Seitzman et al., 2019; Cui 

et al., 2020), motivating significant interest in estimating individual-specific parcellations. 

Most individual-specific parcellations only account for inter-subject (between-subject) 

variability, but not intra-subject (within-subject) variability. However, inter-subject and intra-

subject RSFC variability can be markedly different across brain regions (Mueller et al., 2013; 

Chen et al., 2015; Laumann et al., 2015). For example, the sensory-motor cortex exhibits low 

inter-subject variability, but high intra-subject variability (Mueller et al., 2013; Laumann et al., 

2015). Therefore, it is important to consider both inter-subject and intra-subject variability when 

estimating individual-specific parcellations (Mejia et al., 2015, 2018; Kong et al., 2019). We 
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have previously proposed a multi-session hierarchical Bayesian model (MS-HBM) of individual-

specific network-level parcellation that accounted for both inter-subject and intra-subject 

variability (Kong et al., 2019). We demonstrated that compared with several alternative 

approaches, individual-specific MS-HBM networks generalized better to new resting-fMRI and 

task-fMRI data from the same individuals (Kong et al., 2019).   

In this study, we extend the network-level MS-HBM to estimate individual-specific areal-

level parcellations. While network-level parcellations comprise spatially distributed networks 

spanning the cortex, the consensus is that areal-level parcels should be spatially localized (Kaas, 

1987; Amunts and Zilles, 2015), i.e., an areal-level parcel should not span multiple cortical 

lobes. Consistent with invasive studies (Amunts and Zilles, 2015), most areal-level parcellation 

approaches estimate spatially contiguous parcels (Shen et al., 2013; Honnorat et al., 2015; 

Gordon et al., 2016; Chong et al., 2017). However, a few studies have suggested that individual-

specific areal-level parcels can be topologically disconnected (Glasser et al., 2016; Li et al., 

2019b). For example, according to Glasser and colleagues, area 55b might comprise two 

disconnected, but spatially close, components in some individuals (Glasser et al., 2016). Given 

the lack of consensus, we considered three different spatial localization priors. Across the three 

priors, the resulting parcels ranged from being strictly contiguous to being spatially localized 

with multiple non-contiguous components.  

We compared MS-HBM areal-level parcellations with three other approaches (Laumann 

et al., 2015; Schaefer et al., 2018; Li et al., 2019b) in terms of their generalizability to out-of-

sample rs-fMRI and task-fMRI from the same individuals. Furthermore, a vast body of literature 

has shown that RSFC derived from group-level parcellations can be used to predict human 

behavior (Hampson et al., 2006; Finn et al., 2015; Rosenberg et al., 2016; Li et al., 2019a). 

Therefore, we also investigated whether RSFC derived from individual-specific MS-HBM 

parcellations could improve behavioral prediction compared with two other parcellation 

approaches (Schaefer et al., 2018; Li et al., 2019b).  
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Methods 

Overview 

We proposed the spatially-constrained MS-HBM to estimate individual-specific areal-

level parcellations. The model distinguished between inter-subject and intra-subject functional 

connectivity variability, while incorporating spatial contiguity constraints. Three different 

contiguity constraints were considered: distributed MS-HBM, contiguous MS-HBM and 

gradient-infused MS-HBM. The resulting MS-HBM parcels ranged from being strictly 

contiguous (contiguous MS-HBM) to being spatially localized with multiple topologically 

disconnected components (distributed MS-HBM). Subsequent analyses proceeded in four stages. 

First, we explored the pattern of inter-subject and intra-subject functional variability across the 

cortex. Second, we examined the intra-subject reproducibility and inter-subject similarity of MS-

HBM parcellations on two different datasets. Third, the MS-HBM was compared with three 

other approaches using new rs-fMRI and task-fMRI data from the same participants. Finally, we 

investigated whether functional connectivity of individual-specific parcellations could improve 

behavioral prediction. 

 

Multi-session rs-fMRI datasets 

The Human Connectome Project (HCP) S1200 release (Van Essen et al., 2012a; Smith et 

al., 2013) comprised structural MRI, rs-fMRI and task-fMRI of 1094 young adults. All imaging 

data were collected on a custom-made Siemens 3T Skyra scanner using a multiband sequence. 

Each participant went through two fMRI sessions on two consecutive days. Two rs-fMRI runs 

were collected in each session. Each fMRI run was acquired at 2 mm isotropic resolution with a 

TR of 0.72 s and lasted for 14 min and 33 s. The structural data consisted of one 0.7 mm 

isotropic scan for each participant.  

The Midnight Scanning Club (MSC) multi-session dataset comprised structural MRI, rs-

fMRI and task-fMRI from 10 young adults (Gordon et al., 2017b; Gratton et al., 2018). All 

imaging data were collected on a Siemens Trio 3T MRI scanner using a 12-channel Head Matrix 

Coil. Each participant was scanned for 10 sessions of resting-state fMRI data. One rs-fMRI run 

was collected in each session. Each fMRI run was acquired at 4mm isotropic resolution with a 

TR of 2.2 s and lasted for 30 min. The structural data was collected across two separate days and 
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consisted of four 0.8 mm isotropic T1-weighted images and four 0.8 mm isotropic T2-weighted 

images.  

It is worth noting some significant acquisition differences between the two datasets, 

including scanner type (e.g., Skyra versus Trio), acquisition sequence (e.g., multiband versus 

non-multiband), and scan time (e.g. day versus midnight). These differences allowed us to test 

the robustness of our parcellation approach. 

 

Preprocessing 

Details of the HCP preprocessing can be found elsewhere (Van Essen et al., 2012a; 

Glasser et al., 2013; Smith et al., 2013; HCP S1200 manual). Of particular importance is that the 

rs-fMRI data has been projected to the fs_LR32k surface space (Van Essen et al., 2012b), 

smoothed by a Gaussian kernel with 2mm full width at half maximum (FWHM), denoised with 

ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) and aligned with MSMAll 

(Robinson et al., 2014). To eliminate global and head-motion related artifacts (Burgess et al., 

2016; Siegel et al., 2016), additional nuisance regression and censoring was performed (Kong et 

al., 2019; Li et al., 2019a). Nuisance regressors comprised the global signal and its temporal 

derivative. Runs with more than 50% censored frames were removed. Participants with all four 

runs remaining (N = 835) were considered. 

In the case of the MSC dataset, we utilized the preprocessed rs-fMRI data of 9 subjects 

on fs_LR32k surface space. Preprocessing steps included slice time correction, motion 

correction, field distortion correction, motion censoring, nuisance regression and bandpass 

filtering (Gordon et al., 2017b). Nuisance regressors comprised whole brain, ventricular and 

white matter signals, as well as motion regressors derived from Volterra expansion (Friston et 

al., 1996). The surface data was smoothed by a Gaussian kernel with 6mm FWHM. One 

participant (MSC08) exhibited excessive head motion and self-reported sleep (Gordon et al., 

2017b; Seitzman et al., 2019) and was thus excluded from subsequent analyses.  

 

Functional connectivity profiles 

As explained in the previous section, the preprocessed rs-fMRI data from the HCP and 

MSC datasets have been projected onto fs_LR32K surface space, comprising 59412 cortical 

vertices. A binarized connectivity profile of each cortical vertex was then computed as was done 
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in our previous study (Kong et al., 2019). More specifically, we considered 1483 regions of 

interest (ROIs) consisting of single vertices uniformly distributed across the fs_LR32K surface 

meshes (Kong et al., 2019). For each rs-fMRI run of each participant, the Pearson’s correlation 

between the fMRI time series at each spatial location (59412 vertices) and the 1483 ROIs were 

computed. Outlier volumes were ignored when computing the correlations. The 59412 × 1483 

RSFC (correlation) matrices were then binarized by keeping the top 10% of the correlations to 

obtain the final functional connectivity profile (Kong et al., 2019).  

We note that because fMRI is spatially smooth and exhibits long-range correlations, 

therefore considering only 1483 ROI vertices (instead of all 59412 vertices) would reduce 

computational and memory demands, without losing much information. To verify significant 

information has not been lost, the following analysis was performed. For each HCP participant, a 

59412 × 59412 RSFC matrix was computed from the first rs-fMRI run. We then correlated every 

pair of rows of the RSFC matrix, yielding a 59412 × 59412 RSFC similarity matrix for each 

HCP participant. An entry in this RSFC similarity matrix indicates the similarity of the 

functional connectivity profiles of two cortical locations. The procedure was repeated but using 

the 59412 × 1483 RSFC matrices to compute the 59412 × 59412 RSFC similarity matrices. 

Finally, for each HCP participant, we correlated the RSFC similarity matrix (generated from 

1483 vertices) and RSFC similarity matrix (generated from 59412 vertices). The resulting 

correlations were high with r = 0.9832 ± 0.0041 (mean ± std) across HCP participants, 

suggesting that very little information was lost by only considering 1483 vertices. 

 

Group-level parcellation 

We have previously developed a set of high-quality population-average areal-level 

parcellations of the cerebral cortex (Schaefer et al., 2018), which we will refer to as 

“Schaefer2018”. Although the Schaefer2018 parcellations are available in different spatial 

resolutions, we will mostly focus on the 400-region parcellation in this paper (Figure 4A) given 

that previous work has suggested that there might be between 300 and 400 human cortical areas 

(Van Essen et al., 2012b). The 400-region Schaefer2018 parcellation will be used to initialize the 

areal-level MS-HBM for estimating individual-specific parcellations. The Schaefer2018 

parcellation will also be used as a baseline in our experiments. 
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Areal-level multi-session hierarchical Bayesian model (MS-HBM) 

 The areal-level MS-HBM (Figure 1A) is the same as the network-level MS-HBM (Kong 

et al., 2019) except for one crucial detail, i.e., spatial localization prior Φ (Figure 1A). 

Nevertheless, for completeness, we will briefly explain the other components of the MS-HBM, 

although further details can be found elsewhere (Kong et al., 2019).  

 We denote the binarized functional connectivity profile of cortical vertex 푛 during 

session 푡 of subject 푠 as 𝑋 , . For example, the binarized functional connectivity profiles of a 

posterior cingulate cortex vertex (𝑋 , ) and a precuneus vertex (𝑋 , ) from the 1st session of 

the 1st subject are illustrated in Figure 1A (fourth row). The shaded circle indicates that 𝑋 ,  are 

the only observed variables. Based on the observed connectivity profiles of all vertices during all 

sessions of a single subject, the goal is to assign a parcel label 푙  for each vertex 푛 of subject 푠. 

Even though a vertex’s connectivity profiles are likely to be different across fMRI sessions, the 

vertex’s parcel label was assumed to be the same across sessions. For example, the individual-

specific areal-level parcellation of the 1st subject using data from all available sessions is 

illustrated in Figure 1A (last row). 
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Figure 1. (A) Multi-session hierarchical Bayesian model (MS-HBM) of individual-specific areal-
level parcellations. 𝑋 ,  denote the RSFC profile at brain location 푛 of subject 푠 during rs-fMRI 
session 푡. The shaded circle indicates that 𝑋 ,  are the only observed variables. The goal is to 
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estimate the parcel label 푙  for subject 푠 at location 푛 given RSFC profiles from all sessions. 휇  
is the group-level RSFC profile of parcel 푙. 휇  is the subject-specific RSFC profile of parcel 푙. A 
large 휖  indicates small inter-subject RSFC variability, i.e., the group-level and subject-specific 
RSFC profiles are very similar. 휇 ,  is the subject-specific RSFC profile of parcel 푙 during 
session 푡. A large 휎  indicates small intra-subject RSFC variability, i.e., the subject-level and 
session-level RSFC profiles are very similar. 휅  captures inter-region RSFC variability. A large 
휅  indicates small inter-region variability, i.e., two locations from the same parcel exhibit very 
similar RSFC profiles. Finally, 훩  captures inter-subject variability in the spatial distribution of 
parcels, smoothness prior 𝑉 encourages parcel labels to be spatially smooth, and the spatial 
localization prior Φ ensures each parcel is spatially localized. The spatial localization prior Φ is 
the crucial difference from the original network-level MS-HBM (Kong et al., 2019). (B) 
Illustration of three different spatial localization priors. Individual-specific parcellations of the 
same HCP participant were estimated using distributed MS-HBM (dMS-HBM), contiguous MS-
HBM (cMS-HBM), and gradient-infused MS-HBM (gMS-HBM). Four parcels depicted in pink, 
red, blue and yellow are shown here. All four parcels estimated by dMS-HBM were spatially 
close together but contained two separate components. All four parcels estimated by cMS-HBM 
were spatially contiguous. Three parcels (pink, red, yellow) estimated by gMS-HBM were 
spatially contiguous, while the blue parcel contained two separate components.  

 

The multiple layers of the areal-level MS-HBM explicitly differentiate inter-subject 

(between-subject) functional connectivity variability from intra-subject (within-subject) 

functional connectivity variability (휖  and 휎  in Figure 1A). The connectivity profiles of two 

vertices belong to the same parcel will not be identical. This variability is captured by 휅  (Figure 

1A). Some model parameters (e.g., group-level connectivity profiles) will be estimated from a 

training set comprising multi-session rs-fMRI data from multiple subjects. A new participant 

(possibly from another dataset) with single-session fMRI data could then be parcellated without 

access to the original training data.  

The Markov random field (MRF) spatial prior (Figure 1A last row) is important because 

the observed functional connectivity profiles of individual subjects are generally very noisy. 

Therefore, additional priors were imposed on the parcellation. First, the spatial smoothness prior 

𝑉 encouraged neighboring vertices (e.g., PCC and pCun) to be assigned to the same parcels. 

Second, the inter-subject spatial variability prior 훩 ,  denote the probability of parcel 푙 occurring 

at a particular spatial location 푛. The two priors (𝑉 and 훩 , ) are also present in the network-level 

MS-HBM (Kong et al., 2019).  

However, an additional spatial prior is necessary because of well-documented long-range 

connections spanning the cortex. Therefore, with the original MRF prior (Kong et al., 2019), 
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brain locations with similar functional connectivity profiles could be grouped together regardless 

of spatial proximity. In the case of network-level MS-HBM, this is appropriate because large-

scale networks are spatially distributed, e.g., the default network spans frontal, parietal, temporal 

and cingulate cortex. In the case of areal-level parcellations, there is the expectation that a single 

parcel should not span large spatial distances (Glasser et al., 2016; Gordon et al., 2016; Schaefer 

et al., 2018). Therefore, the areal-level MS-HBM incorporates an additional prior Φ constraining 

parcels to be spatially localized (Figure 1A last row).  

As mentioned in the introduction, even though there is consensus that individual-specific 

areal-level parcels should be spatially localized, there are differing opinions about whether they 

should be spatially contiguous. Some studies have enforced spatially contiguous cortical parcels 

(Laumann et al., 2015; Gordon et al., 2016; Chong et al., 2017) consistent with invasive studies 

(Amunts and Zilles, 2015). Other studies have estimated parcels that might comprise multiple 

spatially close components (Glasser et al., 2016; Li et al., 2019b). For example, Glasser and 

colleagues suggested that area 55b might be split into two disconnected components in close 

spatial proximity. Given the lack of consensus, we consider three possible spatial localization 

priors (i.e, Φ in Figure 1A):  

 

1. Distributed MS-HBM (dMS-HBM). Previous studies have suggested that after registering 

cortical folding patterns, inter-individual variability in architectonic locations are different 

across architectonic areas (Fischl et al., 2008). One of the most spatially variable 

architectonic area is hOc5, which can be located in an adjacent sulcus away from the group-

average location (Yeo et al., 2010a, 2010b). This variability corresponded to about 30mm. 

Therefore, similar to Glasser and colleagues (2016), Φ comprises a spatial localization prior 

constraining each individual-specific parcel to be within 30mm of the group-level 

Schaefer2018 parcel boundaries. We note that this prior only guarantees an individual-

specific parcel to be spatially localized, but the parcel might comprise multiple distributed 

components (Figure 1B left panel). We refer to this prior as distributed MS-HBM (dMS-

HBM).  

 

2. Contiguous MS-HBM (cMS-HBM). In addition to the 30mm prior from dMS-HBM, we 

include a spatial localization prior encouraging vertices comprising a parcel to not be too far 
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from the parcel center, as was done in our previous study (Schaefer et al., 2018). If this 

spatial contiguity prior is sufficiently strong, then all individual-specific parcels will be 

spatially connected (Figure 1B middle panel). However, an overly strong prior will result 

overly round parcels, which is not biologically plausible (Vogt 2009). To ameliorate this 

issue, the estimation procedure starts with a very small weight on this spatial contiguity prior 

and then progressively increases the weights to ensure spatial contiguity. Thus, we refer to 

this prior as contiguous MS-HBM model (cMS-HBM). We note that requiring parcels to be 

spatially connected within an MRF framework is non-trivial; our approach is significantly 

less computationally expensive than competing approaches (Nowozin and Lampert, 2010; 

Honnorat et al., 2015). 

 

3. Gradient-infused MS-HBM (gMS-HBM). A well-known areal-level parcellation approach is 

the local gradient approach, which detects local abrupt changes (i.e., gradients) in RSFC 

across the cortex (Cohen et al., 2008). Our previous study (Schaefer et al., 2018) has 

suggested the utility of combining local gradient (Cohen et al., 2008; Gordon et al., 2016) 

and global clustering (Yeo et al., 2011) approaches for estimating areal-level parcellations. 

Therefore, we complemented the spatial contiguity prior in cMS-HBM with a prior based on 

local gradients in RSFC, which encouraged adjacent brain locations with gentle changes in 

functional connectivity to be grouped into the same parcel. In practice, we found that the 

gradient-infused prior, together with a very weak spatial contiguity prior, dramatically 

increased the number of spatially contiguous parcels (Figure 1B right panel). Furthermore, 

the parcels are also less round than cMS-HBM, which is in our opinion more biologically 

plausible. We refer to this prior as gradient-infused MS-HBM (gMS-HBM).  

 

A more detailed mathematical explanation of the model can be found in Supplemental 

Methods S1. Given a dataset of subjects with multi-session rs-fMRI data, a variational Bayes 

expectation-maximization (VBEM) algorithm can be used to estimate the following model 

parameters (Kong et al., 2019): group-level parcel connectivity profiles 휇 , the inter-subject 

functional connectivity variability 휖 , the intra-subject functional connectivity variability 휎 , the 

spatial smoothness prior 𝑉 and the inter-subject spatial variability prior 훩 . The individual-

specific areal-level parcellation of a new participant could then be generated using these 
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estimated group-level priors without access to the original training data. Furthermore, although 

the model requires multi-session fMRI data for parameter estimation, it can be applied to a single 

session fMRI data from a new participant (Kong et al., 2019). Details of the VBEM algorithm 

can be found in Supplementary Methods S2. 

 
Figure 2. Flowcharts of analyses characterizing MS-HBMs. (A) Training MS-HBMs with HCP 
training and validation sets, as well as characterizing inter-subject and intra-subject RSFC 
variability. (B) Exploring intra-subject reproducibility and inter-subject similarity of MS-HBM 
parcellations using HCP test set and MSC dataset. (C) Characterizing geometric properties of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.16.426943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.16.426943
http://creativecommons.org/licenses/by/4.0/


 15 

MS-HBM parcellations using HCP test set. Shaded boxes (HCP test set and MSC dataset) were 
solely used for evaluation and not used at all for training or tuning the MS-HBM models. 

 

Characterizing inter-subject and intra-subject functional connectivity variability 

Previous studies have shown that sensory-motor regions exhibit lower inter-subject, but 

higher intra-subject functional connectivity variability than association regions (Mueller et al., 

2013; Laumann et al., 2015; Kong et al., 2019). Therefore, we first evaluate whether estimates of 

areal-level inter-subject and intra-subject variability were consistent with previous work (Figure 

2A). The HCP dataset was divided into training (N = 40), validation (N = 40) and test (N = 755) 

sets. Each HCP participant underwent two fMRI sessions on two consecutive days. Within each 

session, there were two rs-fMRI runs. All four runs were utilized. 

The parameters of three MS-HBM variants (dMS-HBM, cMS-HBM and gMS-HBM) 

were estimated. More specifically, the group-level parcel connectivity profiles 휇 , the inter-

subject resting-state functional connectivity variability 휖 , the intra-subject resting-state 

functional connectivity variability 휎  and inter-subject spatial variability prior 훩  were estimated 

using the HCP training set (Figure 2A). We tuned the “free” parameters (associated with the 

spatial smoothness prior 𝑉 and spatial localization prior Φ) using the HCP validation set (Figure 

2A). The Schaefer2018 400-region group-level parcellation (Figure 4A) was used to initialize the 

optimization procedure. The final trained MS-HBMs (Figure 2A) were used in all subsequent 

analyses. 

 

Intra-subject reproducibility and inter-subject similarity of MS-HBM parcellations 

Within-subject reliability is important for clinical applications (Shehzad et al., 2009; Birn 

et al., 2013; Zuo and Xing, 2014; Zuo et al., 2019). Having verified that the spatial patterns of 

inter-subject and intra-subject functional connectivity variability were consistent with previous 

work, we further characterized the intra-subject reproducibility and inter-subject similarity of 

individual-specific MS-HBM parcellations (Figure 2B). The three trained models (dMS-HBM, 

cMS-HBM and gMS-HBM) were applied to the HCP test set. Individual-specific MS-HBM 

parcellations were independently estimated using the first 2 runs (day 1) and the last 2 runs (day 

2). 
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To evaluate the reproducibility of individual-specific parcellations, the Dice coefficient 

was computed for each parcel from the two parcellations of each participant:  

Dice(푙 , 푙 ) =
2 ×  # vertices that overlap between parcels 푙  and 푙

#vertices in parcel 푙 + #vertices in parcel 푙  , 

where 푙  and  푙  are parcel 푙 from the two parcellations of subject 푠. The Dice coefficient is 

widely used for comparing parcellation or segmentation overlap (Destrieux et al., 2010; Sabuncu 

et al., 2010; Birn et al., 2013; Blumensath et al., 2013; Arslan et al., 2015; Honnorat et al., 2015; 

Salehi et al., 2018). The Dice coefficient is equal to 1 if there is perfect overlap between parcels 

and zero if there is no overlap between parcels. The Dice coefficients were averaged across all 

participants to provide insights into regional variation in intra-subject parcel similarity. Finally, 

the Dice coefficients were averaged across all parcels to provide an overall measure of intra-

subject parcellation reproducibility.  

To evaluate inter-subject parcellation similarity, for each pair of participants, the Dice 

coefficient was computed for each parcel. Since there were two parcellations for each 

participant, there were a total of four Dice coefficients for each parcel, which were then 

averaged. Furthermore, the Dice coefficients were averaged across all pairs of participants to 

provide insights into regional variation in inter-subject parcel similarity. Finally, the dice 

coefficients were averaged across all parcels to provide an overall measure of inter-subject 

parcellation similarity.   

To evaluate whether the parameters of MS-HBM algorithms from one dataset could be 

generalized to another dataset with different acquisition protocols and preprocessing pipelines, 

we used the HCP model parameters to estimate individual-specific parcellations in the MSC 

dataset. More specifically, the MS-HBM parcellations were independently estimated using the 

first 5 sessions and the last 5 sessions for each MSC participant (Figure 2B).  

 

Geometric properties of MS-HBM parcellations 

 The three MS-HBM variants impose different spatial priors on areal-level parcellations. 

To characterize the geometric properties of the MS-HBM parcels (Figure 2C), the three trained 

models (dMS-HBM, cMS-HBM and gMS-HBM) were applied to the HCP test set using all four 

rs-fMRI runs. We then computed two metrics to characterize the geometry of the parcellations. 

First, for each parcellation, the number of spatially disjoint components was computed for each 
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parcel and averaged across all parcels. Second, for each parcellation, a roundness metric was 

computed for each parcel and averaged across all parcels. Here, the roundness of a parcel is 

defined as 1 − #   
#     

 ; a larger value indicates that a parcel is rounder.  

   

Comparison with alternative approaches 

Here, we compared the three MS-HBM approaches (dMS-HBM, cMS-HBM, and gMS-

HBM) with three alternative approaches. The first approach was to apply the Schaefer2018 400-

region group-level parcellation to individual subjects. The second approach is the well-known 

gradient-based boundary mapping algorithm that has been widely utilized to estimate individual-

specific areal-level parcellation (Laumann et al., 2015; Gordon et al., 2017b). We will refer to 

this second approach as “Laumann2015” (https://sites.wustl.edu/petersenschlaggarlab/resources). 

The third approach is the recent individual-specific areal-level parcellation algorithm of Li and 

colleagues (Li et al., 2019b; http://nmr.mgh.harvard.edu/bid/DownLoad.html), which we will 

refer to as “Li2019”.  

Evaluating the quality of individual-specific resting-state parcellations is difficult because 

of a lack of ground truth. Here, we considered two common evaluation metrics (Gordon et al., 

2016; Chong et al., 2017; Schaefer et al., 2018; Kong et al., 2019): resting-state connectional 

homogeneity and task functional inhomogeneity (i.e., uniform task activation; see below). These 

metrics encode the principle that if an individual-specific parcellation captured the areal-level 

organization of the individual’s cerebral cortex, then each parcel should have homogeneous 

connectivity and function. Furthermore, we also compared the relative utility of the different 

parcellation approaches for RSFC-based behavioral prediction. 
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Figure 3. Flowcharts of comparisons with other algorithms. (A) Comparing out-of-sample 
resting-state homogeneity across different parcellation approaches applied to a single rs-fMRI 
session. (B) Comparing out-of-sample resting-state homogeneity across different parcellation 
approaches applied to different lengths of rs-fMRI data. (C) Comparing task inhomogeneity 
across different approaches. (D) Comparing RSFC-based behavioral prediction accuracies across 
different approaches. Across all analyses, MS-HBM parcellaions were estimated using the 
trained models from Figure 2A. We remind the reader that the trained MS-HBMs were estimated 
using the HCP training and validation sets (Figure 2A), which did not overlap with the HCP test 
set utilized in the current set of analyses. In the case of analyses (A) and (B), only a portion of rs-
fMRI data was used to estimate the parcellations. The remaining rs-fMRI data was used to 
compute out-of-sample resting-state homogeneity. For analyses (C) and (D), all available rs-
fMRI data was used to estimate the parcellations. Finally, we note that the local gradient 
approach (Laumann2015) does not yield a fixed number of parcels. Thus, the number of parcels 
is variable within an individual with different lengths of rs-fMRI data, so Laumann2015 was not 
considered for analysis B. Similarly, the number of parcels is different across participants, so the 
sizes of the RSFC matrices are different across participants. Therefore, Laumann2015 was also 
not utilized for analysis D. 

 

Resting-state connectional homogeneity 

Resting-state connectional homogeneity was defined as the averaged Pearson’s 

correlations between rs-fMRI time courses of all pairs of vertices within each parcel, adjusted for 

parcel size and summed across parcels (Schaefer et al., 2018; Kong et al., 2019). Higher resting-

state homogeneity means that vertices within the same parcel share more similar time courses. 

Therefore, higher resting-state homogeneity indicates better parcellation quality.  

For each participant from the HCP test set (N = 755), we used one run to infer the 

individual-specific parcellation and computed resting-state homogeneity with the remaining 3 

runs. For the MSC dataset (N = 9), we used one session to infer the individual-specific 

parcellation and computed resting-state homogeneity with the remaining 9 sessions (Figure 3A).  

Because MSC participants have large amount of rs-fMRI data (300 min), we also 

parcellated each MSC participant using different length of rs-fMRI data (10 min to 150 min) and 

evaluated the resting-state homogeneity with the remaining 5 sessions. This allowed us to 

estimate how much the algorithms would improve with more data (Figure 3B).  

When comparing resting-state homogeneity between parcellations, the effect size 

(Cohen’s 푑) of differences and a two-sided paired-sample t-test (dof = 754 for HCP, dof = 8 for 

MSC) were computed.  
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Task functional inhomogeneity 

Task functional inhomogeneity was defined as the standard deviation of (activation) z-

values within each parcel for each task contrast, adjusted for parcel size and summed across 

parcels (Gordon et al., 2017b; Schaefer et al., 2018). Lower task inhomogeneity means that 

activation within each parcel is more uniform. Therefore, lower task inhomogeneity indicates 

better parcellation quality. The HCP task-fMRI data consisted of 7 task domains: social 

cognition, motor, gambling, working memory, language processing, emotional processing, and 

relational processing (Barch et al., 2013). The MSC task-fMRI data consisted of three task 

domains: motor, mixed, and memory (Gordon et al., 2017b). Each task domain contained 

multiple task contrasts. All available task contrasts were utilized. 

For each participant from the HCP test set (N = 755) and MSC dataset (N = 9), all rs-fMRI 

sessions were used to infer the individual-specific parcellation (Figure 3C). The individual-

specific parcellation was then used to evaluate task inhomogeneity for each task contrast and 

then averaged across all available contrasts within a task domain, resulting in a single task 

inhomogeneity measure per task domain. When comparing between parcellations, we averaged 

the task inhomogeneity metric across all contrasts within a task domain before the effect size 

(Cohen’s 푑) of differences and a two-sided paired-sample t-test (dof = 754 for HCP, dof = 8 for 

MSC) were computed for each domain. 

 

Methodological considerations 

It is important to note that a parcellation with more parcels tends to have smaller parcel 

size, leading to higher resting-state homogeneity and lower task inhomogeneity. For example, if 

a parcel comprised 2 vertices, then the parcel would be highly homogeneous. In our experiments, 

the MS-HBM algorithms and Li2019 were initialized with the 400-region Schaefer2018 group-

level parcellation, resulting in the same number of parcels as Schaefer2018, i.e., 400 parcels. 

This allowed for a fair comparison among MS-HBMs, Li2019 and Schaefer2018. 

However, parcellations estimated by Laumann2015 had a variable number of parcels 

across participants. Furthermore, Laumann2015 parcellations also had a significant number of 

vertices between parcels that were not assigned to any parcel, which has the effect of artificially 

increasing resting homogeneity and decreasing task inhomogeneity. Therefore, when comparing 

MS-HBM with Lauman2015 using resting-state homogeneity (Figure 3A) and task 
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inhomogeneity (Figure 3C), we performed a post-hoc processing of MS-HBM parcellations to 

match the number of parcels and unlabeled vertices of Laumann2015 parcellations 

(Supplementary Methods S3). 

In addition, the Laumann2015 approach yielded different numbers of parcels within an 

individual with different lengths of rs-fMRI data. Therefore, Laumann2015 was also excluded 

from the analysis of out-of-sample resting-state homogeneity with different lengths of rs-fMRI 

data (Figure 3B).  

 

RSFC-based behavioral prediction  

Most studies utilized a group-level parcellation to derive RSFC for behavioral prediction 

(Dosenbach et al., 2010; Finn et al., 2015; Dubois et al., 2018; Li et al., 2019a; Weis et al., 

2019). Here, we investigated if RSFC derived from individual-specific parcellations can improve 

behavioral prediction performance. As before (Kong et al., 2019; Li et al., 2019a; He et al., 

2019), we considered 58 behavioral phenotypes measuring cognition, personality and emotion 

from the HCP dataset. Three participants were excluded from further analyses because they did 

not have all behavioral phenotypes, resulting in a final set of 752 test participants. 

The different parcellation approaches were applied to each HCP test participant using all 

four rs-fMRI runs (Figure 3D). The Laumann2015 approach yielded parcellations with different 

numbers of parcels across participants, so there was a lack of inter-subject parcel 

correspondence. Therefore, we were unable to perform behavioral prediction with the 

Laumann2015 approach, so Laumann2015 was excluded from this analysis. 

Given 400-region parcellations from different approaches (Schaefer2018; Li2019; dMS-

HBM, cMS-HBM, gMS-HBM), functional connectivity was computed by correlating averaged 

time courses of each pair of parcels, resulting in a 400 × 400 RSFC matrix for each HCP test 

participant (Figure 3D). Consistent with our previous work (Kong et al., 2019; Li et al., 2019b; 

He et al., 2019), kernel regression was utilized to predict each behavioral measure in individual 

participants. Suppose 푦 is the behavioral measure (e.g., fluid intelligence) and 𝐹𝐶 is the 

functional connectivity matrix of a test participant. In addition, suppose 푦  is the behavioral 

measure (e.g., fluid intelligence) and 𝐹𝐶  is the individual-specific functional connectivity matrix 

of the 푖-th training participant. Then kernel regression would predict the behavior of the test 

participant as the weighted average of the behaviors of the training participants: 푦 ≈
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∑ Similarity(𝐹𝐶 , 𝐹𝐶)푦∈  . Here, Similarity(𝐹𝐶 , 𝐹𝐶) is the Pearson’s correlation 

between the functional connectivity matrices of the 푖-th training participant and the test 

participant. Because the functional connectivity matrices were symmetric, only the lower 

triangular portions of the matrices were considered when computing the correlation. Therefore, 

kernel regression encodes the intuitive idea that participants with more similar RSFC patterns 

exhibited similar behavioral measures.     

In practice, an 푙 -regularization term (i.e., kernel ridge regression) was included to reduce 

overfitting (Supplementary Methods S4; Murphy, 2012). We performed 20-fold cross-validation 

for each behavioral phenotype. Family structure within the HCP dataset was taken into account 

by ensuring participants from the same family (i.e., with either the same mother ID or father ID) 

were kept within the same fold and not split across folds. For each test fold, an inner-loop 20-

fold cross-validation was repeatedly applied to the remaining 19 folds with different 

regularization parameters. The optimal regularization parameter from the inner-loop cross-

validation was then used to predict the behavioral phenotype in the test fold. Accuracy was 

measured by correlating the predicted and actual behavioral measure across all participants 

within the test fold (Finn et al., 2015; Kong et al., 2019; Li et al., 2019b). By repeating the 

procedure for each test fold, each behavior yielded 20 correlation accuracies, which were then 

averaged across the 20 folds. Because a single 20-fold cross-validation might be sensitive to the 

particular split of the data into folds (Varoquaux et al., 2017), the above 20-fold cross-validation 

was repeated 100 times. The mean accuracy and standard deviation across the 100 cross-

validations will be reported. When comparing between parcellations, a corrected resampled t-test 

for repeated k-fold cross-validation was performed (Bouckaert and Frank, 2004). We also 

repeated the analyses using coefficient of determination (COD) as a metric of prediction 

performance.  

As certain behavioral measures are known to correlate with motion (Siegel et al., 2016), 

we regressed out age, sex, framewise displacement (FD), DVARS, body mass index and total 

brain volume from the behavioral data before kernel ridge regression. To prevent any 

information leak from the training data to test data, the nuisance regression coefficients were 

estimated from the training folds and applied to the test fold. 
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Code and data availability 

Code for this work is freely available at the GitHub repository maintained by the 

Computational Brain Imaging Group (https://github.com/ThomasYeoLab/CBIG). The 

Schaefer2018 group-level parcellation and code are available here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal), while the areal-level MS-HBM parcellation code is available here 

(GITHUB_LINK). We have also provided trained MS-HBM parameters at different spatial 

resolutions, ranging from 100 to 1000 parcels.  

We note that the computational bottleneck for gMS-HBM is the computation of the local 

gradients (Laumann et al., 2015). We implemented a faster and less memory-intensive version of 

the local gradient computation by subsampling the functional connectivity matrices 

(Supplementary Methods S1.3). Computing the gradient map of a single HCP run requires 15 

minutes and 3 GB of RAM, compared with 4 hours and 40 GB of RAM in the original version. 

The resulting gradient maps were highly similar to the original gradient maps (r = 0.97). The 

faster gradient code can be found here (GITHUB_LINK). 

The individual-specific parcellations for the HCP and MSC, together with the associated 

RSFC matrices, are available here (BALSA_LINK and GITHUB_LINK). 
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Results 

Overview 

 Three variations of the MS-HBM with different contiguity constraints (Figure 1) were 

applied to two multi-session rs-fMRI datasets to ensure that the approaches were generalizable 

across datasets with significant acquisition and processing differences. After confirming previous 

literature (Mueller et al., 2013; Laumann et al., 2015; Kong et al., 2019) that inter-subject and 

intra-subject RSFC variabilities were different across the cortex, we then established that the 

MS-HBM algorithms produced individual-specific areal-level parcellations with better quality 

than other approaches. Finally, we investigated whether RSFC derived from MS-HBM 

parcellations could be used to improve behavioral prediction.  

 

Sensory-motor cortex exhibits lower inter-subject but higher intra-subject functional connectivity 

variability than association cortex 

 The parameters of gMS-HBM, dMS-HBM and cMS-HBM were estimated using the HCP 

training set. Figure S1 shows the inter-subject RSFC variability (휖 ) and intra-subject RSFC 

variability (휎 ) overlaid on corresponding Schaefer2018 group-level parcels. The pattern of inter-

subject and intra-subject RSFC variability were consistent with previous work (Mueller et al., 

2013; Laumann et al., 2015; Kong et al., 2019). More specifically, sensory-motor parcels 

exhibited lower inter-subject RSFC variability than association cortical parcels. On the other 

hand, association cortical parcels exhibited lower intra-subject RSFC variability than sensory-

motor parcels.  

 

Individual-specific MS-HBM parcellations exhibit high intra-subject reproducibility and low 

inter-subject similarity 

 To assess intra-subject reproducibility and inter-subject similarity, the three MS-HBM 

variants were tuned on the HCP training and validation sets, and then applied to the HCP test set. 

Individual-specific parcellations were generated by using resting-state fMRI data from day 1 

(first 2 runs) and day 2 (last 2 runs) separately for each participant. All 400 parcels were present 

in 99% of the participants.  
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Figure 4. Individual-specific MS-HBM parcellations show high within-subject reproducibility 
and low across-subject similarity in the HCP test set. (A) 400-region Schaefer2018 group-level 
parcellation. (B) Inter-subject spatial similarity for different parcels. (C) Intra-subject 
reproducibility for different parcels. Yellow color indicates higher overlap. Red color indicates 
lower overlap. Individual-specific MS-HBM parcellations were generated by using day 1 (first 
two runs) and day 2 (last two runs) separately for each participant. Sensory-motor parcels 
exhibited higher intra-subject reproducibility and inter-subject similarity than association parcels. 

 

Figure 4 shows the inter-subject and intra-subject spatial similarity (Dice coefficient) of 

parcels from the three MS-HBM variants in the HCP test set. Intra-subject reproducibility was 
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greater than inter-subject similarity across all parcels. Consistent with our previous work on 

individual-specific cortical networks (Kong et al., 2019), sensory-motor parcels were more 

spatially similar across participants than association cortical parcels. Sensory-motor parcels also 

exhibited greater within-subject reproducibility than association cortical parcels.  

Overall, gMS-HBM, dMS-HBM and cMS-HBM achieved intra-subject reproducibility of 

81.0%, 80.4% and 76.1% respectively, and inter-subject similarity of 68.2%, 68.1% and 63.9% 

respectively. We note that these metrics cannot be easily used to judge the quality of the 

parcellations. For example, gMS-HBM has higher intra-subject reproducibility and higher inter-

subject similarity than cMS-HBM, so we cannot simply conclude that one is better than the 

other. 

 Figures 5A and S2 show the gMS-HBM parcellations of 4 representative HCP 

participants. Figures S3 and S4 show the dMS-HBM and cMS-HBM parcellations of the same 

HCP participants. Consistent with previous studies of individual-specific parcellations (Glasser 

et al., 2016; Chong et al., 2017; Gordon et al., 2017b; Salehi et al., 2018; Li et al., 2019b; 

Seitzman et al., 2019), parcel shape, size, location and topology were variable across 

participants. Parcellations were highly similar within each participant with individual-specific 

parcel features highly preserved across sessions (Figure 5B). Similar results were obtained with 

dMS-HBM and cMS-HBM (Figure 5B).  

The trained MS-HBM from the HCP dataset was also applied to the MSC dataset. The 

MS-HBM parcellations of 4 representative MSC participants are shown in Figures S5, S6 and 

S7. Similar to the HCP dataset, the parcellations also captured unique features that were 

replicable across the first five sessions and the last five sessions. Overall, gMS-HBM, dMS-

HBM and cMS-HBM achieved intra-subject reproducibility of 75.5%, 73.9% and 67.8% 

respectively, and inter-subject similarity of 50.6%, 47.1% and 42.9% respectively. 
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Figure 5. MS-HBM parcellations exhibit individual-specific features that are replicable across 
sessions. (A) 400-region individual-specific gMS-HBM parcellations were estimated using rs-
fMRI data from day 1 and day 2 separately for each HCP test participant. Right hemisphere 
parcellations are shown in Figure S2. See Figure S3 and S4 for dMS-HBM and cMS-HBM. (B) 
Replicable individual-specific parcellation features in a single HCP test participant for dMS-
HBM, cMS-HBM and gMS-HBM.  
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Geometric properties of MS-HBM parcellations 

 In the HCP test set, the average number of spatially disconnected components per parcel 

was 1.95 ± 0.29 (mean ± std), 1 ± 0 and 1.06 ± 0.07 for dMS-HBM, cMS-HBM and gMS-HBM 

respectively. In the case of dMS-HBM, the maximum number of spatially disconnected 

components (across all participants and parcels) was 11 (Figure S8). In the case of gMS-HBM, 

the maximum number of spatially disconnected components (across all participants and parcels) 

was 3 (Figure S8). On the other hand, the average roundness of the parcellations was 0.56 ± 0.02 

(mean ± std), 0.60 ± 0.01 and 0.58 ± 0.02 for dMS-HBM, cMS-HBM and gMS-HBM 

respectively. Overall, gMS-HBM parcels have much fewer spatially disconnected components 

than dMS-HBM, while achieving intermediate roundness between dMS-HBM and cMS-HBM. 

 

Individual-specific MS-HBM parcels exhibit higher resting-state homogeneity than other 

approaches 

Individual-specific areal-level parcellations were estimated using a single rs-fMRI 

session for each HCP test participant and each MSC participant. Resting-state homogeneity was 

evaluated using leave-out sessions in the HCP (Figures 6A and 6B) and MSC (Figures 6C, 6D 

and S9) datasets. We note that comparisons with Laumann2015 are shown on separate plots 

(Figures 6B and 6D) because Laumann2015 yielded different number of parcels across 

participants. Therefore, we matched the number of MS-HBM parcels to Laumann2015 for each 

participant for fair comparison (see Methods).  

 Across both HCP and MSC datasets, the MS-HBM algorithms achieved better 

homogeneity than the group-level parcellation (Schaefer2018) and two individual-specific areal-

level parcellation approaches (Laumann2015 and Li2019). Compared with Schaefer2019, the 

three MS-HBM variants achieved an improvement ranging from 3.4% to 7.5% across the two 

datasets (average improvement = 5.2%, average Cohen’s d = 3.8, largest p = 1.9e-6). Compared 

with Li2019, the three MS-HBM variants achieved an improvement ranging from 2.2% to 4.9% 

across the two datasets (average improvement = 3.4%, average Cohen’s d = 3.9, largest p = 5.5e-

6). Compared with Laumann2015, the three MS-HBM variants achieved an improvement 

ranging from 6.3% to 7.8% across the two datasets (average improvement = 6.7%, average 
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Cohen’s d = 7.5, largest p = 1.2e-9). All reported p values were significant after correcting for 

multiple comparisons with false discovery rate (FDR) q < 0.05. 

 

 
Figure 6. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity than 
other approaches. (A) 400-region individual-specific parcellations were estimated using a single 
rs-fMRI session and resting-state homogeneity was computed on the remaining sessions for each 
HCP test participant. Error bars correspond to standard errors. (B) Same as (A) except that 
Laumann2015 allowed different number of parcels across participants, so we matched the 
number of MS-HBM parcels to Laumann2015 for each participant. Therefore, the numbers for 
(A) and (B) were not comparable. (C) 400-region individual-specific parcellations were 
estimated using a single rs-fMRI session and resting-state homogeneity was computed on the 
remaining sessions for each MSC participant. Each circle represents one MSC participant. Dash 
lines connect the same participants. (D) Same as (C) except that Laumann2015 allowed different 
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number of parcels across participants, so we matched the number of MS-HBM parcels to 
Laumann2015 for each participant. Results for dMS-HBM and cMS-HBM in the MSC dataset 
are shown in Figure S9.  

 

Among the three MS-HBM variants, cMS-HBM achieved the highest homogeneity, 

while dMS-HBM was the least homogeneous. In the HCP dataset, cMS-HBM achieved an 

improvement of 0.19% (Cohen’s d = 0.5, p = 3.5e-38) over gMS-HBM, and gMS-HBM 

achieved an improvement of 0.76% (Cohen’s d = 2.5, p = 3.5e-38) over dMS-HBM. In the MSC 

dataset, cMS-HBM achieved an improvement of 1.1% (Cohen’s d = 3.5, p = 6.3e-6) over gMS-

HBM, and gMS-HBM achieved an improvement of 0.7% (Cohen’s d = 2.6, p = 6.1e-5) over 

dMS-HBM. All reported p values were significant after correcting for multiple comparisons with 

FDR q < 0.05. 

Individual-specific parcellations were estimated with increasing length of rs-fMRI data in 

the MSC dataset. Resting-state homogeneity was evaluated using leave-out sessions (Figures 7A 

and S10). We note that Laumann2015 parcellations had different number of parcels with 

different length of rs-fMRI data. Therefore, the resting-state homogeneity of Laumann2015 

parcellations was not comparable across different length of rs-fMRI data, so the results were not 

shown. Because Schaefer2018 is a group-level parcellation, the parcellation stays the same 

regardless of the amount of data. Therefore, the performance of the Schaefer2018 group-level 

parcellation remained constant regardless of the amount of data. Surprisingly, the performance of 

the Li2019 individual-specific parcellation approach also remained almost constant regardless of 

the amount of data. One possible reason is that Li2019 constrained individual-specific parcels to 

overlap with group-level parcels. This might be an overly strong constraint, which could not be 

overcome with more rs-fMRI data. By contrast, the MS-HBM algorithms (dMS-HBM, cMS-

HBM, and gMS-HBM) exhibited higher homogeneity with increased length of rs-fMRI data, 

suggesting that MS-HBM models were able to improve with more rs-fMRI data. 

Furthermore, using just 10 min of rs-fMRI data, the MS-HBM algorithms achieved better 

homogeneity than Laumann2015 and Li2019 using 150 min of rs-fMRI data (Figures 7B and 

S10). More specifically, compared with Laumann2015 using 150 min of rs-fMRI data, dMS-

HBM, cMS-HBM, and gMS-HBM using 10 min of rs-fMRI data achieved an improvement of 

2.6% (Cohen’s d = 2.7, p = 3.6e-5), 6.2% (Cohen’s d = 5.5, p = 1.9e-7) and 5.6% (Cohen’s d = 

6.1, p = 2.3e-7) respectively. Compared with Li2019 using 150 min of rs-fMRI data, dMS-HBM, 
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cMS-HBM, and gMS-HBM using 10 min of rs-fMRI data achieved an improvement of 0.4% 

(Cohen’s d = 0.4, not significant), 2.4% (Cohen’s d = 1.9, p = 4.3e-4) and 1.5% (Cohen’s d = 

1.7, p = 1.0e-3) respectively. All reported p values were significant after correcting for multiple 

comparisons with FDR q < 0.05. 

 
Figure 7. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity with 
less amount of data. (A) 400-region individual-specific parcellations were estimated using 
different lengths of rs-fMRI data for each MSC participant. Resting-state homogeneity was 
evaluated using leave-out sessions. Error bars correspond to standard errors. (B) 400-region 
individual-specific parcellations were estimated for each MSC participant using 10 min of rs-
fMRI data for gMS-HBM and 150 min of rs-fMRI data for Li2019. Each circle represents one 
MSC participant. Dash lines connect the same participants. (C) Same as (B) except that 
Laumann2015 yielded different number of parcels for each participant, so we matched the 
number of MS-HBM parcels accordingly for each participant. Results for dMS-HBM and cMS-
HBM are shown in Figure S10. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.16.426943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.16.426943
http://creativecommons.org/licenses/by/4.0/


 32 

 

Individual-specific MS-HBM parcels exhibit lower task inhomogeneity than other approaches 

Individual-specific parcellations were estimated using all rs-fMRI sessions from the HCP 

test set and MSC dataset. Task inhomogeneity was evaluated using task fMRI. Figures 8 and S11 

show the task inhomogeneity of all approaches for all task domains in the MSC and HCP 

datasets respectively. Compared with Schaefer2019, the three MS-HBM variants achieved an 

improvement ranging from 0.9% to 5.9% across all task domains and datasets (average 

improvement = 3.2%, average Cohen’s d = 2.4, largest p = 2.0e-3). Compared with Li2019, the 

three MS-HBM variants achieved an improvement ranging from 0.8% to 5.0% across all task 

domains and datasets (average improvement = 2.7%, average Cohen’s d = 2.2, largest p = 1.8e-

3). Compared with Laumann2015, the three MS-HBM variants achieved an improvement 

ranging from 1.9% to 28.1% across all task domains and datasets (average improvement = 6.7%, 

average Cohen’s d = 2.3, largest p = 0.017). All reported p values were significant after 

correcting for multiple comparisons with false discovery rate (FDR) q < 0.05. In the case of 

MSC, these improvements were observed in almost every single participant across all tasks 

(Figure 8).   

 

 
Figure 8. MS-HBM parcellations achieved better task inhomogeneity in the MSC dataset. (A) 
400-region individual-specific parcellations were estimated using all resting-state fMRI sessions. 
Task inhomogeneity was evaluated using task fMRI. Task inhomogeneity was then defined as 
the standard deviation of task activation within each parcel, and then averaged across all parcels 
and contrasts within each behavioral domain. Lower value indicates better task inhomogeneity. 
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Each circle represents one MSC participant. Dash lines connect the same participants. (B) Same 
as (A) except that Laumann2015 yielded different number of parcels for each participant, so we 
matched the number of MS-HBM parcels accordingly for each participant. HCP results are 
shown in Figure S11. 

 

Among the three MS-HBM variants, cMS-HBM achieved the best task inhomogeneity, 

while dMS-HBM achieved the worst task inhomogeneity. Compared with gMS-HBM, cMS-

HBM achieved an improvement ranging from 0.03% to 0.92% across all task domains and 

datasets (average improvement = 0.3%, average Cohen’s d = 0.6, largest p = 0.013). Compared 

with dMS-HBM, gMS-HBM achieved an improvement ranging from 0.06% to 1.1% across all 

task domains and datasets (average improvement = 0.5%, average Cohen’s d = 1.1, largest p = 

1.2e-3). All reported p values were significant after correcting for multiple comparisons with 

FDR q < 0.05. 

 

Functional connectivity of individual-specific MS-HBM parcels improves behavioral prediction 

Individual-specific parcellations were estimated using all rs-fMRI sessions from the HCP 

test set. The RSFC of the individual-specific parcellations was used for predicting 58 behavioral 

measures. We note that the number of parcels was different across participants for 

Laumann2015, so Laumann2015 could not be included for this analysis. 

Tables S2 and S3 summarize the average prediction accuracies (Pearson’s correlation) for 

different sets of behavioral measures, including cognitive, personality and emotion measures. 

Overall, individual-specific functional connectivity strength from MS-HBM parcellations 

achieved better prediction performance than other approaches. In general, gMS-HBM achieved 

better prediction performance than dMS-HBM and cMS-HBM, but differences were not 

significant.  

Figure 9A shows the average prediction accuracies of all 58 behaviors across different 

parcellation approaches. Compared with Schaefer2018 and Li2019, gMS-HBM achieved 

improvements of 16% (p = 5.0e-4) and 18% (p = 5.4e-4) respectively. Both p values remained 

significant after correcting for multiple comparisons with FDR q < 0.05. Compared with cMS-

HBM and dMS-HBM, gMS-HBM achieved an improvement of 5.5% and 3.4% respectively. 

However, differences among MS-HBM variants were not significant. 
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Figure 9. MS-HBM achieves the best behavioral prediction performance as measured by 
Pearson’s correlation. (A) Average prediction accuracies (Pearson’s correlation) of all 58 
behavioral measures. Boxplots utilized default Matlab parameters, i.e., box shows median and 
inter-quartile range (IQR). Whiskers indicate 1.5 IQR (not standard deviation). Circle indicates 
mean. dMS-HBM, cMS-HBM and gMS-HBM achieved average prediction accuracies of r = 
0.1083 ± 0.0031 (mean ± std), 0.1062 ± 0.0031 and 0.1111 ± 0.0031 respectively. On the other 
hand, Schaefer2018 and Li2019 achieved average prediction accuracies of r = 0.0960 ± 0.0031 
and 0.0944 ± 0.0031 respectively. (B) Average prediction accuracies (Pearson’s correlation) of 
36 behavioral measures with accuracies (Pearson’s correlation) higher than 0.1 for at least one 
approach (“36 behaviors > 0.1”). dMS-HBM, cMS-HBM and gMS-HBM achieved average 
prediction accuracies of r = 0.1630 ± 0.0034 (mean ± std), 0.1590 ± 0.0035 and 0.1656 ± 0.0036 
respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction 
accuracies of r = 0.1442 ± 0.0036 and 0.1444 ± 0.0035 respectively. 
 

We note that some behavioral measures were predicted poorly by all approaches. This is 

not unexpected because we do not expect all behavioral measures to be predictable with RSFC. 

Therefore, we further consider a subset of behavioral measures that could be predicted well by at 

least one approach. Figure 9B shows the average prediction accuracies of 36 behaviors with 

accuracies higher than 0.1 for at least one approach (“36 behaviors > 0.1”). Compared with 

Schaefer2018 and Li2019, gMS-HBM achieved improvements of 13% (p = 2.2e-4) and 13% (p 

= 4.5e-4) respectively. All p values remained significant after correcting for multiple 

comparisons with FDR q < 0.05. Differences among MS-HBM variants were again not 

significant. Similar conclusions were obtained with COD instead of correlations (Figure 10; 

Tables S4 and S5). 
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Figure 10. MS-HBM achieves the best behavioral prediction performance as measured by 
coefficient of determination (COD). (A) Average prediction accuracies (COD) of all 58 
behavioral measures. Boxplots utilized default Matlab parameters, i.e., box shows median and 
inter-quartile range (IQR). Whiskers indicate 1.5 IQR (not standard deviation). Circle indicates 
mean. dMS-HBM, cMS-HBM and gMS-HBM achieved average prediction accuracies (COD) = 
0.0147 ± 0.0009 (mean ± std), 0.0149 ± 0.0009 and 0.0156 ± 0.0010 respectively. On the other 
hand, Schaefer2018 and Li2019 achieved average prediction accuracies (COD) = 0.0120 ± 
0.0009 and 0.0121 ± 0.0009 respectively. (B) Average prediction accuracies (COD) of 36 
behavioral measures with accuracies (Pearson’s correlation) greater than 0.1 for at least one 
approach (“36 behaviors > 0.1”). dMS-HBM, cMS-HBM and gMS-HBM achieved average 
prediction accuracies (COD) = 0.0252 ± 0.0014 (mean ± std), 0.0257 ± 0.0014 and 0.0266 ± 
0.0014 respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction 
accuracies (COD) = 0.0212 ± 0.0014 and 0.0213 ± 0.0014 respectively. 
 

Task performance measures are more predictable than self-reported measures 

To explore which behavioral measures can be consistently predicted well regardless of 

parcellations, we ordered the 58 behavioral measures based on averaged prediction accuracies 

(Pearson’s correlation) across Schaefer2018, Li2019 and the three MS-HBM variants (Figure 

11B). Our previous studies (Li et al., 2019a; Liégeois et al., 2019) have suggested that “self-

reported” and “task performance” measures might be differentially predicted under different 

conditions. Using the same classification of behavioral measures (Li et al., 2019a; Liégeois et al., 

2019), we found that the average prediction accuracies of self-reported measures and task 

performance measures were r = 0.0890 ± 0.0048 and r = 0.1181 ± 0.0033 respectively (Figure 

11A), suggesting that on average, task performance measures were more predictable than self-

reported measures (p = 0.042).   
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Figure 11. Task performance measures were predicted better than self-reported measures across 
different parcellation approaches. Prediction accuracies were averaged across all parcellation 
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approaches (three MS-HBM variants, Schaefer2018, and Li2019). (A) Prediction accuracies 
averaged across HCP task-performance measures (gray) and HCP self-reported measures 
(white). (B) Behavioral measures were ordered based on average prediction accuracies. Gray 
color indicates task performance measures. White color indicates self-reported measures. 
Boxplots utilized default Matlab parameters, i.e., box shows median and inter-quartile range 
(IQR). Whiskers indicate 1.5 IQR (not standard deviation). Circle indicates mean. Designation of 
behavioral measures into “self-reported” and “task-performance) measures followed previous 
studies (Li et al., 2019a; Liégeois et al., 2019).
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Discussion 

In this manuscript, we demonstrated the robustness of the MS-HBM areal-level 

parcellation approach. Compared with a group-level parcellation and two state-of-the-art 

individual-specific areal-level parcellation approaches, we found that MS-HBM parcels were 

more homogeneous during resting-state while also exhibiting more uniform task activation 

patterns (i.e., lower task inhomgeneity). Furthermore, RSFC derived from individual-specific 

MS-HBM parcellations achieved better behavioral prediction performance than other 

approaches. Among the three MS-HBM variants, the contiguous MS-HBM (cMS-HBM) 

exhibited the best resting homogeneity and task inhomogeneity, while the gradient-infused MS-

HBM (gMS-HBM) exhibited the best behavioral prediction performance.  

 

Interpretation of the MS-HBM areal-level parcellations 

Previous studies have estimated around 300 to 400 classically defined cortical areas in 

the human cerebral cortex (Van Essen et al. 2012b). Therefore, various groups (including ours) 

have most frequently utilized the 400-region Schaefer group-level parcellation (Varikuti et al., 

2018; Franzmeier et al., 2019; Kebets et al., 2019; Murphy et al., 2020; Orban et al., 2020). 

Other studies have opted to utilize different resolutions of the Schaefer group-level parcellation, 

e.g., 100 regions (Chin Fatt et al., 2019), 200 regions (Anderson et al., 2020; Faskowitz et al., 

2020) and 800 regions (Valk et al., 2020). Despite our focus on the 400-region areal-level 

parcellations in the current study, we do not believe that there is an optimal number of cortical 

parcels because of the multi-resolution organization of the cerebral cortex (Churchland and 

Sejnowski, 1988; van den Heuvel and Yeo, 2017). Indeed, given the heterogeneity of cortical 

areas (Kaas, 1987; Amunts and Zilles, 2015), cortical areas might be further subdivided into 

meaningful computational sub-units.  

More specifically and consistent with other studies, our areal-level parcels likely captured 

sub-areal features such as somatotopy and visual eccentricity (Gordon et al., 2016; Schaefer et 

al., 2018). Ultimately, the choice of parcellation resolution might depend on the specific 

application. For example, a recent study suggested that brain-behavior relationships are scale-

dependent (Betzel et al., 2019). Furthermore, a higher resolution parcellation might be 

computationally infeasible for certain analysis, such as edge-centric network analysis (Faskowitz 

et al., 2020). Therefore, we have provided trained MS-HBM at different spatial resolutions, 
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ranging from 100 to 1000 parcels. It is worth noting that because our parcels do not correspond 

to traditional cortical areas (Kaas, 1987; Amunts and Zilles, 2015), we have been careful to avoid 

the term “areas”. Instead we use the term “areal-level parcellation” when referring to the entire 

parcellation and “parcels” when referring to individual regions throughout the manuscript.   

Several studies have shown that brain networks reconfigure during tasks (Cole et al., 

2014; Krienen et al., 2014; Salehi et al., 2019). Consequently, some have questioned the 

existence of a single individual-specific areal-level parcellation that generalizes across resting 

and task states (Salehi et al., 2019). While we do not contest the results of Salehi and colleagues, 

we have a very different interpretation. Cortical areas (e.g., V1) are conceptualized as 

representing stable computational units (Felleman and Van Essen, 1991). Consequently, their 

boundaries should remain the same regardless of transient task states across the span of a few 

days, even if long-term experiences can potentially shape the development and formation of 

cortical areas (Arcaro et al., 2017; Gomez et al., 2019). Thus, the results of Salehi and colleagues 

do not rule out the plausibility of estimating a stable individual-level areal-level parcellation with 

rs-fMRI data alone. Rather, Salehi and colleagues motivate the need to estimate areal-level 

parcellations jointly from resting-fMRI, task-fMRI and other modalities (Glasser et al., 2016; 

Eickhoff et al., 2018a) in order to achieve invariance across brain states. We leave this for future 

work.  

 

MS-HBM areal-level parcellations are more homogeneous than other approaches in out-of-

sample resting and task-fMRI 

Dealing with RSFC matrices at the original voxel or vertex resolution is difficult because 

of the high-dimensionality. Thus, areal-level brain parcellations have been widely utilized as a 

dimensionality reduction tool (Eickhoff et al., 2018a), e.g., averaged time course of a parcel is 

used to represent the entire parcel (Varoquaux and Craddock, 2013; Finn et al., 2015; Rosenberg 

et al., 2016). For the dimensionality reduction to be valid, vertices within each areal-level parcel 

should have similar time courses, i.e., high resting-state homogeneity (Gordon et al., 2016; 

Schaefer et al., 2018). Across two datasets (HCP and MSC), we found that MS-HBM areal-level 

parcellations exhibited higher resting-state homogeneity than three other approaches, suggesting 

that rs-fMRI time courses are more similar within MS-HBM parcels (Figures 6 and 7).  
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Furthermore, if an individual-specific areal-level parcellation accurately captures the 

functional brain organization of a participant, one might expect task activation to be uniform 

within parcels, i.e., low task inhomogeneity (Gordon et al., 2017b; Schaefer et al., 2018). We 

found that MS-HBM parcellations achieved better task inhomogeneity than other approaches in 

both HCP and MSC datasets (Figure 8 and S11). Given the strong link between task-fMRI and 

rs-fMRI (Smith et al., 2009; Mennes et al., 2010; Cole et al., 2014; Krienen et al., 2014; 

Bertolero et al., 2015; Yeo et al., 2015; Tavor et al., 2016), this is perhaps not surprising. 

It is worth pointing out that even though MSC dataset only contained 9 participants, MS-

HBM parcellations exhibited better resting homogeneity and task inhomogeneity in every single 

participant (Figures 6-8, S9-S11). This suggests that MS-HBM parameters estimated from HCP 

were effective in MSC despite significant acquisition and preprocessing differences.  

 

MS-HBM works well even with only 10 min of rs-fMRI data 

 It is well-known that longer scan durations can improve the reliability of RSFC measures 

(Van Dijk et al., 2010; Xu et al., 2016; Kong et al., 2019). Recent studies have suggested that at 

least 20-30 min of data is needed to obtain reliable measurements (Laumann et al., 2015; 

O’Connor et al., 2017; Gordon et al., 2017b). Consistent with previous work, we found that 

resting-state homogeneity of individual-specific areal-level parcellations continued to improve 

with more data (Figure 7 and S10). The improvements started to plateau around 40-50 min of 

data.   

 Although MS-HBM required multi-session rs-fMRI data for training, the models could be 

applied to a single rs-fMRI session from a new dataset. More specifically, in the MSC dataset, 

we showed that MS-HBM areal-level parcellations estimated with only 10 min of rs-fMRI data 

exhibited better resting-state homogeneity than two other approaches using 150 min of data 

(Gordon et al., 2017b; Li et al., 2019b).  

 

RSFC of individual-specific MS-HBM parcellations improves behavioral prediction 

A vast body of literature has shown that functional connectivity derived from group-level 

parcellations can be utilized for behavioral prediction (Hampson et al., 2006; Finn et al., 2015; 

Smith et al., 2015; Yeo et al., 2015; Rosenberg et al., 2016; He et al., 2019). However, there is a 

preponderance of evidence that group-level parcellations obscure individual-specific topographic 
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features (Harrison et al., 2015; Laumann et al., 2015; Langs et al., 2016; Braga and Buckner, 

2017; Chong et al., 2017; Gordon et al., 2017a, 2017b), which are behaviorally meaningful 

(Bijsterbosch et al., 2018, 2019; Kong et al., 2019; Seitzman et al., 2019). Recent studies have 

also suggested that functional connectivity strength derived from individual-specific 

parcellations might also improve behavioral prediction (Li et al., 2019b; Pervaiz et al., 2019). 

We found that MS-HBM parcellations captured individual-specific features that were 

replicable across sessions (Figures 5, S2-S7). Furthermore, RSFC derived from individual-

specific MS-HBM areal-level parcellations achieved better behavioral prediction performance 

compared with a group-level parcellation (Schaefer et al., 2018) and a recently published 

individual-specific parcellation approach (Li et al., 2019b). Overall, our results suggest that 

individual differences in functional connectivity strength of MS-HBM parcels were more 

behaviorally meaningful than of other parcellation approaches.  

It is worth noting that the absolute improvement in prediction performance was modest 

on average, although some behavioral measures appeared to benefit more than others. For 

example, when comparing Li2019 and gMS-HBM for behavioral prediction, the prediction 

accuracy (Pearson’s correlation) of “openness (NEO)” improved from 0.19 to 0.26, while the 

accuracy (Pearson’s correlation) of “vocabulary (picture matching)” improved from 0.36 to 0.39. 

Thus, gMS-HBM might be more helpful for predicting certain behavioral measures than others. 

Further analysis suggested that task performance measures were on average predicted 

with higher accuracy than self-reported measures (Figure 11). This differentiation between task 

performance and self-reported measures was consistent with previous investigations of RSFC-

behavior relationships. For example, RSFC has been shown to predict cognition better than 

personality and mental health (Dubois et al., 2018; Chen et al., 2020). Dynamic functional 

connectivity is also more strongly associated with cognition and task performance than self-

reported measures (Vidaurre et al., 2017; Liégeois et al., 2019). Finally, regressing the global 

signal has been shown to improve the prediction of task performance measures more than self-

reported measures (Li et al., 2019).  

 

Spatially-localized individual-specific areal-level parcels 

Postmortem studies have generally identified cortical areas that are spatially contiguous 

(Kaas, 1987; Felleman and Van Essen, 1991; Amunts and Zilles, 2015). This has motivated most 
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resting-state areal-level parcellations to estimate spatially contiguous parcels (Shen et al., 2013; 

Honnorat et al., 2015; Gordon et al., 2016; Chong et al., 2017). One approach to achieve 

spatially contiguous parcels is to introduce a spatial connectedness term into the optimization 

objective so that distributed parcels would have large penalty (Honnorat et al., 2015; Schaefer et 

al., 2018). Another approach is to start with initial spatially contiguous parcels and to iteratively 

adjust the boundaries to maintain spatial contiguity (Blumensath et al., 2012; Chong et al., 2017; 

Salehi et al., 2019). Yet another method is to utilize the local-gradient approach, which detects 

sharp transitions in RSFC profiles, followed by a post-processing procedure (Cohen et al., 2008; 

Gordon et al., 2016). However, work from Glasser and colleagues suggested that some 

individual-specific areal-level parcels might comprise multiple spatially close components in 

some individuals (Glasser et al., 2016).  

Given the lack of consensus, we explored three MS-HBM variants in this study. We 

found that strictly contiguous cMS-HBM parcels achieved the best out-of-sample resting-state 

homogeneity and task inhomogeneity (Figures 6-8, S8-S10). One possible reason is that cMS-

HBM parcellation boundaries were smoother than dMS-HBM and gMS-HBM parcellations. 

Since fMRI data is spatially smooth, parcellations with smoother boundaries might have an 

inherent homogeneity advantage, without necessarily being better at capturing true areal 

boundaries. Another potential artefact of smooth data is the appearance of excessively round 

parcels that are at odds with histological studies which show that cortical areas express diverse 

spatial configurations. 

Based on our geometric analyses, we found gMS-HBM to be most anatomically plausible 

among the three parcellations, having both fewer spatially disconnected components than dMS-

HBM, and intermediate levels of roundness between dMS-HBM and cMS-HBM. Furthermore, 

RSFC derived from gMS-HBM parcels achieved the best behavioral prediction performance, 

albeit not reaching statistical significance (Figures 9, S11; Tables S2-S5). As elaborated in 

previous studies (Gordon et al., 2016; Schaefer et al., 2018; Kong et al., 2019), assessment of 

parcellations should integrate and weigh performance across multiple metrics. For the reasons 

outlined above, we prefer individual-specific gMS-HBM areal-level parcellations among the 

three MS-HBM variants. 

Overall, our findings suggest that the brain’s large-scale organization might potentially 

comprise certain functional regions that are spatially disconnected. Neuronal migration, guided 
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by cell-to-cell interactions and gradients of diffusible cues, plays an important role in 

establishing the brain’s complex cytoarchitectonic organization during embryogenesis (Silva et 

al., 2019). Spatially disconnected parcels might reflect functionally analogous neuronal 

populations from the same cellular lineage that separate due to natural variation in migration 

patterns in early development.  

That said, we are aware that one cannot establish with certainty the existence of spatially 

disconnected cortical areas based on resting-fMRI data alone. It is possible that disconnected 

components of a non-contiguous parcel are inseparable by resting-fMRI measurements, but are 

separable by other neural properties, such as microstructure or task activations. Given that fMRI 

is an indirect measurement of neuronal signals, the functional coupling among disconnected 

components could also be driven by non-neural mechanisms (e.g., vasculature). 

Nevertheless, our individual-level areal parcellation provides an explicit model that can 

be further validated using prospectively acquired rs-fMRI paired with other approaches, e.g., 

post-mortem histological analyses (Xu et al., 2018; Hayashi et al., 2020) or with spatially-

targeted intracranial recording (Wang et al., 2015; Fox et al., 2018). 

 

Conclusions 

We proposed a multi-session hierarchical Bayesian model (MS-HBM) that accounted for both 

inter-subject and intra-subject functional connectivity variability when estimating individual-

specific areal-level parcellations. Three MS-HBM variants with different spatial localization 

priors were explored. Using 10 min of rs-fMRI data, individual-specific MS-HBM areal-level 

parcellations generalized better to out-of-sample rs-fMRI data from the same participants than a 

group-level parcellation approach and two prominent individual-specific areal-level parcellation 

approaches using 150 min of rs-fMRI data. Furthermore, RSFC derived from MS-HBM 

parcellations exhibited better behavioral prediction performance than alternative parcellation 

approaches.  
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Individual-Specific Areal-Level Parcellations Improve Functional  

Connectivity Prediction of Behavior 

 

Supplemental Material 
This supplemental material is divided into Supplemental Methods and Supplemental Results to 

complement the Methods and Results sections in the main text, respectively. 

 

Supplementary Methods 

This section provides additional mathematical and implementation details of the multi-session 

hierarchical Bayesian model (MS-HBM). Section S1 provides mathematical details about the 

generative model. Section S2 describes the algorithms for estimating group-level priors and deriving 

the individual-specific parcellations and how “free” parameters of the model are set. Section S3 

describes the matching algorithms for comparing MS-HBM parcellations with another parcellation 

approach. Section S4 describes the kernel ridge regression model for behavioral prediction. 

 

S1. Mathematical model 

In this section, we describe our model for individual-specific areal-level parcellation of the 

cerebral cortex. We assume a common surface coordinate system, where the cerebral cortex is 

represented by left and right hemisphere spherical meshes such as fs_LR32k surface meshes. Each 

mesh consists of a collection of vertices and edges connecting neighboring vertices into triangles 

(https://en.wikipedia.org/wiki/Triangle_mesh). 

Let 𝑁 denote the total number of vertices, 𝑇 denote the number of resting-state fMRI (rs-

fMRI) sessions, 𝑆 denote the number of subjects, 𝐿 denote the number of parcels, and 풩  denote the 

neighboring vertices of vertex 푛 (as defined by the cortical mesh). For each subject 푠 and session 푡, 

there is a preprocessed rs-fMRI time course associated with each vertex 푛. For each subject 푠, there is 

an unknown parcellation label 푙  at vertex 푛. Note that the parcellation label is assumed to be the same 

across sessions (hence there is no index on the session). In this work, we use 1: 𝑆 to denote a set of 

subjects {1, 2, … , 𝑆}, 1: 𝑇 to denote a set of sessions {1, 2, … , 𝑇}, 1: 𝑁 to denote a set of vertices 

{1, 2, … , 𝑁}, 1: 𝐿 to denote a set of parcellation labels {1, 2, … , 𝐿}.  

For each subject 푠 at a particular session 푡, we computed the functional connectivity profile 

of each vertex (of the cortical mesh) by correlating the vertex’s fMRI time course with the time 

courses of uniformly distributed cortical regions of interests (ROIs). For the HCP and MSC datasets, 
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the preprocessed data were in fs_LR32k surface space. The ROIs consisted of 1483 vertices spaced 

approximately uniformly distributed across the two hemispheres. Each vertex’s connectivity profile 

was binarized (see Methods in main manuscript) and normalized to unit length. Let 푋 ,  denote the 

binarized, normalized functional connectivity profile of subject 푠 at vertex 푛 during session 푡. Let 𝐷 

denote the total number of ROIs and hence the length of 푋 , . We denote the connectivity profiles from 

all sessions of all subjects at all cortical vertices as 푋 :
: , : .  

Figure 1 (main text) illustrates the schematic of the areal-level multi-session hierarchical 

Bayesian model (MS-HBM). Following previous work (Yeo et al., 2011; Kong et al., 2019), the 

functional connectivity profile 푋 ,  of subject 푠 from a session 푡 at vertex n is assumed to be generated 

from a von Mises-Fisher distribution,  

 

푝 푋 , 푙 = 푙, 휇 :
, , 휅 = 푝 푋 , 휇 , , 휅 = 푧 (휅 )exp 휅 〈푋 , , 휇 , 〉 ,            (1) 

 

where 푙  is the parcellation label at vertex 푛 of subject 푠, and 〈 , 〉 denote inner product. 휇 ,  and 휅  are 

the mean direction and concentration parameter of the von Mises-Fisher distribution for parcel label 푙 

of subject 푠 during session 푡. 휇 :
,  are the mean directions for networks 1 to 𝐿. We can think of 휇 ,  as 

the mean connectivity profile of network label 푙 normalized to unit length. If functional connectivity 

profile 푋 ,  is similar to mean connectivity profile 휇 ,  (i.e., 〈푋 , , 휇 , 〉 is big), then vertex 푛 is more 

likely to be assigned to parcel 푙. The concentration parameter 휅  controls the variability of the 

functional connectivity profiles within parcel 푙. A higher 휅  results in a lower dispersion (i.e., lower 

variance), which means that vertices belonging to the same parcel are more likely to possess functional 

connectivity profiles that are close to the mean connectivity profile of the parcel. 휅  is assumed to be 

the same for all parcels, subjects and sessions. Thus, we will use 휅 to indicate 휅  henceforth. Finally,  

푧 (휅) is a normalization constant to ensure a valid probability distribution (Banerjee et al., 2005): 

 

푧 (휅) =
휅  

(2휋) 𝐼 (휅)
  ,                                               (2) 

 

where 𝐼 (∙) is the modified Bessel function of the first kind with order − 1.  

Similar to our previous work (Kong et al., 2019), we modeled both inter- and intra-subject 

variability. To model intra-subject functional connectivity variability, we assume a conjugate prior on 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.16.426943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.16.426943
http://creativecommons.org/licenses/by/4.0/


Kong et al.   Individual-Specific Areal-Level Parcellations 

 

 3 

the subject-specific and session-specific mean connectivity profiles 휇 , , which turns out to also be a 

von Mises-Fisher distribution: 

 

푝 휇 , 휇 , 휎 = 푧 (휎 )exp (휎 〈휇 , , 휇 〉),                 (3) 

 

where 휇  and 휎  are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for parcel label 푙 of subject 푠. We can think of 휇  as the individual-specific functional 

connectivity profile of parcel 푙 of subject 푠. The concentration parameter 휎  controls how much the 

session-specific mean direction 휇 ,  of subject 푠 during session 푡 can deviate from the subject-specific 

mean direction 휇 . A higher 휎  would imply lower intra-subject functional connectivity variability 

across sessions. 휎  is network-specific but is assumed to be the same for all subjects.  

To model inter-subject functional connectivity variability, we assume a conjugate prior on the 

subject-specific mean connectivity profiles 휇 , which is again a von Mises-Fisher distribution whose 

mean direction corresponded to the group-level mean direction 휇 : 

 

푝 휇 휇 , 휖 = 푧 (휖 )exp (휖 〈휇 , 휇 〉),             (4) 

 

where 휇  and 휖  are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for parcel label 푙. We can think of 휇  as the group-level functional connectivity profile of 

parcel 푙. The concentration parameter 휖  controls how much the individual-specific connectivity profile 

휇  can deviate from the group-level connectivity profile 휇 . A higher 휖  would imply lower inter-

subject functional connectivity variability across subjects.  

Because the functional connectivity profiles of individual subjects are generally very noisy, 

we impose a MRF prior on the hidden parcellation labels 푙 :   

 

푝(푙 : ) =
( , )

exp (훼 ∑ log 𝑈(푙 |훩) − 푐 ∑ ∑ 푉(푙 , 푙 )∈풩 ),      (5) 

 

where 푍(훼, 푐) is a normalization term (partition function) to ensure 푝(푙 : ) is a valid probability 

distribution. log 𝑈(푙 = 푙|훩) = log 휃 ,  is a singleton potential encouraging certain vertices to be 

associated with certain labels. 푉(푙 , 푙 ) is a pairwise potential (Potts model) encouraging neighboring 

vertices to have the same parcellation labels: 
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푉(푙 , 푙 ) = 0,         if 푙 = 푙
1,         if 푙 ≠ 푙 ,           (6)  

 

The parameters 훼 and 푐 are tunable parameters greater than zero, and control the tradeoffs 

between the various terms in the generative model. Assuming that 훼 = 1 and 푐 = 0, then 휃 ,  can be 

interpreted as the probability of label 푙 occurring at vertex 푛 of subject 푠. 

However, many parcels will be spatially distributed due to strong long-range RSFC. 

Requiring parcels in a MRF framework to be spatially connected (with minimal other assumptions) is 

non-trivial (Nowozin and Lampert 2010; Honnorat et al. 2015). Here, spatial localization prior is 

imposed by Φ: 

푝(푙 : ) =
1

푍(훼, 푐, 훽) exp 훼 log 𝑈(푙 |Θ) − 푐 푉(푙 , 푙 )
∈풩

+  훽 log Φ(푙 ) , (7) 

 

where Φ(푙 ) is a singleton potential encoding the spatial localization constraint. The parameters 훽 is a 

tunable parameter greater than zero. We consider three different spatial localization priors which will 

be explained in S1.1, S1.2, and S1.3.  

In addition, it is well-known that early sensory and late motor architectonic areas (areas 3 and 

4) are on either side of the central sulcus. Given low inter-subject variability of these areas (Fischl et 

al., 2008), we do not expect this property to be violated in individuals. Therefore, we additionally 

constrained the Schaefer2018 group-level parcels on either side of the central sulcus not to extend 

across the central sulcus in the individual-specific areal-level parcellations. Removal of this constraint 

resulted in parcels extending across the central sulcus, while not yielding any quantitative 

improvements, e.g., in behavioral prediction accuracies. Consequently, we decided to keep this 

constraint because the resulting parcellations were biologically more plausible. 

 

S1.1 Distributed MS-HBM (dMS-HBM).  

We considered a spatial localization prior that constrained each individual-specific parcel to 

be within 30mm of the group-level Schaefer2018 parcel boundaries (similar to Glasser et al., 2016). 

The spatial localization prior Φ =  Φ  is therefore defined as a 𝑁 × 𝐿 binary mask, where Φ , = 1 if 

the shortest geodesic distance between vertex 푛 and group-level parcel 푙 is less than (or equal to) 30 

mm, else Φ , = 0. Thus, when Φ , = 0, then it is impossible for the vertex 푛 to be assigned to parcel 

푙 (Eq. (7)).   
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S1.2 Contiguous MS-HBM (cMS-HBM).  

We considered a spatial localization prior that encouraged brain locations with similar 3-

dimensional spherical coordinates to be grouped into the same parcel (similar to Schaefer et al., 2018). 

Here, we denote the 3 × 1 spherical coordinates of vertex 푛 as 푌 . The spatial localization prior Φ(푙 ) 

is then defined as  

 

Φ(푙 ) = Φ ,  푝(푌 |푙 = 푙, 푢 : , 훾 : ) = Φ ,  푝(푌 |푢 , 훾 ),            (8) 

 

where Φ ,  is the spatial localization constraint from dMS-HBM (S1.1) and 푝(푌 |푢 , 훾 ) follows a von 

Mises-Fisher distribution:  

 

푝(푌 |푢 , 훾 ) = 푧 (훾 )exp(훾 〈푌 , 푢 〉),                  (9) 

 

where 푢  and 훾  are the mean direction and concentration parameter of the von Mises-Fisher   

distribution for parcel label 푙 of subject 푠. We can think of 푢  as the mean spatial coordinates of parcel 

푙 normalized to unit norm (i.e., sphere). Therefore, if vertex 푛 is spatially close to the mean spatial 

location of parcel 푙 (i.e., 〈푌 , 푢 〉 is big), then vertex 푛 is more likely to be assigned to parcel 푙. 

Consequently, for large enough values of 훾 , the parcels will be spatially connected. In the 

optimization procedure, we start with a smaller value for 훾  and then iteratively increase 훾  for parcel 푙 

to ensure spatial contiguity. 

 

S1.3 Gradient-infused MS-HBM (gMS-HBM).  

S1.3.1 Gradient-infused spatial localization prior 

A well-known areal-level parcellation approach is the local gradient approach, which detects 

local abrupt changes (i.e., gradients) in RSFC across the cortex (Cohen et al., 2008). Our previous 

study (Schaefer et al., 2018) has suggested the utility of combining local gradient (Cohen et al., 2008; 

Gordon et al., 2016) and global clustering (Yeo et al., 2011) approaches for estimating areal-level 

parcellations. Therefore, in the case of gradient-infused MS-HBM (gMS-HBM), the spatial contiguity 

prior in cMS-HBM is complemented with a prior based on RSFC gradient maps, which encourages 

brain locations with gentle changes in functional connectivity to be grouped into the same parcel. 

For each subject 푠, the RSFC gradient map 𝐺푚푎푝  is an 𝑁 × 1 vector, where 𝑁 is the 

number of vertices. High 𝐺푚푎푝  values indicate abrupt change in RSFC; low 𝐺푚푎푝  values indicate 

gentle change in RSFC. We define a graph where the vertices and edges correspond to the mesh 
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structure of the surface mesh. For a particular subject 푠, the distance between two adjacent vertices 푎 

and 푏 is defined as (𝐺푚푎푝 + 𝐺푚푎푝 )/2. Based on this graph, we constructed an 𝑁 × 𝑁 gradient 

distance matrix 𝐺푚푎푡 , where each entry represents the shortest geodesic distance between each pair 

of vertices. If there is an abrupt change in RSFC (high 𝐺푚푎푝 ) somewhere along all paths linking two 

vertices 푖 and 푚, then the shortest geodesic distance between 푖 and 푚 will be large, even though 푖 and 

푚 are spatially close. By contrast, if there is a path linking vertex 푖 and vertex 푚, such that RSFC 

changes are gentle (low 𝐺푚푎푝 ) along the entire path, then the shortest geodesic distance between 푖 

and 푚 will be relatively small, except if vertices 푖 and 푚 are far apart.  

Ideally, we would like to incorporate 𝐺푚푎푡  into our model: two vertices with high 𝐺푚푎푡  

should be encouraged to be in different parcels. This will generally encourage spatially contiguous 

parcels since two vertices spatially far apart will generally have higher 𝐺푚푎푡  and thus will be 

encouraged to be in separate parcels. Because gradient-based parcellations tend to have irregular-

shaped parcels (Gordon et al., 2016), we will also be encouraging spatial contiguity without relatively 

round parcels like in cMS-HBM. However, incorporating 𝐺푚푎푡  into our model is not easy because 

𝐺푚푎푡  is an 𝑁 × 𝑁 distance matrix, which is not easily incorporated into our mixture-type model. 

Furthermore, 𝑁 is also quite large (e.g., more than 30K), so dealing with an 𝑁 × 𝑁 matrix would slow 

down our algorithm.  

Therefore, we applied the diffusion embedding algorithm(Coifman et al., 2005) to the 𝑁 × 𝑁 

geodesic gradient distance matrix 𝐺푚푎푡 , thus embedding the 𝑁 vertices into a 𝐾 dimensional space. 

Roughly speaking, the Euclidean distance between two vertices (based on their 𝐾 diffusion 

coordinates) should be similarly to the geodesic distance. The larger 𝐾 would lead to a better 

approximation, but with more computation costs. We found that 𝐾 = 100 leads to a sufficiently good 

approximation. More specifically, the correlation between 𝐺푚푎푡  and the Euclidean distance in the 𝐾 

dimensional space was 0.84 when averaged across 40 random HCP subjects. In this way, for a 

particular subject 푠, the information of the geodesic gradient distance matrix 𝐺푚푎푡  is embedded as a 

1 × 100 diffusion coordinates for each vertex 푛, which we denote as 𝐺 . If there is an abrupt change in 

RSFC (high 𝐺푚푎푝 ) somewhere along all paths linking two vertices 푖 and 푚, then the Euclidean 

distance between their diffusion coordinates 𝐺  and 𝐺  will be large. By contrast, if there is a path 

linking vertex 푖 and vertex 푚, such that RSFC changes are gentle (low 𝐺푚푎푝 ) along the entire path, 

then the Euclidean distance between their diffusion coordinates 𝐺  and 𝐺  will be relatively small, 

except if vertices 푖 and 푚 are far apart. The spatial localization prior Φ(푙 ) is thus defined as  

 

Φ(푙 ) = Φ ,  푝(𝐺 |푙 = 푙, 휏 : , 휂 : ) = Φ ,  푝(𝐺 |휏 , 휂 ),         (10) 
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where 푝(𝐺 |휏 , 휂 ) follows a Gaussian distribution:  

 

𝐺  ~ 풩(휏 , 𝐼),            (11) 

 

where 휏  is the mean and 𝐼 is the identity matrix. We can think of 휏  as the mean diffusion coordinates 

of parcel 푙. Therefore, if vertex 푛 is spatially close to the mean diffusion coordinates of parcel 푙 (i.e., 

(𝐺 − 휏 ) (𝐺 − 휏 ) is small), then vertex 푛 is more likely to be assigned to parcel 푙.  

We note that the goal of the diffusion embedding was not to compute principal gradients 

(Margulies et al., 2016), but simply for dimensionality reduction to reduce computational costs and 

memory requirements when training and applying gMS-HBM. In addition, the computation of the 

local gradient (Gordon et al., 2016), the computation of the gradient distance matrix 𝐺푚푎푡  and the 

diffusion embedding of 𝐺푚푎푡  also required significant computation costs and memory. Thus, in the 

following sections (Supplementary Methods S1.3.2 and Supplementary Methods S1.3.3), we discussed 

how to speed up these computations and reduce memory requirements.  

 

S1.3.2 Reducing computational costs of gradient maps 

We mentioned in Section S1.3.1 that the spatial localization prior in gMS-HBM was 

constructed based on the RSFC gradient maps. Figure SM1 (left panel) illustrates the original approach 

for generating gradient map for a particular subject (Laumann et al., 2015; Gordon et al., 2016). Given 

the resting-state fMRI data of a subject, the 𝑁 × 𝑁 RSFC matrix was first computed. Each row and 

each column of the RSFC matrix were then correlated to obtain an 𝑁 × 𝑁 RSFC similarity matrix, 

where the 푛-th column represented the spatial correlation of functional connectivity patterns between 

vertex 푛 and all other vertices. By computing the first order spatial gradient for each column of the 

RSFC similarity matrix, we obtained the gradients of the RSFC similarity matrix, where high gradient 

values indicated rapid changes in RSFC, and low gradient values indicated gentle changes in RSFC. 

After that, the watershed algorithm1 was applied to each column of the gradient matrix to generate one 

binarized gradient map for each vertex. The 𝑁 binarized gradient maps were then averaged to obtain a 

 
1 A gradient map can be thought of as a geological map with values representing the height of the land. Thus, low 

gradient values correspond to “valleys/bowls” and high gradient values correspond to “hills/peaks”. The watershed 
algorithm (https://en.wikipedia.org/wiki/Watershed_(image_processing)) works by placing “seeds” at the minima of the 
gradient map. The seeds are then grown (imagine rain flooding the geological landscape) until the boundaries of grown 
seeds (parcels) meet other grown seeds (parcels). The boundary vertices between parcels are set to 1, while non-boundary 
vertices are set to 0, thus resulting in a binarized gradient map. 
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single gradient map, where high values indicate high probability of a rapid change in RSFC patterns 

occurring at that location. Because this original version involved 𝑁 × 𝑁 matrices, it was 

computationally very expensive to compute.  

 

 
Figure SM1. Illustration of the procedure to generate a RSFC gradient map. Left panel shows the 
original version, right panel shows our speed-up version. In the case of fs_LR32k, note that 𝑁 = 
59412. In the case of fsaverage6, note that 𝑁 = 74947. 

 

Therefore, we implemented a faster and less memory-intensive version by subsampling the 

functional connectivity matrices. Figure SM1 right panel illustrates the speed-up version for generating 

the gradient map for each participant. Instead of computing the 𝑁 × 𝑁 RSFC matrix to generate the 

RSFC similarity matrix, we randomly selected 𝑁  and 𝑁  vertices from 𝑁 vertices to compute the 

subsampled 𝑁 × 𝑁  and 𝑁 × 𝑁  RSFC matrices. We correlated each row of the 𝑁 × 𝑁  RSFC matrix 

and each column of the 𝑁 × 𝑁  RSFC matrix to obtain the subsampled 𝑁 × 𝑁  RSFC similarity 
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matrix. We then computed the spatial gradients of the subsampled RSFC similarity matrix and utilized 

the watershed algorithm to obtain 𝑁  binarized gradient maps. The 𝑁  binarized gradient maps were 

then averaged to obtain a single gradient map. Furthermore, to reduce the memory usage, we split the 

𝑁 × 𝑁  RSFC similarity matrix into multiple small blocks (without doing any subsampling), where 

each block of the RSFC similarity matrix was generated sequentially.  

In the case of fs_LR32k, on our machine, the original algorithm (working with the full 

59412 × 59412 RSFC matrix) required 40GB of RAM and 4 hours using 1 CPU core to compute the 

gradient map for a single rs-fMRI run. On the same machine, the speed-up version (𝑁  = 297 and 𝑁  = 

5941) only required 3GB of RAM and 15 minutes with 1 core. The resulting gradient maps were 

highly similar to the original gradient maps (r = 0.97 averaged across 40 random participants). In the 

case of fsaverage6, on our machine, the original algorithm (working with the full 74947 × 74947 

RSFC matrix) required 60GB of RAM and 6 hours using 1 CPU core to compute the gradient map for 

a single rs-fMRI run. On the same machine, the speed-up version (𝑁  = 375 and 𝑁  = 7495) only 

required 4GB of RAM and 20 minutes with 1 core. The resulting gradient maps were highly similar to 

the original gradient maps (r = 0.97 averaged across 40 random participants). 

 

S1.3.3 Reducing computational costs of computing the diffusion embedding matrix 

In Section S1.3.1, we mentioned that the RSFC gradient map was utilized to generate an 

𝑁 × 𝑁 geodesic gradient distance matrices. We then applied the diffusion embedding algorithm 

(Margulies et al., 2016) to reduce the dimensionality to 100 diffusion coordinates. The resulting 

𝑁 × 100 diffusion embedding matrix was utilized for the spatial localization prior in Eq. (10). 

However, this approach involved 𝑁 × 𝑁 geodesic gradient distance matrices, so it was also 

computationally expensive.  

To overcome this issue, we downsampled the 𝑁 × 1 RSFC gradient map from S1.3.2 to a 

lower resolution mesh with 𝑁  vertices. The resulting 𝑁 × 1 downsampled gradient map was then 

used to generate 𝑁 × 𝑁  geodesic gradient distance matrices. The diffusion embedding algorithm was 

performed on the 𝑁 × 𝑁  gradient distance matrix to obtain an 𝑁 × 100 diffusion embedding matrix. 

After that, we upsampled the 𝑁 × 100 diffusion embedding matrix back to the original space to 

generate an 𝑁 × 100 diffusion embedding matrix. 

In the case of fs_LR32k, on our machine, the original diffusion embedding algorithm 

(working with the full 59412 × 59412 geodesic gradient distance matrices) required 6GB of RAM 

and 2 hours using 1 core to convert the 𝑁 × 1 RSFC gradient map (Section S1.3.2) to an 59412 × 100 

diffusion embedding matrix. On the same machine, the sped-up diffusion embedding algorithm (𝑁  = 
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20484) only required 3GB of RAM and 10 minutes with 1 core. The resulting diffusion embedding 

matrices were highly similar to the original diffusion embedding matrices computed using the original 

gradient algorithm and original diffusion embedding algorithm (r = 0.98 averaged across 40 random 

participants). In the case of fsaverage6, on our machine, the original diffusion embedding algorithm 

(working with the full 74947 × 74947 geodesic gradient distance matrices) required 8GB of RAM 

and 2.5 hours using 1 core to convert the 74947 × 1 RSFC gradient map (Section S1.3.2) to an 

74947 × 100 diffusion embedding matrix. On the same machine, the sped-up diffusion embedding 

algorithm (𝑁  = 25924) only required 3GB of RAM and 10 minutes with 1 core. The resulting 

diffusion embedding matrices were highly similar to the original diffusion embedding matrices 

computed using the original gradient algorithm and original diffusion embedding algorithm (r = 0.97 

averaged across 40 random participants). 

 

S2. Model estimation 

In this section, we describe how model parameters are estimated from a training set and a 

validation set (Section S2.1), and how the parameters can be used to parcellate a new subject (Section 

S2.2). Throughout the entire section, we assume that the number of parcels 𝐿 =  400 without loss of 

generality.  

 

S2.1 Learning model parameters 

Our goal is to estimate the model parameters {휖 : , 휎 : , 훩 : , : , 휇 : , 푐, 훼, 훽} from a training 

set and a validation set of binarized and normalized functional connectivity profiles, which can then be 

utilized for estimating individual-specific parcellations in unseen data of new subjects (Section S2.2). 

As a reminder, 휖 :  is a group prior representing inter-subject functional connectivity variability, 휎 :  is 

a group prior corresponding to intra-subject functional connectivity variability, 훩 : , :  is a group prior 

representing inter-subject spatial variability and reflects the probability of a parcel occurring at 

particular spatial location, and 휇 :  is the group-level connectivity profile for each parcel. The 

parameters 훼, 푐 and 훽 tradeoff between various terms in the generative model. Because the partition 

function 푍(훼, 푐, 훽) (Eq. (7)) is NP-hard to compute, for computational efficiency, we first assume 훼 =

1, 푐 = 0 and for a particular value of 훽 in order to estimate 휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , :  and 

spatial localization prior parameters {푢 :
: , 훾 : } (for cMS-HBM) or 휏 :

:  (for gMS-HBM) from the 

training dataset. Under this scenario, 푍(훼, 푐, 훽) is a constant. The tunable parameters 훼, 푐 and 훽 are 

then estimated in the validation set using a grid search.   
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S2.1.1 Estimating 휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , :  and spatial localization prior parameters 

from training set 

S2.1.1.1 dMS-HBM 

Given observed binarized, normalized functional connectivity profiles 푋 :
: , :  from the 

training set and spatial localization prior Φ : , : , we seek to estimate   

휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , :  using Expectation-Maximization (EM). As previously 

explained, we assume 훼 = 1, 푐 = 0 and a particular value of 훽. Since log Φ : , :  is either −∞ or 0 

(i.e., hard constraint), we can simply assume 훽 = 1. 

Let 훺 = {휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : }. We consider the following maximum-a-

posterior (MAP) estimation problem: 

 

argmax log 푝 휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : 푋 :
: , : , Φ : , : ) .        (12) 

 

Assuming a uniform (improper) prior on {훩 : , : , 휅, 휎 : , 휖 : }, the MAP problem can be 

written as 

 

argmax log 푝 푋 :
: , : 휇 :

: , : , 휅, 훩 : , : )푝 휇 :
: , : 휎 : , 휇 :

: )푝 휇 :
: 휖 : , 휇 :  Φ : , : . 

(13) 

 

We then introduce the parcellation labels 푙 :  for each subject 푠 as latent variables, and use 

Jensen’s inequality to define a lower bound ℒ(휆, 훺), where 휆 = 휆 : , :
:  are the parameters of the 푞 

functions 푞(푙 : ) = ∏ 푞(푙 |휆 , : ): 

 

     log 푝 푋 :
: , : 휇 :

: , : , 휅, 훩 : , : )푝 휇 :
: , : 휎 : , 휇 :

: )푝(휇 :
: |휖 : , 휇 : ) Φ : , :  

= log 푝 푋 :
, : 휇 :

, : , 휅, 훩 : , : ) + log 푝 휇 , : 휎 , 휇 푝 휇 휖 , 휇 + log Φ : , :         (14) 

= log 푝 푋 :
, : , 푙 : 휇 :

, : , 휅, 훩 : , : )
:

+ log 푝 휇 , : 휎 , 휇 푝 휇 휖 , 휇

+ log Φ : , :                                                                                                                            (15) 
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≥ 푞(푙 : ) log
푝 푋 :

, : , 푙 : 휇 :
, : , 휅, 훩 : , :

푞(푙 : ) + log 푝 휇 , : 휎 , 휇 푝 휇 휖 , 휇
:

+ log Φ : , :                                                                                                                            (16) 

= 휆 , log 푝 푋 , 휇 , , 휅 + 휆 , log 훩 ,             

− 휆 , log 휆 , + ( log 푝(휇 , |휎 , 휇 ) + log 푝(휇 |휖 , 휇 ))

+ log Φ : , :                                                                                                                            (17) 

= ℒ(휆, 훺),                                                                                                                                                           (18) 

 

where equality is achieved when 푞(푙 : ) = 휆 : , :  are the posterior probability of the individual-

specific parcellation of subject 푠 given the parameters 훺. Therefore, instead of maximizing the original 

MAP problem (Eq. (12)), we instead maximize the lower bound:  

 

{휆∗, 훺∗} = argmax
,

ℒ(휆, 훺).               (19) 

 

In the E-step, we fix 훺 = {휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : }, and estimate 휆: 

 

휆 = argmax ℒ(휆, 훺)              (20) 

= argmax 휆 , log 푝(푋 , |휇 , , 휅) + 휆 , log 훩 ,

− 휆 , log 휆 , + log Φ : , : + 휂  휆 , − 1           (21) 

 

where 휂  are the Lagrange multipliers enforcing the constraint ∑ 휆 , = 1. Optimizing Eq. (21) by 

differentiating with respect to 휆 ,  (where 푘 and 푗 are dummy variables indexing location and parcel 

label respectively) and setting to 0, we get: 

log 휆 , ∝ log 푝 푋 , 휇 , , 휅 + log 훩 ,  + log Φ ,                        (22) 
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                    = log 푧 (휅) exp 휅〈푋 , , 휇 , 〉 + log 훩 , + log Φ ,       (23) 

                    = 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 + log 훩 ,  + log Φ ,         (24) 

 

In the M-step, we fix 휆 and estimate 훺: 

 

훺 = argmax ℒ(휆, 훺).             (25) 

 

By using the constraints that 〈휇 , , 휇 , 〉 = 1, 〈휇 , 휇 〉 = 1, 〈휇 , 휇 〉 = 1, 휅 > 0, 휎 > 0, 휖 >

0, and differentiating ℒ(휆, 훺) with respect to 휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : , and setting the 

derivatives to zero, we get the following update equations: 

 

휇 , =
휅 ∑ 휆 , 푋 , + 휎 휇
휅 ∑ 휆 , 푋 , + 휎 휇

                   (26) 

휅 =
(𝐷 − 2)훤

1 − 훤
+

(𝐷 − 1)훤
2(𝐷 − 2) , 훤 =

∑ ∑ ∑ ∑ 휆 , 〈휇 , , 푋 , 〉
𝑇 ∑ ∑ ∑ 휆 ,

      (27) 

휇 =
휎 ∑ 휇 , + 휖 휇
휎 ∑ 휇 , + 휖 휇

                          (28) 

휎 =
(𝐷 − 2)훤

1 − 훤
+

(𝐷 − 1)훤
2(𝐷 − 2) , 훤 =

1
𝑆𝑇

〈휇 , 휇 , 〉         (29) 

휇 =
∑ 휖 휇
∑ 휖 휇

=
∑ 휇
∑ 휇

                (30) 

휖 =
(𝐷 − 2)훤

1 − 훤
+

(𝐷 − 1)훤
2(𝐷 − 2) , 훤 =

1
𝑆

〈휇 , 휇 〉        (31) 

훩 , =
1
𝑆 휆 ,   ,                (32) 

 

where 𝐷 is the length of 푋 ,  (i.e., number of ROIs in each functional connectivity profile), 𝑆 is the 

number of subjects, 𝑇 is the number of sessions, and ‖∙‖ corresponds to the 푙 -norm. Therefore, the 

estimate of the functional connectivity profile 휇 ,  (Eq. (26)) of parcel 푙 of subject 푠 during session 푡 is 
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the weighted sum of the average time course of vertices constituting parcel 푙 of subject 푠 during 

session 푡 (∑ 휆 , 푋 , ) and the subject-specific mean direction 휇 , with weights 휅 and 휎  for each 

term, normalized to be unit norm. If 휎  is much greater than 휅, then 휇 ,  is more likely to be dominated 

by subject-specific mean direction 휇 , which means that the functional connectivity profile of parcel 푙 

is highly stable across sessions. Similarly, the estimate of the functional connectivity profile 휇  (Eq. 

(28)) of parcel 푙 of subject 푠 is the weighted sum of the average session-specific mean directions 

across all sessions for parcel 푙 of subject 푠 (∑ 휇 , ) and the group-level mean direction 휇 , with 

weights 휎  and 휖  for each term, normalized to be unit norm. If 휖  is much greater than 휎 , then 휇  is 

more likely to be dominated by group-level mean direction 휇 , which means that the functional 

connectivity profile of parcel 푙 is highly stable between subjects. Finally, the estimate of the group-

level functional connectivity profile 휇  (Eq. (30)) of parcel 푙 is the sum of the subject-specific mean 

directions across all subjects for parcel 푙 (∑ 휇 ), normalized to be unit norm. The estimate of 훩 ,  

(Eq. (32)) is the posterior probability of parcel 푙 being assigned to vertex 푛, averaged across all the 

subjects. 

Given the training set, the algorithm first utilizes the 400-region Schaefer2018 group-level 

parcellation (Schaefer et al., 2018) to initialize the EM algorithm. The EM algorithm iterates E-step 

(Eq. (24)) and M-step (Eqs. (26-32)) till convergence. We note that the update equations (Eqs. (26-32)) 

in the M-step are dependent on each other. Therefore, within the M-step, the update equations (Eqs. 

(26-32) are iterated till convergence. 

 

S2.1.1.2 cMS-HBM 

 Similar to dMS-HBM in S2.1.1.1, given observed binarized, normalized functional 

connectivity profiles 푋 :
: , :  from the training set and the spherical coordinate 푌 : , we seek to 

estimate  휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : , 푢 :
: , 훾 :  using Expectation-Maximization (EM). As 

previously explained, we assume 훼 = 1, 푐 = 0 and a particular value of 훽. We will have: 
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ℒ(휆, 훺)

= 휆 , log 푝 푋 , 휇 , , 휅 + 휆 , log 훩 ,             

− 휆 , log 휆 , + ( log 푝(휇 , |휎 , 휇 ) + log 푝(휇 |휖 , 휇 ))

+ 훽 휆 , log Φ ,  푝(푌 |푢 , 훾 )                                                                          (33)  

 

By applying EM algorithm explained in S2.1.1.1, we will have E-step: 

 

log 휆 , = 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 + log 훩 , + 훽(log 푧 (훾 ) + 훾 〈푌 , 푢 〉  + log Φ ,  ).     (34) 

 

In M-step, {휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : } can be updated using the same formulas as Eqs. 

(26-32). The spatial localization prior parameters {푢 :
: , 훾 : } can be updated by the following 

equations: 

 

푢 =
훾 ∑ 휆 , 푌
훾 ∑ 휆 , 푌

=
∑ 휆 , 푌
∑ 휆 , 푌

                (35) 

훾 =
훤

1 − 훤
+ 훤 , 훤 =

∑ ∑ 휆 , 〈푢 , 푌 〉
∑ ∑ 휆 ,

      (36) 

 

 

S2.1.1.3 gMS-HBM 

Similar to dMS-HBM in S2.1.1.1, given observed binarized, normalized functional 

connectivity profiles 푋 :
: , :  from the training set and gradient matrices 𝐺 :

: , we seek to estimate  

휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : , 휏 :
:  using Expectation-Maximization (EM). As previously 

explained, we assume 훼 = 1, 푐 = 0 and a particular value of 훽. We will have: 
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ℒ(휆, 훺)

= 휆 , log 푝 푋 , 휇 , , 휅 + 휆 , log 훩 ,             

− 휆 , log 휆 , + ( log 푝(휇 , |휎 , 휇 ) + log 푝(휇 |휖 , 휇 ))

+ 훽 휆 , log Φ ,  푝(𝐺 |휏 , I)                                                                          (37) 

 

By applying EM algorithm explained in S2.1.1.1, we will have E-step: 

 

log 휆 , = 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 + log 훩 , −
훽
2

(𝐺 − 휏 ) (𝐺 − 휏 ) + 훽 log Φ ,  .        (38) 

 

In M-step, {휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : } can be updated using the same formulas as Eqs. 

(26-32). The spatial localization prior parameters 휏 :
:  can be updated by the following equations: 

 

휏 =
∑ 휆 , 𝐺

∑ 휆 ,
,                   (39) 

 

S2.1.2 Estimating tunable parameters c, 훼 and 훽 

S2.1.2.1 dMS-HBM 

In the previous subsection (Section S2.1.1), the training set was used to estimate 훺 =

{휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : }, assuming 훼 = 1, 푐 = 0 and 훽 = 1. To tune the parameters c 

and 훼, we assume access to a validation set. Recall that each subject in the validation set has multiple 

rs-fMRI sessions. We consider 푐 ∈ {0.1, 1, 5, 10, 20, 30, 40, 50, 60} and 훼 ∈

{0.1, 1, 5, 10, 20, 30, 40, 50, 60}. For a given pair of (푐, 훼), and given {휖 : , 휎 : , 훩 : , : , 휇 : } 

estimated from the training set, we estimate for each subject in the validation set, the individual-

specific parcellation based on a subset of rs-fMRI sessions (see Section S2.2 for algorithm). Resting-

state homogeneity (main text) is then computed in the remaining rs-fMRI sessions of the validation 

subjects. The pair of (푐, 훼) with the highest homogeneity in the unseen rs-fMRI sessions of the 
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validation subjects is then utilized for parcellating new subjects. For the HCP dataset, the optimal pair 

of parameters was 푐 = 50 and 훼 = 20.   

 

S2.1.2.2 cMS-HBM and gMS-HBM 

Similar to dMS-HBM in S2.1.2.1, the training set was used to estimate 훺 =

{휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : , 푢 :
: , 훾 : } for cMS-HBM and 훺 =

{휖 : , 휎 : , 휅, 휇 :  휇 :
: , 휇 :

: , : , 훩 : , : , 휏 :
: , } for gMS-HBM with 훽 ∈ {10, 30, 50, 100, 150}, assuming 

훼 = 1, 푐 = 0. To tune the parameters c, 훼 and 훽, we assume access to a validation set. We 

consider, 푐 ∈ {0.1, 1, 5, 10, 20, 30, 40, 50, 60} and 훼 ∈ {0.1, 1,5, 10, 20, 30, 40, 50, 60}. For a given 

triplet of (푐, 훼, 훽), and given {휖 : , 휎 : , 훩 : , : , 휇 : } estimated from the training set with 훽, we 

estimate for each subject in the validation set, the individual-specific parcellation based on a subset of 

rs-fMRI sessions (see Section S2.2 for algorithm). Resting-state homogeneity (main text) is then 

computed in the remaining rs-fMRI sessions of the validation subjects. The triplet (푐, 훼, 훽) with the 

highest homogeneity in the unseen rs-fMRI sessions of the validation subjects is then utilized for 

parcellating new subjects. For cMS-HBM, the optimal triplet of parameters was 푐 = 1, 훼 = 1 and 훽 =

100. For gMS-HBM, the optimal triplet of parameters was 푐 = 30, 훼 = 30 and 훽 = 100. 

 

Throughout the paper (main text), the reported quality (Figures 6-11) of the individual-

specific parcellations was evaluated using subjects not used to tune the parameters. For example, in the 

case of the HCP data (Figures 6-11), model parameters were estimated the HCP training and validation 

sets, while the reported quality of the individual-specific parcellations was evaluated using the HCP 

test set. In the case of the MSC subjects (Figures 6-8), the model parameters were estimated from the 

HCP training and validation sets. 

 

S2.2 Individual-level parcellation estimation 

S2.2.1 dMS-HBM 

Using parameters {휖 : , 휎 : , 훩 : , : , 휇 : } estimated from the training set (Section S2.1.1), 

and for a particular triplet (푐, 훼, 훽), we can estimate the individual-specific parcellation 푙 :  of a new 

subject 푠 with 𝑇 sessions by employing the variational Bayes expectation maximization (VBEM) 

algorithm.  

Let 훹 = {휅, 휇 :
, : , 휇 :  }. We consider the following maximum-a-posterior (MAP) estimation 

problem: 
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argmax log 푝  휅, 휇 :
, : , 휇 : 푋 :

, : , 휖 : , 휎 : , 휇 : , 훩 : , : , Φ : , : ).              (40) 

 

Assuming a uniform (improper) prior on 휅, and by introducing the parcellation labels 푙 :  of 

the new subject 푠 as latent variables, the lower bound ℒ(휆, 훹) of the MAP problem (Eq. (40)) can be 

written as: 

 

ℒ(휆 , 훹) = 휆 , log 푝 푋 , 휇 , , 휅 + 훼 휆 , log 훩 ,            (41)

− 푐 휆 , 휆 , 푉(푙 , 푙 )
∈풩

− 휆 , log 휆 , + log 푝(휇 , |휎 , 휇 ) + log 푝 휇 휖 , 휇

+ log Φ : , : ,  

 

where equality is achieved when 휆  is the posterior probability of the individual-specific parcellation 

of subject 푠 given the parameters 훹. Similar to Section S2.1.1, we can maximize the lower bound (Eq. 

(41)) by iteratively updating 휆  and 훹. Unlike Section S2.1.1, we cannot compute the exact posterior 

probability 휆  because of the pairwise potentials in the Markov random field (Wainwright and Jordan, 

2008). Using the mean-field approximation (Wainwright and Jordan, 2008), an approximate posterior 

probability 휆  is estimated in the variational E-step, while 훹 is updated in the variational M-step.  

More specifically, in the variational E-step, 훹 is fixed and 휆  is estimated as follows: 

 

    log 휆 ,  ∝ 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 − 2c 휆 , 푉(푙 , 푙 )
∈풩

+ 훼 log 훩 ,

+ log Φ : , : .                       (42) 

 

In the variational M-step, 휆  is fixed and 훹 = {휅, 휇 :
, : , 휇 :  } is estimated as follows: 

 

휇 , =
휅 ∑ 휆 , 푋 , + 휎 휇
휅 ∑ 휆 , 푋 , + 휎 휇

             (43) 
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휅 =
(𝐷 − 2)훤

1 − 훤
+

(𝐷 − 1)훤
2(𝐷 − 2) , 훤 =

∑ ∑ ∑ 휆 , 〈휇 , , 푋 , 〉
𝑇 ∑ ∑ 휆 ,

          (44) 

휇 =
휎 ∑ 휇 , + 휖 휇
휎 ∑ 휇 , + 휖 휇

 .           (45) 

 

Once the VBEM algorithm converges, vertex 푛 of subject 푠 will be assigned to label 푙 with 

the highest (approximate) posterior probability.  

 

S2.2.1 cMS-HBM 

Similar to dMS-HBM in S2.2.1, let 훹 = {휅, 휇 :
, : , 휇 :  , 푢 : , 훾 }, we consider the following 

maximum-a-posterior (MAP) estimation problem: 

 

argmax log p  κ, μ :
, : , μ : , u : , γ X :

, : , Y : , ϵ : , σ : , μ : , Θ : , : , ) Φ : , : .              (46) 

 

Assuming a uniform (improper) prior on 휅 and 훾 ,  by introducing the parcellation labels 푙 :  

of the new subject 푠 as latent variables, the lower bound ℒ(휆, 훹) of the MAP problem (Eq. (46)) can 

be written as: 

 

ℒ(휆 , 훹) = 휆 , log 푝 푋 , 휇 , , 휅 + 훼 휆 , log 훩 ,            (47)

− 푐 휆 , 휆 , 푉(푙 , 푙 )
∈풩

− 휆 , log 휆 , + log 푝(휇 , |휎 , 휇 ) + log 푝 휇 휖 , 휇

+ 훽 휆 , log 푝 푌 푢 , 훾 + 훽 log Φ : , : .  

 

Similarly, in the variational E-step, 훹 is fixed and 휆  is estimated as follows: 
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    log 휆 ,  ∝ 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 − 2c 휆 , 푉(푙 , 푙 )
∈풩

+ 훼 log 훩 ,

+ 훽(log 푧 (훾 ) + 훾 〈푌 , 푢 〉 + log Φ : , : ).                       (48) 

 

In the variational M-step, 휆  is fixed and {휅, 휇 :
, : , 휇 :  } is estimated as Eqs. (43-45). 

{푢 : , 훾 } can be estimated as follows: 

 

푢 =
훾 ∑ 휆 , 푌
훾 ∑ 휆 , 푌

=
∑ 휆 , 푌
∑ 휆 , 푌

                (49) 

훾 =
훤

1 − 훤
+ 훤 , 훤 =

∑ 휆 , 〈푢 , 푌 〉
∑ 휆 ,

      (50) 

 

S2.2.1 gMS-HBM 

Similar to dMS-HBM in S2.2.1, let 훹 = {휅, 휇 :
, : , 휇 :  , 휏 : }, we consider the following 

maximum-a-posterior (MAP) estimation problem: 

 

argmax log 푝  휅, 휇 :
, : , 휇 : , 휏 : 푋 :

, : , 𝐺 : , 휖 : , 휎 : , 휇 : , 훩 : , : , ) Φ : , : .              (51) 

 

Assuming a uniform (improper) prior on 휅,  by introducing the parcellation labels 푙 :  of the 

new subject 푠 as latent variables, the lower bound ℒ(휆, 훹) of the MAP problem (Eq. (51)) can be 

written as: 

 

ℒ(휆 , 훹) = 휆 , log 푝 푋 , 휇 , , 휅 + 훼 휆 , log 훩 ,            (47)

− 푐 휆 , 휆 , 푉(푙 , 푙 )
∈풩

− 휆 , log 휆 , + log 푝(휇 , |휎 , 휇 ) + log 푝 휇 휖 , 휇

+ 훽 휆 , log 푝 𝐺 휏 , 𝐼 + 훽 log Φ : , : .  
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Similarly, in the variational E-step, 훹 is fixed and 휆  is estimated as follows: 

 

    log 휆 ,  ∝ 𝑇 log 푧 (휅) + 휅〈푋 , , 휇 , 〉 − 2c 휆 , 푉(푙 , 푙 )
∈풩

+ 훼 log 훩 ,

−
훽
2

(𝐺 − 휏 ) (𝐺 − 휏 ) + 훽 log Φ : , : .                       (48) 

 

In the variational M-step, 휆  is fixed and {휅, 휇 :
, : , 휇 :  } is estimated as Eqs. (43-45). 

{푢 : , 훾 } can be estimated as follows: 

 

휏 =
∑ 휆 , 𝐺

∑ 휆 ,
,                   (49) 

 

S3. Matching algorithm for comparison with Laumann2015 

We mentioned in the main text that parcellations estimated by Laumann2015 (Laumann et 

al., 2015; Gordon et al., 2017) had a variable number of parcels across subjects. Furthermore, 

Laumann2015 parcellations also had a significant number of vertices between parcels that were not 

assigned to any parcel, which had the effect of increasing resting homogeneity and decreasing task 

inhomogeneity. Therefore, we performed a post-hoc processing of MS-HBM parcellations to match 

the number of parcels and unlabeled vertices of Laumann2015 parcellations. 

Since Laumann2015 individual-specific parcellations typically have around 500-600 parcels, 

we utilized 600-region Schaefer2018 group-level parcellation to initialize MS-HBM algorithms to 

generate 600-region MS-HBM parcellations. For each subject, we sort the 600 MS-HBM parcels based 

on parcel size and for parcels with the same size, we sort them based on resting-state homogeneity. 

Assume Laumann2015 parcellation has M parcels, we find the 600-M MS-HBM parcels with the 

smallest size and the lowest resting-state homogeneity. For each vertex 푖 within these 600-M parcels, 

we re-assigned it to the neighboring parcel 푝 with the highest similarity 𝐻 , =
| |

∑ 〈𝑇𝑆 , 𝑇𝑆 〉∈ , 

where 𝑁  was the set of vertices within parcel 푝, 𝑇𝑆  was the time course of vertex 푖. After the re-

assignment procedure, a 2-vertex thick parcellation boundary was created for MS-HBM. Let’s denote 

𝑁  as the number of 2-vertex thick parcellation boundary vertices. Suppose there were W vertices 

that were unlabeled in Lauman2015 parcellation. If W was less than 𝑁 , we removed the labels 

from the top W vertices within the 2-vertex thick boundary with the lowest resting-state homogeneity. 

If W was more than 𝑁 , we first removed the labels from all the vertices within the 2-vertex thick 
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boundary, and then remove the labels from the remaining W-𝑁  vertices, which were the nearest 

neighbors of the 2-vertex thick boundary vertices with the lowest resting-state homogeneity. In this 

way, we can match the MS-HBM parcellations to the Laumann2015 parcellations with the same 

number of parcels and the same number of unlabeled vertices.  

 

S4. Behavioral prediction model 

 In this section, we describe our model for behavioral prediction based on individual 

differences in the functional connectivity. Kernel regression (Murphy et al., 2012) was utilized to 

predict each behavioral phenotype in individual subjects. The derivations of our behavioral prediction 

model has been shown in our previous work (Kong et al., 2019). Here, we include the derivation again 

for completeness. 

Suppose we have 𝑀 training subjects, 푦  is the behavioral measure (e.g., fluid intelligence) 

and 𝐹𝐶  is the 400 u 400 RSFC matrix generated by individual-specific parcellation of the 푖-th training 

subject. Given {푦 , 푦 , … , 푦 } and {𝐹𝐶 , 𝐹𝐶 , … , 𝐹𝐶 }, the kernel regression model will be: 

푦 = 훼 𝐾(𝐹𝐶 , 𝐹𝐶 ),            (51) 

where 𝐾(𝐹𝐶 , 𝐹𝐶 ) is the Pearson correlation between the RSFC matrices of the 푖-th and 푗-th training 

subjects. The classical way to estimate 훼 in Eq. (51) is to minimize the quadratic cost: 

훼 = argmin
1
2 푦 − 훼 𝐾(𝐹𝐶 , 𝐹𝐶 ) .           (52) 

Defining 풚 = [푦 , 푦 , … , 푦 ] , 휶 = [훼 , 훼 , … , 훼 ]  and 핂 to be an 𝑀 × 𝑀 matrix, whose 

(푗, 푖)-th element is 𝐾(𝐹𝐶 , 𝐹𝐶 ), Eq. (52) can be written as: 

휶 = argmin
휶

1
2

(풚 − 핂휶) (풚 − 핂휶).               (53) 

Differentiating Eq. (53) with respect to 휶, we can get 

휶 = 핂 풚.                     (54) 

To predict the behavior measure 푦  (e.g., fluid intelligence) of a test subject 푠 with its RSFC 

matrix 𝐹𝐶 , we can compute 𝐾(𝐹𝐶 , 𝐹𝐶 ), which is the Pearson correlation between RSFC matrix of 

subject 푠 and 푖-th training subject. The predicted behavior measure 푦  can be calculated as  

푦 = 훼 𝐾(𝐹𝐶 , 𝐹𝐶 ),                 (55) 
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where 훼  is estimated by Eq. (53). If we denote 푲 = [𝐾(𝐹𝐶 , 𝐹𝐶 ), 𝐾(𝐹𝐶 , 𝐹𝐶 ), … , 𝐾(𝐹𝐶 , 𝐹𝐶 )], 

then Eq. (55) can be written as: 

푦 = 푲 휶 = 푲 핂 풚 .         (56) 

In practice, 핂  is a symmetric matrix whose diagonal elements are roughly the same and 

~100 times larger than the off-diagonal elements. Therefore, the predicted behavior measure 푦  can be 

seen as the weighted average of the behaviors of the training subjects: 푦 ≈ 푲 풚 =

∑ 𝐾(𝐹𝐶 , 𝐹𝐶 )푦 . If the RSFC matrix 𝐹𝐶  of test subject 푠 is more similar to the RSFC matrix of 

training subject 푖 than training subject 푗, then weight 𝐾(𝐹𝐶 , 𝐹𝐶 ) will be larger than 𝐾(𝐹𝐶 , 𝐹𝐶 ), and 

so 푦  will be more similar to 푦  than 푦 . 

To reduce overfitting, an 푙 -regularization term (i.e., kernel ridge regression) is typically 

added to cost function (Eq. (53)), resulting in a new regularized cost function: 

휶 = argmin
휶

1
2

(풚 − 핂휶) (풚 − 핂휶) + 
휆
2 휶 핂휶 ,               (57) 

where 휆 is a tuning parameter, which controls the importance of the regularization term. 

Differentiating Eq. (57) with respect to 휶, we get 

휶 = (핂 + 휆푰) 풚.                     (58) 

To predict the behavior measure 푦  (e.g., fluid intelligence) of a test subject 푠, Eq. (58) is 

substituted into Eq. (55), resulting in 

푦 = 푲 휶 = 푲 (핂 + 휆푰) 풚.                      (59) 
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Supplemental Results 

 
Figure S1. Sensory-motor parcels exhibit lower inter-subject, but higher intra-subject, functional 
connectivity variability than association cortical parcels for in the HCP training set. (A) 400-
region Schaefer2018 group-level parcellation. (B) Inter-subject resting-state functional 
connectivity variability for different parcels. (C) Intra-subject resting-state functional 
connectivity variability for different parcels. Note that (B) and (C) correspond to the 𝜖  and 𝜎  
parameters in Figure 1, where higher values indicate lower variability. 
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Figure S2. 400-region individual-specific areal-level parcellations were estimated using rs-fMRI 
data from day 1 and day 2 separately for each participant from HCP test set. Right hemisphere 
parcellations of four representative participants are shown here. Left hemisphere parcellations 
are shown in Figure 2C. 
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Figure S3. 400-region individual-specific dMS-HBM parcellations were estimated using rs-fMRI 
data from day 1 and day 2 separately for each participant from HCP test set. (A) Left and (B) 
right hemisphere parcellations of four representative participants are shown here. 
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Figure S4. 400-region individual-specific cMS-HBM parcellations were estimated using rs-fMRI 
data from day 1 and day 2 separately for each participant from HCP test set. (A) Left and (B) 
right hemisphere parcellations of four representative participants are shown here. 
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Figure S5. 400-region individual-specific dMS-HBM parcellations were estimated using rs-fMRI 
data from sessions 1-5 and sessions 6-10 separately for each participant from MSC dataset. (A) 
Left and (B) right hemisphere parcellations of four representative participants are shown here. 
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Figure S6. 400-region individual-specific cMS-HBM parcellations were estimated using rs-fMRI 
data from sessions 1-5 and sessions 6-10 separately for each participant from MSC dataset. (A) 
Left and (B) right hemisphere parcellations of four representative participants are shown here. 
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Figure S7. 400-region individual-specific gMS-HBM parcellations were estimated using rs-fMRI 
data from sessions 1-5 and sessions 6-10 separately for each participant from MSC dataset. (A) 
Left and (B) right hemisphere parcellations of four representative participants are shown here. 
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Figure S8. Parcels with the maximum number of spatially disconnected components for (A) 
dMS-HBM and (B) gMS-HBM. The maximum number of spatially disconnected components for 
dMS-HBM and gMS-HBM is 11 and 3.   
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Figure S9. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity than 
other approaches in the MSC dataset. (A, C) 400-region individual-specific parcellations were 
estimated using a single rs-fMRI session and resting-state homogeneity were computed with the 
remaining sessions for each MSC participant. Each circle represents one MSC participant. Dash 
lines connect the same participants. (B, D) Same as (A, C) except that Laumann2015 yielded 
different number of parcels for each participant, so we matched the number of MS-HBM parcels 
accordingly for each participant.  
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Figure S10. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity 
with less amount of data. (A, C) 400-region individual-specific parcellations were estimated for 
each MSC participant using 10 min of rs-fMRI data for gMS-HBM and 150 min of rs-fMRI data 
for Li2019. Resting-state homogeneity was evaluated using leave-out sessions. (B, D) Same as 
(A, C) except that Laumann2015 yielded different number of parcels for each participant, so we 
matched the number of MS-HBM parcels accordingly for each participant. 
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Figure S11. MS-HBM parcellations achieved better task inhomogeneity in the HCP dataset. (A)  
400-region individual-specific parcellations were estimated using all resting-state fMRI data. 
Task inhomogeneity was evaluated in the task data. Task inhomogeneity was then defined as the 
standard deviation of task activation within each parcel, and then averaged across all parcels and 
contrasts within each behavioral domain. Lower value indicates better task inhomogeneity. Error 
bars correspond to standard errors. (B) Same as (A) except that Laumann2015 yielded different 
number of parcels for each participant, so we matched the number of MS-HBM parcels 
accordingly for each participant. Compared with Schaefer2018, Laumann2015 and Li2019, 
dMS-HBM achieved an improvement of 2.1% (Cohen’s d > 0.82 for all domains), 7.3% 
(Cohen’s d > 0.53 for all domains) and 1.8% (Cohen’s d > 1.0 for all domains) respectively; 
cMS-HBM achieved an improvement of 2.4% (Cohen’s d > 1.5 for all domains), 7.6% (Cohen’s 
d > 0.59 for all domains) and 2.1% (Cohen’s d > 1.8 for all domains) respectively; gMS-HBM 
achieved an improvement of 2.3% (Cohen’s d > 1.4 for all domains), 7.4% (Cohen’s d > 1.7 for 
all domains) and 2.0% (Cohen’s d > 1.4 for all domains) respectively.  
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Table S1. Lookup table showing the original HCP variable names with the corresponding 
descriptive labels used in the manuscript. More details of the behavioral measures can be found 
in the HCP data dictionary.  
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Table S1. (cont.). Lookup table showing the original HCP variable names with the corresponding 
descriptive labels used in the manuscript. More details of the behavioral measures can be found 
in the HCP data dictionary. 
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Table S2. Average prediction accuracies (Pearson’s correlation) for all 58 behavioral measures 
and 36 behaviors with accuracies higher than 0.1 for at least one approach (“36 behaviors > 0.1”) 
across different parcellation approaches. Prediction was based on individual-specific functional 
connectivity. The mean accuracy and standard deviation were calculated across 100 20-fold 
cross-validations. The percentage improvement and number of cross-validations that MS-HBM 
algorithms outperform Schaefer2018 and Li2019 across 100 20-fold cross-validations (shown in 
brackets) were reported. Red font indicates statistical significance after correcting for multiple 
comparisons with false discovery rate q < 0.05. 
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Table S3. Average prediction accuracies (Pearson’s correlation) for 13 cognitive measures, 
NEO-5 personality measures and emotional measures across different parcellation approaches. 
Prediction was based on individual-specific functional connectivity. The mean accuracy and 
standard deviation were calculated across 100 20-fold cross-validations. The percentage 
improvement and number of cross-validations that MS-HBM algorithms outperform 
Schaefer2018 and Li2019 across 100 20-fold cross-validations (shown in brackets) were 
reported. Red font indicates statistical significance after correcting for multiple comparisons with 
false discovery rate q < 0.05. 
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Table S4. Average prediction accuracies (COD) for all 58 behavioral measures and 36 behaviors 
with accuracies higher than 0.1 for at least one approach (“36 behaviors > 0.1”) across different 
parcellation approaches. Prediction was based on individual-specific functional connectivity. The 
mean accuracy and standard deviation were calculated across 100 20-fold cross-validations. The 
percentage improvement and number of cross-validations that MS-HBM algorithms outperform 
Schaefer2018 and Li2019 across 100 20-fold cross-validations (shown in brackets) were 
reported. Red font indicates statistical significance after correcting for multiple comparisons with 
false discovery rate q < 0.05. 
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Table S5. Average prediction accuracies (COD) for 13 cognitive measures, NEO-5 personality 
measures and emotional measures across different parcellation approaches. Prediction was based 
on individual-specific functional connectivity. The mean accuracy and standard deviation were 
calculated across 100 20-fold cross-validations. The percentage improvement and number of 
cross-validations that MS-HBM algorithms outperform Schaefer2018 and Li2019 across 100 20-
fold cross-validations (shown in brackets) were reported. Red font indicates statistical 
significance after correcting for multiple comparisons with false discovery rate q < 0.05. 
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