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Methodology 

Oligotyping with 16S amplicon sequencing data 

Oligotyping was carried out to further resolve Candidatus Accmulibacter genus OTUs into 

sub-genotypes, namely oligotypes, based on the high-variational sites in reconstructed 16S 

sequences [1], following the protocol in a previous study [2]. Briefly, five 16S gene V4 

region amplicon sequencing datasets (day 32, 61, 111, 144, 158) were analyzed in mothur 

1.43.0 [3]. Contigs were aligned to Silva v138 database [4] and classified by MiDAS 3.7 

[5], a 16S rRNA database curated specifically for wastewater systems. Only the sequences 

classified as Candidatus Accumulibacter genus were extracted  

(script:https://github.com/DenefLab/MicrobeMiseq/tree/master/mothur2oligo). 

Oligotypes were then curated by resolving the sites with high entropy (Fig. S1), then 

manually refined until each oligotype contains no high entropy (≥0.2) positions. Five minor 

oligotypes with less than 41 total read counts were discarded (Fig. S2). The relative 

abundances of each oligotype were estimated based on read counts. In total 3 oligotypes 

were identified from the Candidatus Accumulibacter genus. 

Oligotype 1: CGTTGTGGTCCAAT;  

Oligotype 2: CGTTGTGATCCAAT;  

Oligotype 3: CGTTGGGGGCCAAT. 

 

 

 

 

 

https://github.com/DenefLab/MicrobeMiseq/tree/master/mothur2oligo


S3 

 

Phylogenetic tree construction 

To reveal the phylogeny of identified Candidatus Accumulibacter oligotypes, a 

phylogenetic analysis was conducted on all identified oligotype representative sequences 

(3 total), Candidatus Accumulibacter oligotypes in a previous study [2] (9 total) and 

Candidatus Accumulibacter phosphatis reference sequences in the MiDAS database [5] 

(18 total). An extra random sequence (Dechloromonas, FLASV96.1460) in the same 

Rhodocyclaceae family was chosen from the MiDAS database as outgroup. Sequences 

were aligned using MAFFT v7.429 [6]. The phylogenetic tree was then searched using 

RAxML 8.2.12 [7] and visualized using online tool (https://itol.embl.de/). 

https://itol.embl.de/
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Calculation for nitrogen mass balance for one reactor cycle 

TNin = TNeff + TNdeni + TNgrowth 

Where: 

 TNin is the influent TN concentration (mg N/L); 

 TNeff is the effluent TN concentration (mg N/L); 

 TNdeni is the nitrogen concentration being removed via denitrification (mg N/L); 

 TNgrowth is the nitrogen concentration being used for cell growth (mg N/L). 

Take the batch cycle on day 132 as an example: 

TNin = 33.12 mg N/L; TNeff = 7.02 mg N/L; TNdeni = 7.90 mg N/L.  

As for TNgrowth, everyday 400 ml mixed liqueur was wasted and based on the measurement, 

MLSS and MLVSS were kept constant (MLVSS is ~4400 mg/L). Since there were 3 cycles 

per day, per each cycle 400/3 ml mixed liqueur was wasted which means for each cycle 

400/3/1000 L × 4400 mg/L = 586.67 mg biomass was synthesized. The empirical cell 

biomass formula is C5H7O2N.  

Therefore, TNgrowth = (586.67 mg biomass × 14/113)/4L = 18.17 mg N/L.  

In this case, TNeff + TNdeni + TNgrowth = 7.02+7.90+18.17 = 33.09 = TNin.
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Fig. S1 Entropy per position calculated in the multiple sequence alignment (MSA) of 

Candidatus Accumulibacter 16S rRNA amplicon sequencing contigs. Higher entropy 

indicates positions with higher base-type (A, C, G, T, or gap) variations. These positions 

were used to resolve Candidatus Accumulibacter genus OTUs into oligotypes. 
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Fig. S2 Number of oligotypes identified versus minimum total read counts (across all 

samples) chosen. The initial fast drop of oligotype number (10-40) indicated a large 

number of minor oligotypes with very low abundances which were considered as noise 

oligotypes and discarded. The minimal read count parameter was decided to be 41. 
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Fig. S3 Nitrification batch activity test at S2 on day 116.
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Fig. S4 Nitrification batch activity test at S3 on day 153.
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