Supplementary Material

for the article entitled "Universal DNA methylation age estimators for mammalian tissues"

AT Lu et al.

Supplementary Note

Supplementary Note 1: Data description.

The combined data was generated by the Mammalian Methylation Consortium. The dataset is composed of individual data sets for different species that are described in separate articles ¹⁻¹⁵.

Supplementary Note 2: Sensitivity analysis of enrichment results

It critical to use a suitable background when it comes to any gene/pathway enrichment study. The wrong choice of background could easily lead to erroneous but highly significant associations due to hidden biases. When it comes to the mammalian array the choice of the proper background must reflect the following sources of bias. First, limited genome coverage provided by the 37k CpGs on the array. For example, the CpGs on the mammalian array cover 6871 human and 5659 mouse genes when each CpGs is assigned uniquely to its closest gene neighbor. Second, by design, the mammalian array is biased toward highly conserved genomic regions. To address these biases, we evaluated the GREAT analysis software tool. As illustrated below, we find that GREAT analysis effectively deals with these biases and leads to biologically meaningful insights. In the following, we will report results from two different sensitivity analyses that were inspired by our GREAT enrichment analysis of the top 1 thousand age related CpGs (EWAS of age). Our first sensitivity analysis involved a random set of 1000 CpG mammalian CpGs. In essence, this evaluates the null hypothesis of no relationship between chronological age and methylation. The most significant (nominal) enrichment p value was $p=3.9 \times 10^{-4}$. Note that this p-value is far less significant than the enrichment p values for age-related CpGs in our article: top 1k negative CpGs lead to p= 2.7×10^{-8} ; top 1k positive age-related CpGs lead to p= 2.7×10^{-266} . We repeated this analysis with several sets of random 1k CpGs and obtained similar results.

Second, we also evaluated the enrichment of the top 1087 most highly conserved CpGs across 158 mammalian genomes. This sensitivity analysis addresses the concern that highly conserved CpGs could have an increased chance of correlating strongly with chronological age or, conversely, non-conserved (noise) CpGs are expected to have no signal for age and will therefore not be selected in an EWAS of age. This hidden bias would manifest itself as follows: the enrichment analysis of our meta analysis EWAS for age would be equivalent to the EWAS

of highly conserved CpGs. In the following, we provide details that demonstrate that this is not the case. This biologically meaningful set of 1087 highly conserved CpGs led to highly significant enrichment p-values for gene sets involved in RNA processing, and RNA splicing, and lipoprotein particle biosynthesis. Some of the top gene families of these conserved probes include RBM and LDLR. For example, for ontology class "MSigDB Cancer Neighborhood" we find $p=5.2x10^{-19}$ for "Neighborhood of SMC1L1", $p=2.67x10^{-18}$ for "Neighborhood of TDG", $p=1.57x10^{-16}$ for "Neighborhood of XRCC5". Highly significant GO Biological Processes include RNA processing ($p=1.56x10^{-17}$), RNA binding ($p=5.90x10^{-16}$), mRNA processing ($p=1.15x10^{-14}$), and RNA splicing ($p=3.9x10^{-11}$). However, these enrichments are quite distinct from those observed for the EWAS of age. RNA splicing and processing only showed a weak significance (p = 0.05 to $1.4x10^{-3}$) in hypomethylated age-related CpGs. In summary, we did not observe any overlap between the top enrichment terms for the age-related CpGs with those from highly conserved regions (or those from a random set of CpGs). A detailed enrichment analysis of all the CpGs on the mammalian array can be found in ¹.

GREAT was not explicitly designed to adjust for the issue of certain CpG's having more power to detect association based on working in more species, but it appears not to be driving categories of enrichment for age. Overall, our sensitivity analysis of the enrichment study demonstrates that GREAT analysis adjusted for potential biases arising from the design of the mammalian array and protected us against spurious associations.

Supplementary Note 3: Enrichment analysis for overlap between EWAS of mammalian age associated genes and large-scale GWAS associated ages of complex traits

We investigate the overlap genomic regions using our EWAS results for age (all tissues and stratified by tissue types) and a total of 69 large-scale GWAS studies for anthropometric traits, behavioral phenotypes, cognitive related traits, inflammatory diseases, lipid panel outcomes, metabolic outcomes and diseases, neurodegenerative and neuropsychiatric disorders, longevity, reproductive aging and other age related phenotypes including DNA methylation based biomarkers. The GWAS results are corresponding to previously published large-scale studies. For instance, GWAS of anthropometric traits are based on the studies conducted by the GIANT consortium,

 $\underline{https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium. The GWAS articles are$

summarized below.

Index	Hg	Category	Trait	Ethnicity	Sex	PMID
		Neurodegenerative	Age-related Macular			
1	hg19	disorder	degeneration (AMD)	EUR+ASN	All	23455636
		Neurodegenerative				
2	hg19	disorder	AMD Geographic Atrophy	EUR+ASN	All	23455636
		Neurodegenerative				
3	hg19	disorder	AMD Neovascular	EUR+ASN	All	23455636
		Neurodegenerative				
4	hg19	disorder	Alzheimer's disease	EUR	All	24162737
5	hg18	Longevity	Longevity > 90	EUR	All	24688116
6	hg18	Longevity	Longevity > 85	EUR	All	24688116
		Neurodegenerative				
7	hg19	disorder	Parkinson's disease	EUR	All	19915575
		Neuropsychiatric				
8	hg19	disorder	Schizophrenia	All	All	25056061
		Inflammatory				
9	hg19	diseases	IBD	EUR	All	26192919
		Inflammatory	_			
10	hg19	diseases	IBD Crohn's disease	EUR	All	26192919
		Inflammatory				
11	hg19	diseases	IBD Ulcerative colitis	EUR	All	26192919
40	1 40	Neuropsychiatric				04000070
12	hg18	disorder	Bipolar disorder	All	All	21926972
40	h = 10	Neuropsychiatric		A 11		00700005
13	hg18	disorder	ADHD	All	All	20732625
11	ha10	Neuropsychiatric disorder	Major doproceion dicordor	EUR	All	00470076
14	hg18	Metabolic	Major depression disorder	EUR	All	22472876
		outcomes and				
15	hg18	diseases	Type 2 diabetes	EUR	All	22885922
10	ligito	Metabolic		LOIX	7.41	22000022
		outcomes and				
16	hg18	diseases	Fasting glucose	EUR	All	22581228
		Metabolic				
		outcomes and				
17	hg18	diseases	Fasting insulin	EUR	All	22581228
		GIANT Body fat	<u> </u>			
18	hg18	distribution	Hip AllAncestries	ALL	M&F	25673412
		GIANT Body fat				
19	hg18	distribution	Hip EUR	EUR	M&F	25673412
		GIANT Body fat				
20	hg18	distribution	Hip AllAncestries(Males)	ALL	М	25673412
		GIANT Body fat				
21	hg18	distribution	Hip EUR (Males)	EUR	М	25673412

		CIANT Redu fet	Llin]
22	ha10	GIANT Body fat	Hip All Anagastriag (Formaliag)	AT 1	F	05670440
22	hg18	distribution	AllAncestries(Females)	ALL	F	25673412
00	1 40	GIANT Body fat			_	05070440
23	hg18	distribution	Hip EUR (Females)	EUR	F	25673412
		GIANT Body fat	Waist circumference			
30	hg18	distribution	AllAncestries	ALL	M&F	25673412
		GIANT Body fat				
31	hg18	distribution	Waist circumference EUR	EUR	M&F	25673412
		GIANT Body fat	Waist circumference			
32	hg18	distribution	AllAncestries(Males)	ALL	М	25673412
		GIANT Body fat	Waist circumference EUR			
33	hg18	distribution	(Males)	EUR	Μ	25673412
		GIANT Body fat	Waist circumference			
34	hg18	distribution	AllAncestries(Females)	ALL	F	25673412
		GIANT Body fat	Waist circumference EUR			
35	hg18	distribution	(Females)	EUR	F	25673412
	Ŭ	GIANT Body fat	Waist to hip ratio			
42	hg18	distribution	AllAncestries	ALL	M&F	25673412
		GIANT Body fat				
43	hg18	distribution	Waist to hip ratio EUR	EUR	M&F	25673412
10	ligio	GIANT Body fat	Waist to hip ratio	2011		20010112
44	hg18	distribution	AllAncestries(Males)	ALL	М	25673412
	ligito	GIANT Body fat	Waist to hip ratio EUR			20010112
45	hg18	distribution	(Males)	EUR	М	25673412
	ligit	GIANT Body fat	Waist to hip ratio	LOIX		20070412
46	hg18	distribution	AllAncestries(Females)	ALL	F	25673412
40	TIG 10		Waist to hip ratio EUR		1	23073412
47	ha10	GIANT Body fat distribution	-	EUR	F	25673412
47	hg18	GIANT BMI &	(Females)	LUK	Г	20070412
E A	ha10		DM	EUR	A 11	05670440
54	hg18	Height	BMI	EUR	All	25673413
	1 40	GIANT BMI &				00004000
55	hg18	Height	Height	EUR	All	20881960
		Neurodegenerative				
56	hg19	disorder	Frontotemporal dementia	EUR	All	24943344
		Neurodegenerative				
57	hg19	disorder	FTD Behavioral variant	EUR	All	24943344
		Neurodegenerative	FTD with motor neuron			
58	hg19	disorder	disease	EUR	All	24943344
		Neurodegenerative	FTD progressive non-			
59	hg19	disorder	fluent aphasia	EUR	All	24943344
		Neurodegenerative				
60	hg19	disorder	FTD semantic dementia	EUR	All	24943344
		Neurodegenerative	Huntington's disease age			
61	hg19	disorder	onset	EUR	All	26232222
		Behavioral				
62	hg19	phenotype	Educational attainment	EUR	All	27225129
		Behavioral	Educational attainment			
63	hg19	phenotype	(Males)	EUR	All	27225129
		1 F				0,0

		Behavioral	Educational attainment			
64	hg19	phenotype	(Females)	EUR	All	27225129
	ligito	Reproductive		LOIX	7.01	21220120
65	hg18	aging	Age at menarche	EUR	All	25231870
		Reproductive				
66	hg18	aging	Age at menopause	EUR	All	26414677
		Lipid panel				
67	hg18	outcomes	HDL		All	24097068
		Lipid panel				
68	hg18	outcomes	LDL		All	24097068
		Lipid panel				
69	hg18	outcomes	Total cholesterol		All	24097068
		Lipid panel				
70	hg18	outcomes	Triglyceride		All	24097068
		Reproductive	Leukocyte telomere			
	hg18	aging	length	EUR	All	23535734
72	hg19	DNAm biomarkers	AgeAccelGrim EUR	EUR	All	
			DNAmGranAdjustedAge			
	hg19	DNAm biomarkers	EUR	EUR	All	
	hg19	DNAm biomarkers	AgeAccelHannum EUR	EUR	All	
	hg19	DNAm biomarkers	DNAmPAI1AdjAge EUR	EUR	All	
76	hg19	DNAm biomarkers	IEAA EUR	EUR	All	
77	hg19	DNAm biomarkers	AgeaccelPhenoAge EUR	EUR	All	
78	hg19	DNAm biomarkers	AgeAccelGrim AFR	AFR	All	
			DNAmGranAdjustedAge			
79	hg19	DNAm biomarkers	AFR	AFR	All	
80	hg19	DNAm biomarkers	AgeAccelHannum AFR	AFR	All	
81	hg19	DNAm biomarkers	DNAmPAI1AdjAge AFR	AFR	All	
82	hg19	DNAm biomarkers	IEAA AFR	AFR	All	
83	hg19	DNAm biomarkers	AgeaccelPhenoAge AFR	AFR	All	
	hg19	DNAm biomarkers	AgeAccelGrim All	EUR+AFR	All	
			DNAmGranAdjustedAge			
85	hg19	DNAm biomarkers	All	EUR+AFR	All	
	hg19	DNAm biomarkers	AgeAccelHannum All	EUR+AFR	All	
	hg19	DNAm biomarkers	DNAmPAI1AdjAge All	EUR+AFR	All	
	hg19	DNAm biomarkers	IEAA AII	EUR+AFR	All	
	hg19	DNAm biomarkers	AgeaccelPhenoAge All	EUR+AFR	All	
	hg19	Longevity	Father's attained age	EUR	All	29227965
	hg19	Longevity	Mother's attained age	EUR	All	29227965
	hg19	Longevity	Parental attained age	EUR	All	29227965
32	ngra	Age related	T arentar attained age			29221903
93	hg19	phenotype	Atrial fibrillation	EUR	All	30061737
		Neurodegenerative				
94	hg19	disorder	Alzheimer's disease	EUR	All	30617256
95	hg19	Cognitive related	Intelligence	EUR	All	29942086
		Reproductive				
96	hg19	aging	AgeAtMenarche	EUR	All	28436984

		Neurodegenerative	Huntington's disease				
97	hg19	disorder	motor progression	EUR	All	28642124	
EUR: Europeans; AFR: Africans; ASN: Asians.							
GWAS resulted in index 72-89 are published in							
https://www.biorxiv.org/content/10.1101/2020.06.29.133702v1							

References

- 1. Arneson, A. *et al.* A mammalian methylation array for profiling methylation levels at conserved sequences. *bioRxiv*, 2021.01.07.425637 (2021).
- 2. Bors, E.K. *et al.* An epigenetic clock to estimate the age of living beluga whales. *bioRxiv*, 2020.09.28.317610 (2020).
- 3. Horvath, S. *et al.* DNA methylation study of age and sex in baboons and four other primates. *bioRxiv*, 2020.11.29.402891 (2020).
- 4. Horvath, S. *et al.* Reversing age: dual species measurement of epigenetic age with a single clock. *bioRxiv*, 2020.05.07.082917 (2020).
- 5. Horvath, S. *et al.* Epigenetic clock and methylation studies in the rhesus macaque. *bioRxiv*, 2020.09.21.307108 (2020).
- 6. Horvath, S. *et al.* DNA methylation age analysis of rapamycin in common marmosets. *bioRxiv*, 2020.11.21.392779 (2020).
- 7. Jasinska, A.J. *et al.* Epigenetic clock and methylation studies in vervet monkeys. *bioRxiv*, 2020.09.09.289801 (2020).
- 8. Kordowitzki, P. *et al.* Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. *bioRxiv*, 2020.09.10.290056 (2020).
- 9. Lemaître, J.-F. *et al.* Epigenetic clock and DNA methylation studies of roe deer in the wild. *bioRxiv*, 2020.09.21.306613 (2020).
- 10. Prado, N.A. *et al.* Epigenetic clock and methylation studies in elephants. *bioRxiv*, 2020.09.22.308882 (2020).
- 11. Raj, K. et al. Epigenetic clock and methylation studies in cats. bioRxiv, 2020.09.06.284877 (2020).
- 12. Sailer, L.L. *et al.* Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles. *bioRxiv*, 2020.09.25.313775 (2020).
- 13. Schachtschneider, K.M. *et al.* Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity. *bioRxiv*, 2020.09.29.319509 (2020).
- 14. Sugrue, V. *et al.* Castration delays epigenetic aging and feminises DNA methylation at androgenregulated loci. *bioRxiv*, 2020.11.16.385369 (2020).
- 15. Wilkinson, G.S. *et al.* Genome Methylation Predicts Age and Longevity of Bats. *bioRxiv*, 2020.09.04.283655 (2021).