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Abstract 

Soil-transmitted helminths (STH) are the most prevalent pathogens among the group of 

neglected tropical diseases (NTDs). Kato-Katz technique is the diagnosis method 

recommended by WHO and although is generally more sensitive than other microscopic 

methods in high transmission settings, it often presents a decreased sensitivity in low 

transmission settings and it is labour intensive. Digitizing the samples could provide a solution 

which allows to store the samples in a digital database and  perform remote analysis. Artificial 

intelligence methods based on digitized samples can support diagnostics efforts by support 

diagnostics efforts by performing an automatic and objective quantification of disease 

infection. 

In this work, we propose an end-to-end pipeline for microscopy image digitization and 

automatic analysis of digitized images of soil-transmitted helminths.  Our solution  includes (1) 

a digitalization system based on a mobile app that digitizes the microscope samples using a 

low-cost 3D-printed microscope adapter, (2) a telemedicine platform for remote analysis and 

labelling and (3) novel deep learning algorithms for automatic assessment and quantification 

of parasitological infection of STH.  

This work has been evaluated by comparing the STH quantification using both a manual 

remote analysis based on the digitized images and the AI-assisted quantification against the 

reference method based on conventional microscopy. The deep learning algorithm has been 

trained and tested on 41 slides of stool samples containing 949 eggs from 6 different subjects 

using a cross-validation strategy obtaining a mean precision of 98,44% and mean recall of 

80,94%. The results also proved the potential of generalization capability of the method at 

identifying different types of helminth eggs. 

In conclusion, this work has presented a comprehensive pipeline using smartphone-based 

microscopy integrated with a telemedicine platform for automatic image analysis and 

quantification of STH infection using artificial intelligence models. 
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1. Introduction  

Soil-transmitted helminths (STH), which include hookworms (Ancylostoma duodenale and 

Necator americanus), roundworm (Ascaris lumbricoides) and whipworm (Trichuris trichiura) 

are the most prevalent pathogens among the group of neglected tropical diseases (NTDs) and 

predominantly occur in tropical and subtropical low- and middle-income countries (1) . Globally 

STH affects over 1.5 billion individuals, causing a loss of more than 3 million disability adjusted 

life-years (DALYs) (2). The World Health Organization (WHO) 2030 Roadmap for NTDs  set 

out strategies for STH control that focused on the elimination of this disease as a public health 

problem (3).  

In many endemic countries, STH control strategy is implemented through targeted mass drug 

administration (MDA), using the anthelmintic drugs benzimidazoles (BZ) albendazole or 

mebendazole (4). Currently there are no reliable and cost effective diagnostic methods that 

can accurately evaluate the impact of the on-going MDA programmes. The diagnostic method 

recommended by WHO is Kato-Katz, a laboratory method for preparing human stool samples 

in a microscope smear using a small spatula and slide template that allows a standardized 

amount of faeces to be examined under a microscope and quantify STH infection (5,6). Kato-

Katz, while being generally more sensitive than other microscopic methods in high 

transmission settings, requires limited equipment and is easy to perform in low resource 

settings (7). However, it often presents a decreased sensitivity in low transmission settings. 

One of the main disadvantages of the Kato-Katz technique is the necessity to read samples 

within 30 minutes of preparation as eggs tend to disappear or hatch, especially those of 

hookworms, and thus considerably reducing the sensitivity of this technique and even highly 

trained microscopists can misidentify species or give inconsistent results and even highly 

trained microscopists can misidentify species or give inconsistent results (8,9). Digitizing the 

samples at the right moment could provide a solution, which allows digital storage of the 

sample images and further analysis at any moment in time. Different digitalization devices 

have been tested allowing remote diagnosis and second opinion (10).  A further step that could 

save time, increase performance and remove subjectivity of microscopic techniques is the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.426683doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.426683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mobile microscopy and deep learning for trichuriasis quantification 

5 

possibility of implementing artificial intelligence algorithms for the automatic detection and 

quantification of these parasites on digitized image samples. This would be a major advance 

in the diagnosis and control of these diseases and its implementation would not disrupt the 

laboratories normal workflow since the basis of diagnosis is still microscopy and the technique 

used is the Kato-Katz.  

Artificial intelligence-based technologies are rapidly evolving into applicable medical solutions 

and are actually revolutionizing the field (11). However, only few studies have been put effort 

to fulfill rigorous regulation standards to be approved by regulatory institutions such as the 

FDA (12). Most of these approved technologies were developed for the fields of radiology, 

cardiology and internal medicine. However, AI systems have also the  potential to be applied 

to enable a rapid and objective diagnosis of NTDs and to enable public health delivery in low- 

and middle-income countries. In this context an special effort has to be made for the 

application of AI methods in such diseases as has been recommended by the World Health 

Organization (WHO) (13) . 

Several approaches for computer-aided analysis of helminth eggs detection and classification 

using artificial intelligence have been investigated in the last years. Alva et al. proposed the 

use of hand-crafted features along with a multivariate logistic regression for intestinal parasites 

classification (14). Other notable recent deep learning-based approach used a large fecal 

database with over 1122 patients including 22440 images for the identification of visible 

components in feces, including blood and epithelial cells, as well as STH eggs, proposing the 

so-called FecalNet (15) .This work proved the potential of the use of these methods for the 

automatic analysis of stool samples using conventional microscopy images. Holmstrom et al. 

proposed to acquire microscopy images with a portable scan connected to a laptop and used 

a two stage sequential algorithm where candidates previously proposed by the first algorithm 

are classified as any type of helminth egg, and obtained promising results despite their limited 

number of training samples (16) .The use of deep learning-based object detection methods 

for the automatic analysis and detection of helminth eggs on images acquired with 

smartphone-compatible microscopy attachments has been already tested (17).This work 
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achieved comparable sensitivity to standard microscopy when detecting Ascaris spp. but 

showed a low performance in the identification of Trichuris spp. This is probably caused by 

the use of a cheap smartphone-compatible microscopy attachment (a magnification 

endoscope; USB Video Class, UVC) where the light source comes from the same direction as 

the camera. This produces images with insufficient quality specially for Trichuris spp. which 

have thinner and more translucent membranes. Previous approaches might disrupt the usual 

laboratory workflow as they do not use conventional microscopes. 

The objective of this study is to (a) propose and develop an end-to-end system for remote and 

automatic detection and quantification of soil-transmitted helminths (STH), primarily for the 

detection of T. trichuris, based on digitized microscopy images acquired with a 3D printed low-

cost adapter and artificial intelligence methods, and (b) to assess the proposed approach by 

comparing it with the conventional manual strategy used as reference. 

 

2. Material and methods 

In this work, we present an entire end-to-end pipeline from stool sample collection to automatic 

analysis of the samples for the identification of STH parasites. Figure 1 schematizes the 

proposed end-to-end workflow, where the samples collected and prepared from different 

subjects are digitized and uploaded to a telemedicine platform for remote analysis. 

Additionally, the digitized samples are used for training AI algorithms in order to be able to 

perform an automatic analysis for future incoming digitized samples. All the prepared samples 

are also analyzed during the process by conventional microscopy methods for comparative 

purposes. 
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Figure 1. Schematic representation of study design and experimental workflow. 

2.1. Data and Samples 

Stool was collected from study participants from Kwale county who were part of a follow-up 

study related to exploring the persistence of Trichuris trichiura infection. All stool samples were 

transferred to the laboratory within four hours from collection, and preprocessed using Kato-

Katz thick smear method (41.7mg template) and analyzed by conventional microscopy on the 

same day for identifying and quantifying the presence of STH eggs by 3 independent 

technicians. We digitized using the proposed digitalization pipeline samples from 12 subjects 

(6 positive and 6 negatives). These digitized samples were used for the evaluation of the 

remote analysis system as well as to train and evaluate the AI algorithm. From the 6 positive 

subjects, 5 were only positive for Trichuris spp. and one presented a co-infection of Trichuris 

spp. and Ascaris spp. For each positive stool sample, 7 slides were prepared, while for 

negative stool samples 1 or 2 slides were prepared. Ethical approval was obtained from the 

Kenya Medical Research Institute (KEMRI) Ethics Review Committee (SERU 3873). 

 

2.2. Digitalization pipeline of clinical samples   

The proposed digitalization system uses a low-cost 3D-printed device made with 

biodegradable material which allows coupling a mobile phone with a conventional optical 

microscope by aligning the smartphone camera with the microscope objective for acquiring 

images. The smartphone uses an Android mobile app specifically developed and customized 

for a fast and easy digitalization and sharing of digitized microscopy images (Figure 2a). Fifty-

one Kato-Katz slides were digitized at 10x magnification using two different smartphone 
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models (Xiaomi Pocophone F1 and Bq Aquaris X2) by attaching the 3D-printed device to the 

ocular of a conventional light microscope (Leica DM-2000). All microscopy fields where 

helminth eggs were present or suspected were digitized. In addition, visually-confirmed 

negative images were also acquired for both positive and negative subjects. Images were 

acquired in the JPG format with a resolution of 12 Mpx through the mobile application and 

uploaded via the mobile network to a cloud telemedicine platform. 

 

2.3. Telemedicine platform for remote analysis  

All acquired images are transferred from the smartphone to a telemedicine platform, where 

the images are stored and presented in an easy-to-use dashboard that allows its visualization, 

management and labelling (see Figure 2b). In this web platform, the standard clinical  stic 

protocols are translated into digital tasks which are adapted to the clinical case and disease 

under study. 

All acquired images were labelled through the telemedicine platform by one expert using a 

customized stool diagnostic protocol allowing to tag parasites that can be seen in the images 

and thus quantify parasitic infection. The image database together with the label data can be 

accessed by other professionals and coupled with other support platforms for diagnostic 

assistance. 

 

Figure 2. a 3D-printed adapter used for attaching a smartphone to a conventional microscope 
and digitizing samples through a mobile app. b Telemedicine web platform for viewing and 
remote analysis of the digitized samples performing a manual annotation. 
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2.4. Artificial intelligence algorithm 

2.4.1. Network architecture 

The proposed approach for helminth eggs identification relies on a CNN-based detection 

algorithm. Most of CNN-based detection algorithms are designed to perform at the same time 

both object localization task, which determines where objects are located in a given image, 

and object classification task, which determines which particular category each previously 

located object belongs to. 

In this paper, Single-Shot Detection (SSD) architecture (18) together with the backbone 

MobileNet network (19) for feature extraction were used. The model was initialized with 

pretrained weights on the COCO Image database (20). We used RMSprop optimizer with an 

exponential decay learning rate for minimizing the total loss function which was computed as 

the sum of a sigmoid cross entropy loss for object classification and smooth L1 loss for object 

localization. We also employed early stopping technique, where the training finishes before 

overfitting begins by stopping the training process when the error on the validation set does 

not decrease for a predefined number of steps. 

2.4.2 Training dataset generation 

The training dataset was generated by extracting 512x512 pixels image patches around the 

location of labels which were placed manually by the experts on helminths. The size of the 

image patches was selected based on a balance between the relative size of the objects in 

relation to the size of image patches and the computational cost needed at inference time, as 

a small size of image patches increases the number of patches to be processed at test time 

using the sliding window procedure (see Section 3.3.4). 

Additionally, and with the purpose of augmenting the training dataset size, we randomly 

selected 512x512 pixels image patches around the manually placed bounding boxes multiple 

times always ensuring that all labeled objects were fully covered. This was done so that each 

object can appear in different locations within the image patch and different context 

environments are captured. Moreover additional augmentation was conducted by applying on-

the-fly random flip and rotation transformations during training. 
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The framework used for training the proposed method was based on Tensorflow Object 

Detection API using a cloud computing environment with a GPU Nvidia Tesla K80 12GB. The 

time needed for training the algorithm using the described hardware was approximately 3 

hours.  

 

3. Experiments and results 

We established the conventional microscopy procedure performed by three different experts 

as the reference method. The reference measurement was computed as the average number 

of eggs counted by the three experts in each image field. 

To evaluate and validate the entire proposed pipeline for digitizing and automatic assessing 

microscopy images, we analyzed the available database using the two described 

methodologies, i.e manually analysing digitized images through a remote telemedicine 

platform and using the proposed AI algorithm. The remote analysis and the AI pipelines have 

been compared against the manual pipeline used as reference. 

 

3.1. Remote analysis of digitized samples 

The digitalization of the 51 Kato-Katz slides was carried out by two technicians. Bq Aquaris 

X2 smartphone was used for the digitalization of 41 slides, while the remaining 10 slides were 

digitized by Xiaomi Pocophone F1 smartphone.  

From the 51 digitized slides, a total of 1508 image fields were digitized and uploaded to the 

telemedicine platform and analyzed by a different person than those who digitized the slides, 

resulting in 797 positive images for at least one soil-transmitted helminth and 711 negative 

images. Table 2 summarizes the digitized samples from all positive patients where a total of 

949 Trichuris spp. egg labels were obtained. It should be noted that patient number 6 had a 

bi-parasite infection for Trichuris spp. and Ascaris spp., obtaining additional 4296 labels for 

Ascaris spp. eggs. Additionally, as expected, all 10 digitized slides from the 6 negative 

subjects obtained a negative result where no eggs were found in the images. 
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Patient nº of 

slides 
nº of (+) 
images 

nº of (-) 
images 

total 
number of 

images 

nº 
Trichuris 
spp. Eggs 

Positiv
e 

subject
s 

1 7 94 39 133 148 

2 7 39 15 54 47 

3 7 50 21 71 74 

4 7 28 203 231 30 

5 6* 44 10 54 47 

6 7 542 13 555 603 

Total   41 797 301 1098 949 
 

Table 2. Database of digitized Kato-Katz slide samples from 12 patients. *Patient number 5 
had 6 slides instead of 7 because one of them broke during its handling. 

 

The remote manual egg counting using digitized images was compared to the reference 

method based on the conventional microscopy procedure. 

For the comparison of the two measurement methodologies (conventional microscopy and 

remote analysis of digitized samples) we excluded patient number 3 because its slides had 

not been well preserved and their reading could not be done correctly. To evaluate the 

correlation between the two egg measurements for each slide, Pearson correlation coefficient 

was calculated. The Pearson correlation coefficient was 0.95 (positive association) with a 95% 

confidence interval of 0.91-0.98 and a p-value <0.001 (p-value < 2.2e-16). In addition, the 

regression linear model was estimated to be𝑦 = 1,07𝑥 − 	0,94 (see Figure 3a). These results 

indicate that both methods perform similarly, although the remote analysis of digitized samples 

slightly overestimates the results obtained with conventional microscopy.  

Furthermore, since a high correlation is not necessarily synonymous with agreement between 

methods, since it evaluates the relationship and not the difference, we calculated the 

agreement using the Bland-Altman method (21) . Figure 3b shows the lower and upper limits 

(red dashed lines, with values of -18.71 and 20.18 respectively), and the mean bias (black 
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dashed line) which took a value of -0.74 meaning that that the remote analysis of digitized 

samples measured 0.74 units more than the conventional microscopy method. These results 

show a good agreement between both methods. 

 

 

Figure 3. a Scatterplot of the manual counting using conventional microscopy vs. the remote 
counting of digitized samples. b Bland-Altman plot showing the difference between the 
conventional microscopy-based analysis and the remote analysis of digitized samples. 

 

Similar results were obtained when compared both methods at patient level. In this case, the 

Pearson correlation coefficient was 0.99 (positive association) with a 95% confidence interval 

of 0.82-0.99 and a p-value <0.01 (p-value = 0.002) and the Bland-Altman bias took a value of 

-0.86 indicating that the remote analysis of digitized samples measures in mean 0.86 units 

more than the conventional microscopy method, and thus reaffirming the good agreement 

between methods. 

This slight overestimation of egg count observed in the remote analysis compared to the 

conventional methodology may indicate that when the count is performed remotely, the expert 

can perform a more exhaustive job being able to detect more eggs than when it is done in the 

field. 
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3.2. Artificial intelligence-assisted analysis 

3.2.1 Analysis of the model performance 

To evaluate the proposed method for Trichuris spp. detection, we constructed a leave-one-

out cross validation scheme at the patient level. Thus, the algorithm is applied and tested only 

on samples belonging to a single subject, using all other subject samples as a training set. 

This process ensures the test set is completely independent from the training set. It should be 

noted that as the proposed algorithm was focused on the detection of Trichuris spp., the leave-

one-out scheme was constructed based only on those subjects that were positive for Trichuris 

spp. 

To assess the model performance, we considered the precision (P), recall (R) and F-score (F) 

metrics defined as: 

𝑃 = !"
!"#$"

, 𝑅 = !"
!"#$%

, 𝐹 = 2 × "×'
"#'

 

where TP, FP and FN denote the number of true positives, false positives and false negatives 

respectively. TP were defined as both correctly boxed and classified object, false detection 

was considered as FP and FN was defined as all ground truth objects misdetected by the 

algorithm or proposed for a wrong label. All proposed boxes by the algorithm had to have a 

certainty greater than or equal to 30% to be considered as proposed. The certainty of an object 

was defined based on the probability given by the algorithm and associated to the predicted 

label of this object. Correctly proposed and classified boxes were considered as true positive 

detections when had an intersection over union (IOU) with the ground truth of 30%. Note that 

the performance metrics are only computed on positive image patches i.e., known to contain 

at least one helminth egg.  

 

An overview of the results are shown in Table 3. The proposed approach showed a mean 

precision (P) of 98.4% , mean recall (R) of 80.9% and mean F-score (F) of 88.5% along all 

folders within the leave-one-out cross validation scheme. 
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 Training  Testing 

 #T. eggs  #T. eggs Precision Recall F-Score 

Folder 1 801  148 99.16 79.73 88.39 

Folder 2 902  47 97.78 93.62 95.65 

Folder 3 875  74 100.00 66.22 79.68 

Folder 4 919  30 100.00 80.00 88.89 

Folder 5 902   47 95.24 85.11 89.89 
Mean 
STD    

98.44 
2.00 

80.94 
9.96 

88.50 
5.73 

 

Table 3. Detailed performance of the proposed methodology for Trichuris spp. detection using 
a leave-one-one cross validation scheme at the patient level. 
Note: #T. eggs represent the number of Trichuris spp. 
 

Additionally, we wanted to compare the results obtained with the proposed method, which is 

based on SSD and MobileNet networks, with a model based on FasterRCNN together with a 

ResNet50 backbone, a more complex and deeper network which also introduces the concept 

of residual connections. Our hypothesis is that, although this deeper network may have a 

higher districimantive power, it needs to be trained with a large number of training data. The 

network was trained with the same leave-one-out cross validation scheme as that used for 

training the proposed algorithm, and obtained a mean precision of 88.5% and a mean recall 

of 75.1%. It also should be noted that FasterRCNN-ResNet50 algorithm took much longer time 

to be trained and tested compared to the proposed SSD-MobileNet architecture, imposing a 

considerable computational cost. This results proves that the proposed method outperforms 

more complex networks, being an optimally cost effective architecture. 

For further validation, we wanted to extend the analysis of the developed AI algorithm 

comparing their results at slide level to the ones obtained by all reference methods including 

both conventional microscopy-based analysis and manual remote analysis of digitized 

samples. 
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Digitized images from whole slides were divided into 512x512 pixels image patches using a 

sliding window procedure with an overlap of 64 pixels to ensure all helminth eggs are not 

cropped within images. All 27 slides coming from all subjects only positive for Trichuris spp. 

that were included in the analysis of Section 3.1 were analyzed by the AI algorithm, and Bland-

Altman analysis between automated AI-assisted results and both reference methods were 

assessed.  

Bland-Altman analysis showed a good agreement between AI-assisted results and both the 

reference method and the manual remote analysis, having a bias of -0.26, 95% confidence 

interval [-16.78,16.26] when compared to the results obtained with the conventional 

microscopy method, and a bias of -1.4 units, 95% confidence interval [-9.01,6.20] when 

compared to the remote analysis of digitized samples. 

 

3.2.2 Evaluation of the generalization capability 

For further assessment of the proposed approach, we also wanted to test the generalization 

capability of the proposed methodology at detecting other helminths eggs than Trichuris spp. 

We extended our analysis by training the proposed method with all available subject samples, 

i.e. including those belonging to the one which were positive for a co-infection of Trichuris spp. 

and Ascaris spp. The training and evaluation of the extended version of the proposed method 

were based on a train-validation-test scheme. Of all available digitized slides from all subjects, 

32 were randomly selected for training and validation, while the remaining 9 were used for 

testing. Both training (70%) and validation (15%) sets comprised 808 Trichuris spp. and 3649 

Ascaris spp. eggs, while test test (15%) was composed by 136 Trichuris spp. and 647 Ascaris 

spp. eggs. Our interpretation is that the appearance of helminth eggs is independent across 

slides and therefore the training and testing may be done using images from the same subject 

as long as they belong to different slides. 

Additionally, and in order to increase the discriminating power of the proposed approach and 

to better distinguish between both helminth eggs and all those structures that may be present 

on the images which are similar to objects under study, we deployed our trained model on all 
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training slides, identified all false positives objects, labeled them as a separated class (namely 

artifact class) and constructed a multi-class model including three different classes, namely 

Trichuris spp., Ascaris spp. and artifacts. Thus, background objects which are difficult to 

discern and are confused with real helminth eggs were used as negative examples.  

 

Table 4 summarizes the results, and proves that the proposed model can be extended for the 

detection of different helminth eggs obtaining promising results including a mean precision of 

94.36% and mean recall of 93.08%. 

 

 Precision Recall F-Score 

Trichuris spp. 95.31 89.71 92.43 

Ascaris spp. 93.41 96.45 94.91 

Mean 94.36 93.08 93.97 
Table 4. Overview of the results obtained for the detection of both Trichuris spp. and Ascaris 
spp. helminths eggs. 
 

3.3. Built-in AI algorithms: operational deployment on technological platforms 

The developed AI algorithm was integrated into both the telemedicine platform and the 

acquisition mobile app, enabling the operational deployment of the AI model so that it can be 

remotely used on demand by the telemedicine platform, or even could be executed during 

acquisition time through the mobile app. Figure 4 shows the implementation of the AI 

algorithm into both technological platforms.  

The AI algorithm execution on the telemedicine platform is done on a cloud computing 

platform. Each time the images are uploaded, the system recognizes the type of sample based 

on the image metadata and executes the AI model which will detect the eggs and show them 

in a visualization environment which is accessed via the web. As an additional possibility of 

integration of AI models in the clinical workflow, we have embedded the AI model in the 

acquisition app. While the user examines the sample with the smartphone attached to the 

microscope objective, the smartphone processes the image acquired by the camera detecting 
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the presence of eggs in real time. as the algorithm executes locally on the smartphone’s 

hardware. Table 5 provides a report of the calculated time needed to perform the prediction 

for a single image patch of 512x512 pixels using different hardware configurations and 

technological platforms, as well as the average time needed to get a final prediction for a whole 

digitized image considering that each image is composed by 48 image patches. 

 

Figure 4. Operational deployment of the AI algorithm on technological platforms. a 
Deployment on the telemedicine platform. b Deployment on the mobile acquisition app. 
 

 
 

Tech. Platform HW configuration Patch image 
(s) Whole Image (s) 

Telemedicine platform Low-moderate performance GPU 
(NVIDIA K80) 0.04 1.97 

Telemedicine platform Low-moderate performance CPU 
(Intel Xeon E5-2630 v3) 0.20 9.60 

Mobile-phone Low-moderate CPU 
(Snapdragon 820) 0.25 12.00 

Table 5. Comparison of the time needed to execute the AI algorithm with different 
technological platforms and hardware configurations. 
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4. Discussion and conclusions 

In this work, we present an end-to-end pipeline for microscopy image digitalization and remote 

analysis together with novel deep learning algorithms for automatic assessment and 

quantification of parasitological infection of STH, mainly focused on the identification of 

Trichuris spp. eggs. 

Microscopy remains the most widely used technique to complete a diagnosis of any of the 

NTDs, including STH which is one among the most prevalent diseases among this group. 

Visual diagnosis based on conventional microscopy is not very sensitive. It is also a time-

consuming and subjective procedure, and requires specialised experts in the work field. 

Unfortunately, laboratory health workers density in STH-endemic areas is very low. Taking 

into account this limited resources together with the highly elevated number of patients in 

these areas, it is clear that the use of digital microscopes together with artificial intelligence 

algorithms for remote and automatic diagnosis of STH could constitute an advantageous tool. 

Although some systems have been previously proposed for the digitalization of images of 

STH, they require special hardware that has not been specifically designed for acquiring 

microscopy images (17) or might  disrupt the usual laboratory workflow since they do not 

leverage conventional microscopes making it more complex to follow standard microscope 

diagnostics protocols (16). Our 3D-printed low-cost digitalization and image acquisition device 

was specially designed to not alter the daily routine in microscopy diagnosis laboratories. 

Additionally, the lack of primary care centers in high endemic areas of STH, entails a high 

need for field work to bring the diagnosis closer to remote areas. In this context, we designed 

a completely portable device enabling the digital diagnosis in those areas. 

In this work we proposed the first complete pipeline from image digitalization using 

smartphone technology to remote analysis assisted by artificial intelligence methods. 

The acquisition and digitization of the images are performed in a standardized manner and 

using a controlled procedure using a customized app which is directly linked to a telemedicine 

platform where the images were manually analyzed and tagged enabling the training of 

artificial intelligence algorithms. 
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The proposed pipeline was evaluated by comparing the quantification of Trichuris spp. 

infection with the reference method based on conventional microscope to both the remote 

analysis of digitized samples and the AI-assisted analysis y. The results showed a good 

agreement and minimal differences between methods when performing a global egg counting 

at slide level. These results proved and validated the use of the proposed digitalization and 

remote analysis pipeline as well as the proposed deep learning algorithms for the automatic 

identification of STH eggs. 

Particularly, the proposed deep learning-based algorithm enables an automatic and objective 

identification of STH eggs. The method, which was trained and validated using a cross-

validation scheme, achieved a relative high precision and recall results (98,44% and 80,94% 

respectively) for the identification and classification of Trichuris spp. eggs. We also wanted to 

compare the results with the ones obtained with more complex and deeper network 

architectures, and the results proved that the proposed relative simple architecture 

considerably reduces the computational cost while maintaining similar results. 

Additionally, the results obtained suggest that remote and AI-assisted analysis of digitized 

images of Kato-Katz samples allows to detect in mean more eggs compared to the count using 

the conventional procedure, since the analysis can be performed in a more exhaustive 

manner. Moreover, these tools would potentially be useful for other use cases such as the 

evaluation of the effectiveness of MDA programmes. 

For further validation and to illustrate the generalization capability of the method at identifying 

other helminth eggs than Trichuris spp., we extended the analysis by training the algorithm 

including positive samples for both Trichuris spp. and Ascaris spp. The results (mean precision 

of 94,66% and mean recall of 93,08%) showed that the proposed method can be extended for 

the detection of different STH eggs although further validation work should be done in this 

direction. In particular the lack of presence of hookworm eggs in our samples, mainly caused 

by their tendency to disappear along time, may present a limitation of this study and should 

be included in future developments.  
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Finally, we proposed an operational implementation which allows to integrate the AI algorithm 

on both the remote analysis platform and the digitalization mobile app, opening a simple but 

potentially revolutionary use of the method on demand by invoking it through the telemedicine 

platform or in real time during image digitalization with the mobile app. 

Next steps to scale the proposed system on the field require undertaking a large-scale clinical 

performance evaluation study to validate the entire pipeline and demonstrate its applicability 

where real time diagnosis is required. 

Although there have been proposed effective and accurate molecular tools for the diagnosis 

of NTDs such as STH which are already implemented in developed countries (22), they may 

not be accessible in low- and middle-income countries. These molecular techniques such as 

quantitative PCR need expensive equipment and very well trained specialists. In order to 

achieve the goal established in the WHO 2030 roadmap (3), it is essential to have an effective 

and standardized diagnosis to accelerate the NTDs elimination. In this context, the proposed 

solution could reduce time, distances and expertise needed for microscopic analysis of 

helminth samples and therefore helping to make accurate STH diagnosis accessible. 
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