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Abstract 

Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive 

methods that show complementary aspects of human brain activity. Despite measuring different proxies 

of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) 

are indirectly coupled. The electrophysiological and BOLD signal can map the underlying functional 

connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a 

moderate but significant correlation between resting-state functional connectivity of both modalities, 

however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability 

of those measures between different setups remains unknown. This is true notably with respect to 

different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to 

high-density electrode coverage). 

Here, we investigated the reproducibility of the bimodal EEG-fMRI functional connectome in the most 

comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 

subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with 

simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain 

monomodal connectivity reproducibly correlates across different datasets and that a moderate 

crossmodal correlation between EEG and fMRI connectivity of r≈0.3 can be reproducibly extracted in 

low- and high-field scanners. The crossmodal correlation was strongest in the EEG-β frequency band but 

exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) 

connections contributed the most to the crossmodal relationship.  

This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI 

offers a consistent estimate of multimodal functional connectomes in healthy subjects that are 

dominantly linked through a functional core of ICNs across spanning across the different timescales 

measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and 

provides a better understanding of interactions between EEG and fMRI measures. This observed level of 

reproducibility also defines a baseline for the study of alterations of this coupling in pathological 

conditions and their role as potential clinical markers. 
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Abbreviations 

Amplitude envelope correlation AEC 
Diffusion Magnet Resonance Imaging dMRI 
Electrocardiogram ECG 

Functional connectivity FC 
Independent component analysis ICA 

Intrinsic connectivity network ICN 
Imaginary part of the coherency iCoh 
Magneto/Electroencephalography M/EEG 

Structural connectivity SC 
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Introduction 
The brain is a complex system of interacting neurons continuously communicating with each other. This 

intrinsic brain functional connectivity (FC) has been shown to be organized in macro-scale patterns of 

interconnected regions, the so-called intrinsic connectivity networks (ICNs) (Biswal et al., 1995; Fox et 

al., 2005; Greicius et al., 2003). Though originally described for fMRI (FCfMRI) data, those ICNs have also 

been found using Magnetoencephalography (MEG, FCMEG) (Brookes et al., 2011) and 

Electroencephalography (EEG, FCEEG) (Abreu et al., 2020; de Pasquale et al., 2010; de Pasquale et al., 

2012; Finger et al., 2016; Wirsich et al., 2017). Expanding this initially network-specific view, cross-modal 

studies showed that FC in both electrophysiological (M/EEG) and BOLD signals are related when using 

static measures (averaged over periods >5 minutes) across the whole brain scale of resting-state 

recordings (Deligianni et al., 2014; Hipp and Siegel, 2015; Wirsich et al., 2017). Understanding the 

functional links between EEG- and fMRI-derived FC measures is a key question in current neuroimaging 

research, as it could help clarifying the neuronal substrates of both modalities, and of resting-state 

activity itself (Sadaghiani and Wirsich, 2020). 

The relation between FCfMRI and FCM/EEG, has also been shown to be mediated by the underlying white 

matter structural connectivity derived from diffusion MRI (SCdMRI) (Chu et al., 2015; Deligianni et al., 

2019, 2016; Honey et al., 2009; Meier et al., 2016; Wirsich et al., 2017). Beyond the static relationship of 

EEG and fMRI to structure, we also observed crossmodal linked dynamics (1 minute sliding window) 

(Wirsich et al., 2020b). While most work focused on crossmodal agreement of FC, we have equally 

shown that the crossmodal connectivity can be split up into a common and complimentary connectivity 

profile across different timescales (Wirsich et al., 2020a). A crucial open question is whether crossmodal 

dissimilarities arise mainly from differences in data quality and acquisition setup, or represent 

differences arising from measuring complementary multimodal aspects of brain functional connectivity 

(Sadaghiani and Wirsich, 2020). In order to address this issue, data from independent research sites are 

needed. This would enable us to characterize the baseline relationship between connectivity derived 

from both modalities. 

From a monomodal point of view, the test-retest reliability of FCfMRI measures is well characterized 

(Noble et al., 2019) with a low intra class correlation (ICC=0.29) for individual connections and 

reproducible ICN estimations across sites (Badhwar et al., 2020). While some of the variance stems from 

different scanner systems (Han et al., 2006) or inter-individual differences (Amico and Goñi, 2018; Finn 

et al., 2015), the chosen post-processing of data also introduces variability of the results (Botvinik-Nezer 

et al., 2020; Carp, 2012). Due to this connectivity variability, it is important to estimate the 

reproducibility of this measure, as a baseline for subsequent measures of alterations in different normal 

and pathological conditions (De Vico Fallani et al., 2014).  

The reproducibility of FCM/EEG measures has been analyzed from different angles. Different measures of 

FC (Colclough et al., 2016) have shown highly correlated (topographically similar) connectomes while 

Coquelet et al. (2020) have shown that the crossmodal relationship of MEG and EEG connectivity is 

reproducible across different EEG forward models. Marquetand et al. (2019) observed good intersession 

test-retest reliability (ICC>0.67) for both modalities. From a frequency point of view, alpha has been 

shown to be the most reliable estimate across subjects (Colclough et al., 2016; Marquetand et al., 2019). 

While the majority of FCfMRI work derives connectivity from correlating regional timecourses of the BOLD 

signal, no consensus has been reached yet for FCM/EEG, especially whether to use phase or amplitude 
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coupling  (Colclough et al., 2016; Sadaghiani and Wirsich, 2020). Both phase coupling using the 

imaginary part of the coherency (iCoh) (Nolte et al., 2004; Wirsich et al., 2017) and amplitude coupling 

using amplitude envelope correlation (AEC) (Brookes et al., 2011; de Pasquale et al., 2010; Deligianni et 

al., 2014; Hipp and Siegel, 2015) have been linked to FCfMRI. It has been argued that phase coupling 

might be closer to the underlying SCdMRI and amplitude coupling is proposed to be more related to FCfMRI 

(Engel et al., 2013). Nevertheless, most of the literature suggests a rather similar connectivity pattern of 

intrinsic brain activity on the whole brain scale when averaging over resting-state recordings lasting 

several minutes (Colclough et al., 2016; Mostame and Sadaghiani, 2020; Sadaghiani and Wirsich, 2020). 

Siems and Siegel (2020) observed highly correlated, but not identical connectivity between both types of 

measures, and the neurobiological interpretation of those differences have yet to be explored. Recently 

those changes have been linked to task-specific connectivity (Mostame and Sadaghiani, 2020), but 

ultimately the relevance of different connectivity measures for brain behavior and pathology is still an 

open question.  

Electrophysiological measures suffer from an ill-posed problem, when reconstructing sparsely sampled 

sensor signals on the scalp into the three-dimensional brain space, resulting in source-activity leaking 

into different regions which can distort connectivity measures (Palva et al., 2018). The selection of an 

optimal brain parcellation can reduce the variability arising from regional crosstalk due to source 

leakage of the inverse solution (Farahibozorg et al., 2018). Given those limitations of 

electrophysiological measures, less work has been done to extract electrophysiological connectomes 

(Sadaghiani and Wirsich, 2020). However, no study has compared if the EEG or the fMRI connectome 

can be measured more reliably across subjects, especially in a simultaneous recording. 

In the case of simultaneous EEG-fMRI, signal quality is diminished by 1) artifacts on fMRI data induced by 

the EEG electrodes  interacting with the static magnetic field and the MR-pulses (Mullinger et al., 2008b) 

2) gradient- and pulse-related EEG artifacts induced by the magnetic gradients on the EEG electrodes 

and cables (Abreu et al., 2018; Allen et al., 2000). At 7T, EEG-fMRI can be affected by stronger recording 

artifacts (Abreu et al., 2016; Jorge et al., 2015b; Mullinger et al., 2008a; Neuner et al., 2013). 

Overcoming those limitations would encourage analysis of the dynamic electrophysiological correlates 

of BOLD signal at much higher temporal and spatial resolutions (Meyer et al., 2019; Scheeringa and 

Fries, 2017). Though it is well documented that the data quality of EEG and fMRI depends on scanner 

field strength (Debener et al., 2008; Mullinger et al., 2008b), no data exists assessing the impact on the 

data reliability at the level of functional connectivity. The possibility to compensate for the larger 

artifacts at higher field (Jorge et al., 2015a) might be sufficient to achieve reliable EEG-fMRI connectivity 

measures. 

To close the gap of unknown reproducibility of EEG-fMRI connectomes across experimental setups and 

to evaluate the suitability of a 7T EEG-fMRI setup for multimodal connectomics in this study we aim to: 

1) compare the monomodal topographical similarity of FCfMRI to FCEEG derived from simultaneous 

EEG-fMRI across different imaging centers 

2) characterize the reproducibility of crossmodal FCfMRI-FCEEG relationship across heterogeneous 

setups and, for the first time, at 7T 

3) characterize the robustness of the crossmodal relationship to methodological choices regarding 

the chosen brain parcellation and EEG connectivity measure 
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4) characterize the stability of the crossmodal relationship with respect to acquisition duration and 

number of subjects used for group averages 

5) characterize the spatial contributions of individual connections to this crossmodal relationship 

and the topographical similarity of these contribution across different datasets 

We will consider that the crossmodal relationship is reproducible if the monomodal measures are 

correlated across datasets and if the crossmodal relationship remains significant across all datasets. We 

further expect that the crossmodal relationship is robust to methodological choices. For example, we 

expect a robust crossmodal relationship to be significant for a range of methodological choices while the 

magnitude of the relationship might change. Our previous work suggest this correlation to be moderate 

around r~0.3 (Wirsich et al., 2020a, 2017). The reproducibility of monomodal measures, the crossmodal 

relationship and the robustness of the latter to methodological choices would strongly support the 

generalizability of concurrently recorded EEG-fMRI connectomes.  

To do so, we combined simultaneous EEG-fMRI resting state acquisitions from 4 different centers 

totaling 72 subjects, and comprising recordings using a 1.5T, 3T and 7T MR scanner in combination with 

a 64- or 256-electrode EEG system.  
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Methods 
Subjects and acquisition setup 
We analyzed a total of 72 subjects divided up into 4 datasets: 16 subjects using a 64-channel EEG setup 

in a 1.5T MR-scanner (64Ch-1.5T), 26 subjects using a 64-channel EEG setup in a 3T MR-scanner (64Ch-

3T), 21 subjects using a 256-channel EEG setup in a 3T MR-scanner (256Ch-3T) and 9 subjects using a 64 

channel EEG setup in a 7T MR-scanner (64Ch-7T). Main differences between study paradigm, hardware 

and software setup are summarized in SI Table 1. 

Data set 1 (64Ch-1.5T) 
16 subjects (6 females, mean age: 32.87, range 22-53) with no history of neurological or psychiatric 

illness were recorded. Ethical approval was given by local Research Ethics Committee (UCL Research 

ethics committee, project ID: 4290/001) and informed consent was obtained from all subjects 

(Deligianni et al., 2016, 2014). In each subject one run of 10 min 48 seconds resting-state simultaneous 

EEG-fMRI was acquired. Subjects were asked not to move, to remain awake and fixate on a white cross 

presented on a black background. MRI was acquired using a 1.5 Tesla MR-scanner (Siemens Avanto). 

The fMRI scan comprised of the following parameters: GRE-EPI sequence, TR=2160, TE=30ms, 30 slices, 

210x210mm Field of View, voxel size 3.3x3.3x4.0mm3 (1mm gap), flip angle 75°, total of 300 volumes. 

The subjects’ head was immobilized using a vacuum cushion during scanning. Additionally, an 

anatomical T1-weighted image was acquired (176 sagittal slices, 1.0x1.0x1.0 mm, TA=11min). EEG was 

acquired using two 32-channel MR-compatible amplifiers (BrainAmp MR, sampling rate 1kHz), 63 

electrodes (BrainCap MR, Gilching, Germany), referenced to FCz, 1 ECG electrode. The scanner clock was 

time-locked with the amplifier clock (Mandelkow et al., 2006). The MR-compatible amplifier was 

positioned behind outside the bore behind the head of the subject. 

Data set 2 (64Ch-3T) 
26 healthy subjects (8 females, mean age 24.39, age range 18-31) with no history of neurological or 

psychiatric illness were recorded. Ethical approval was given by local Research Ethics Committee (CPP Ile 

de France III) and informed consent was obtained from all subjects (Sadaghiani et al., 2010). In each 

subject, 3 runs of 10 minutes (total 30 mins) resting-state simultaneous EEG-fMRI were acquired. 

Subjects were asked not to move and to remain awake and keep their eyes closed during the resting-

state scan. For three subjects, one out of the three rest sessions was excluded due to insufficient EEG 

quality. The resting-state sessions were part of a study with two additional naturalistic film stimuli of 10 

minutes not analyzed in the current study, and acquired after resting runs 1 and 2 of the resting state as 

described in Morillon et al. (Morillon et al., 2010). MRI was acquired using a 3 Tesla MR-scanner 

(Siemens Tim-Trio). The fMRI scan comprised of the following parameters: GRE-EPI sequence, 

TR=2000ms, TE=50ms, 40 slices, 192x192mm Field of View, voxel size 3x3x3mm3, flip angle 78°, total of 

150 volumes (total all sessions 450 volumes).  An anatomical T1-weighted image was acquired (176 

sagittal slices, 1.0x1.0x1.0 mm, TA=7min). EEG was acquired using two 32-channel MR-compatible 

amplifiers (BrainAmp MR, sampling rate 5kHz), 62 electrodes (Easycap, Herrsching, Germany), 

referenced to FCz, 1 ECG electrode, and 1 EOG electrode. The scanner clock was time-locked with the 

amplifier clock (Mandelkow et al., 2006). The MR-compatible amplifier was positioned behind outside 

the bore behind the head of the subject. 
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Data set 3 (256Ch-3T) 
21 healthy subjects (7 females, 32.13, age range 24-47) with no history of neurological or psychiatric 

illness were recorded. Ethical approval was given by local Research Ethics Committee (Ethics committee 

of Geneva) and informed consent was obtained from all subjects. A subgroup of this cohort has been 

already analyzed by (Iannotti et al., 2015). In each subject one run of 4min 58.5s resting-state 

simultaneous EEG-fMRI were acquired. Five subjects had a longer recording of 19min 52s and one 

subject had a recording of 9min 56s, in all those cases the total run was analyzed. Subjects were asked 

not to move and to remain awake and keep their eyes closed during the resting-sate scan. MRI was 

acquired using a 3 Tesla MR-scanner (Siemens Magnetom Trio). The fMRI scan comprised the following 

parameters: GRE-EPI sequence, TR=1990ms, TE=30ms, 32 slices, 192x192mm Field of View, voxel size 

3x3x3.75mm3, flip angle 90°, total of 150 volumes. Additionally, an anatomical T1-weighted image was 

acquired (176 sagittal slices, 1.0x1.0x1.0 mm, TA=7min). EEG was acquired using a 258-channel MR-

compatible amplifier (Electrical Geodesic Inc., Eugene, OR, USA, sampling rate 1kHz), 256 electrodes 

(Geodesic Sensor Net 256), referenced to Cz, 2 ECG electrodes. The scanner clock was time-locked with 

the amplifier clock (Mandelkow et al., 2006). An elastic bandage was pulled over the subjects’ head and 

EEG cap to assure the contact of electrodes on the scalp. The MR-compatible amplifier was positioned 

to the left of the subject and EEG and ECG cables were passed through the front end of the bore. 

Data set 4 (64Ch-7T) 
9 healthy subjects (4 females, mean age 23.56, age range 22-26) with no history of neurological or 
psychiatric illness were recorded. Ethical approval was given by the local Research Ethics Committee 
(CER-VD) and informed consent was obtained from all subjects (Jorge et al., 2019). In each subject 1 run 
of 8 minutes resting-state simultaneous EEG-fMRI was acquired. Subjects were asked not to move in the 
MR scanner and to keep their eyes open during the resting-state scan, fixating on a small red cross 
presented on a grey background, to minimize head and eye movements. Padding was also used to 
further restrict motion. MRI was acquired using a 7 Tesla head MR-scanner (Siemens Magnetom). The 
fMRI scan was performed using a simultaneous multi-slice (SMS) GRE-EPI sequence (3× SMS and 2× in-
plane GRAPPA accelerations), with TR=1000ms, TE=25ms, 69 slices, 220×220mm Field of View, voxel size 
2.2x2.2x2.2 mm, flip angle 54°, and a total of 480 volumes. A short EPI acquisition (5 volumes) with 
reversed phase encoding direction was also performed, for image distortion correction. Additionally, an 
anatomical T1-weighted image was acquired (160 sagittal slices, 1.0x1.0x1.0mm, TA = 10min). EEG was 
acquired using two 32-channel MR-compatible amplifiers (BrainAmp MR, sampling rate 5kHz), and a 63-
electrode (EasyCap, Herrsching, Germany), referenced to FCz, 1 ECG electrode, connected via 12-cm 
bundled cables to reduce artifact contributions (Jorge et al., 2015b). Four of the 64 electrodes (T7, T8, F5 
and F6) were customized to serve as motion artifact sensors (Jorge et al., 2015a). A total of 59 
electrodes therefore remained dedicated to EEG recording. The scanner clock was time-synchronized 
with the amplifier clock (Mandelkow et al., 2006)). The MR-compatible amplifier was positioned inside 
the bore behind the head of the subject. 
 

Analysis 
As data acquisition already has a considerable number of varying parameters that might affect the final 

FC estimation, we stress here that also for the analysis we did not strictly control every processing step. 

The rationale of this was that independent of setup and postprocessing, the different datasets should 

generalize across a family of analyses (Botvinik-Nezer et al., 2020) and result in reproducible  

monomodal and crossmodal measures. Applied to this study, the crossmodal relationship can be 
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considered reproducible if it is robust to different hardware setups and preprocessing approaches. The 

different starting points across datasets given by the different EEG and fMRI equipment described above 

make it hard to acquire perfectly unbiased recordings across datasets. In consequence, our approach 

here was to optimize the analysis of each dataset to obtain the best possible signal quality (E.g. varying 

with field strength, several fMRI parameters are affected: e.g. optimal TE and thereby the time available 

to execute the EPI readout; techniques like GRAPPA and SMS-EPI - like used in the 7T data - become 

more or less effective, the spatial resolution vs. physiological noise relationship changes etc.). Regarding 

EEG side, as pointed out later, the channel geometry (Iannotti et al., 2015) or presence of additional 

artifact sensors (Jorge et al., 2015a) present opportunities for denoising that should be taken advantage 

of wherever available. 

Brain parcellation 
We used the Freesurfer toolbox to process the T1-weighted images (recon-all, v6.0.0 

http://surfer.nmr.mgh.harvard.edu/) in order to perform non-uniformity and intensity correction, skull 

stripping and grey/white matter segmentation. The cortex was parcellated into 148 regions according to 

the Destrieux atlas (Destrieux et al., 2010; Fischl et al., 2004) and into 68 regions according to the 

Desikan(-Killiany) atlas (Desikan et al., 2006). According to the results of Farahibozorg et al. (2018), 

showing that the optimal size of parcellation to capture independent EEG signals contains around 70 

regions we decided to use the Desikan atlas as reference. 

Specific strategy for 64Ch-7T: Due to local signal drops in the T1-weighted images near the EEG lead 

convergence points (Jorge et al., 2015b) we were not able to run the Freesurfer individual segmentation 

(recon-all) for all subjects. In order to not lose any of the subjects and to keep consistency within the 

data set we coregistered all fMRI images to the MNI template. We used Freesurfer to extract the 

surfaces of the MNI template. In order to account for subject specific variances, we dilated the atlas 

images by 3 voxels (using https://github.com/mattcieslak/easy_lausanne). The transformation of the 

segmented MNI template to fMRI was calculated by coregistering the fMRI images to the T1 image using 

FSL-FLIRT (6.0.2) (Jenkinson et al., 2002) with boundary-based registration using white matter masks 

obtained by segmentation with ANTS (version 2.2.0) (Avants et al., 2011). The T1 was coregistered to the 

MNI template using FSL-FNIRT (6.0.2) (Jenkinson and Smith, 2001). 

fMRI processing 
Slice timing correction was applied to the fMRI timeseries (for the Ch64-3T and Ch256-3T datasets only). 

This was followed by spatial realignment using the SPM12 toolbox (Ch64-1.5T/Ch64-3T:  revision 6906; 

Ch256-3T/Ch64-7T revision 7475; http://www.fil.ion.ucl.ac.uk/spm/software/spm12). The T1 images of 

each subject and the Desikan/Destrieux atlas (already in subject space, as described above) were 

coregistered to the fMRI images (FSL-FLIRT 6.0.2). We extracted signals of no interest such as the 

average signals of cerebrospinal fluid (CSF) and white matter from manually defined regions of interest 

(ROI, 5mm sphere, Marsbar Toolbox 0.44, http://marsbar.sourceforge.net) and regressed out of the 

BOLD timeseries along with 6 rotation, translation motion parameters and global gray matter signal 

(Wirsich et al., 2017). Then we bandpass-filtered the timeseries at 0.009-0.08 Hz (Power et al., 2014). 

Like in Wirsich et al. (2020a, 2017), we scrubbed  the data using frame wise displacement (threshold 

0.5mm, by excluding the super-threshold timeframes) as defined by Power et al.  (2012).  

Specific strategy for 64Ch-7T: Data was also B0-unwarped before spatial alignment, using FSL-TOPUP 

(6.0.2) (Andersson et al., 2003), based on the reverse-encoding reference acquisition, to mitigate the 
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more accentuated image distortions present at 7T (Jorge et al., 2018). Given the short TR of 1s no slice 

timing correction was carried out (Smith et al., 2013). 

Specific strategy for 64Ch-1.5T: In order to stick to the original processing of (Deligianni et al., 2014) no 

slice timing correction was carried out. We note that as shown by Wu et al. (2011) and Shirer et al. 

(2015), slice timing correction has minimal to no effect on brain connectivity (in terms of test-retest 

reliability, signal to noise ratio and group separability). 

fMRI connectivity measures  
Average timeseries of each region was then used to calculate FCfMRI by taking the pairwise Pearson 

correlation of each regions’ cleaned timecourse (see schema Fig 1). The final connectivity matrix was 

constructed by the unthresholded values of the Pearson correlation. 

EEG processing 
EEG data was preprocessed individually for the different setups: 

64Ch-1.5T: EEG was corrected for the scanner gradient artifact using template subtraction, adaptive 

noise cancellation and downsampling to 250Hz (Allen et al., 2000) followed by pulse-related artifact 

template subtraction (Allen et al., 1998). Then ICA-based denoising (for removal of gradient and pulse 

artifact residuals, eye-blinks, muscle artifacts) using the Brain Vision Analyzer 2 software (Brain 

Products, Gilching, Germany) was carried out. 

64Ch-3T: EEG was corrected for the scanner gradient artifact using template subtraction, adaptive noise 

cancellation followed by lowpass filtering at 75Hz, downsampling to 250Hz (Allen et al., 2000). Then 

pulse-related artifact template subtraction (Allen et al., 1998) using EEGlab v.7 

(http://sccn.ucsd.edu/eeglab) and the FMRIB plug-in (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/) 

was carried out. 

256Ch-3T: EEG was corrected for the scanner gradient artifact using template subtraction with optimal 

basis set and adaptive noise cancellation (Allen et al., 2000; Niazy et al., 2005), followed by pulse-related 

artifact template subtraction (Allen et al., 1998) using in-house code Matlab code for ballistocardiogram 

peak detection as described in (Iannotti et al., 2015). Electrodes placed on the cheeks and in the face 

were excluded form data analysis resulting in final 204 used electrodes. This was followed by manual 

ICA-based denoising (for removal of gradient and pulse artifact residuals, eye-blinks, muscle artifacts, 

infoMax, runICA-function EEGLab revision 1.29 (Bell and Sejnowski, 1995; Delorme and Makeig, 2004)) 

64Ch-7T: EEG data pre-processing included the following steps: gradient artifact correction using 

template substraction (as described in (Jorge et al., 2015a)), bad channel interpolation (1–4 channels per 

subject), temporal band-pass filtering (1–70  Hz), pulse-related artifact correction (using a k-means 

clustering-based approach validated in (Jorge et al., 2019) in line with (Gonçalves et al., 2007)), 

downsampling to 500 Hz, motion artifact correction (offline multi-channel recursive least-squares 

regression, using the motion sensor signals, as described in (Jorge et al., 2015a)), and manual ICA-based 

denoising (for removal of e.g. gradient and pulse artifact residuals, eye-blinks, muscle artifacts, in-house 

ICA extended Infomax algorithm).  

All datasets: Cleaned EEG data was analyzed with Brainstorm software (Tadel et al., 2011), which is 

documented and freely available under the GNU general public license 

(http://neuroimage.usc.edu/brainstorm, 64Ch-1.5T and 64Ch-3T data set: version 10th August 2017 as 
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according to (Wirsich et al., 2020b), 256Ch-3T and 64Ch-3T data set: version 15th January 2019). Data 

was bandpass-filtered at 0.3-70 Hz (64Ch-1.5T at 0.5-70Hz, 64Ch-7T at 1-70Hz). Data was segmented 

according to one TR or as a multiple TRs of the fMRI acquisition (64Ch-1.5: 2160ms, 64Ch-3T: 2000ms, 

256Ch-3T: 1990ms, 64Ch-7T: sliding window of 4000ms with 1000ms (1TR) steps). 

In order to minimize effect of head motion EEG epochs containing motion were semi-automatically 

detected if the signal in any channel exceeded the mean channel timecourse by 4 standard deviations. 

Then the whole timecourse was also visually inspected to exclude all motion segments from further 

analysis (Wirsich et al., 2020a, 2017). Electrode positions and T1 were coregistered by manually aligning 

the electrode positions onto the electrode artifacts visible in the T1 image. A forward model of the skull 

was calculated based on the individual T1 image of each subject using the OpenMEEG BEM model, 

(Gramfort et al., 2010; Kybic et al., 2005). The EEG signal was projected into source space (15000 

solution points on the cortical surface) using the Tikhonov-regularized minimum norm (Baillet et al., 

2001) with the Tikhonov parameter set to 10% (Ch64-1.5T/Ch64-3T brainstorm 2016 implementation 

and Ch256-3T/Ch64-7T brainstorm 2018 implementation, with default parameters: assumed SNR ratio 

3.0, using current density maps, constrained sources normal to cortex with signs flipped into one 

direction, depth weighting 0.5/max amount 10). Finally, the source activity of each solution point was 

averaged in each cortical region of the Desikan and the Destrieux atlas.  

EEG connectivity measures 
For each epoch the imaginary part of the coherency (iCoh, (Nolte et al., 2004)) of the source activity was 

calculated between each region pair (cortical regions only: Desikan atlas - 68 regions or Destrieux atlas - 

148 regions) using bins of 2Hz frequency resolution (Wirsich et al., 2020a, 2017) (Brainstorm 

implementation, version 27-01-2019; imaginary part was corrected by the real part of the coherence 

coh: ���� �  
��������

�	
�������
 (Ewald et al., 2012), significance of each value was determined according to 

(Schelter et al., 2006), connections with p<0.05 were set to 0). The 2Hz bins were averaged for 5 

canonical frequency bands: delta (δ 0.5-4Hz, 64Ch-7T: at 1-4Hz), theta (θ 4-8Hz), alpha (α 8-12Hz), beta 

(β 12-30Hz), gamma (γ 30-60Hz). The segments were then averaged for each subject to one FCEEG matrix.  

We calculated the amplitude envelope correlation (AEC) of the signal by taking the Hilbert envelope of 

the concatenated epochs of each subject filtered into the canonical frequency bands both for the 

Destrieux and Desikan atlas. We calculated the correlation of the filtered data both without (Deligianni 

et al., 2014; Glomb et al., 2020) and with (Brookes et al., 2012; Hipp et al., 2012) a subsequent pairwise 

orthogonalization approach to attenuate crosstalk between signals (AECnon-orthogonalized/AECorthogonalized, 

Brainstorm implementation; version 27-01-2019 implementation of  (Hipp et al., 2012)). 

Monomodal reproducibility 
We assessed the modality-specific reproducibility by determining the topographical similarity of the 

average connectivity matrix through calculating the monomodal inter-dataset correlation between 

averaged FCfMRI (of each dataset across all runs and subjects). The same analysis was performed for FCEEG 

(in each frequency band). Intra-dataset monomodal reproducibility was assessed by splitting up each 

dataset into two halves and calculating the correlation of the average connectome between both halves.  

Statistical analyses 
To analyze the impact of group averages, we used a permutation approach that randomizes the labels of 

the variable of interest in order to define a p-value (5000 random permutations). In the case of 
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statistical assessment of the 64ch-7T dataset with size of 9 subjects only label 512 permutations exist, in 

which case we tested for all 512 permutations to define a p-value. We report all raw p-values alongside 

an explicit Bonferroni threshold in case of multiple comparisons. 

The crossmodal correlation between EEG and fMRI 
We then assessed the crossmodal correlation between FCfMRI and FCEEG for each EEG frequency band 

across different configurations (brain atlas, EEG connectivity measure). Effects on the crossmodal FCEEG-

FCfMRI correlation due to EEG frequency bands (δ, θ, α, β, γ), atlas choice (Desikan vs. Destrieux), EEG 

connectivity measure (iCoh, AECnon-orthogonalized, AECorthogonalized) were assessed on the average connectome 

of each dataset (permutation test with 5000 iterations or , 512 permutations for the 64Ch-7T dataset, 

testing the effects against average connectomes with switched labels at the individual level, in order to 

be able to compare the 2278 connections of the Desikan atlas to the 11026 connections of the Destrieux 

atlas we randomly drew 2278 out of the 11026  Destrieux connections for each iteration. We tested if 

this random sampling introduces a bias to the measured crossmodal correlation by comparing 5000 (or 

512 permutations for the 64Ch-7T dataset) draws of 2278 connection to the crossmodal correlation of 

all connections. We observed that the absolute difference was rdiff-sampling<|0.0004|. We considered this 

value negligible in order to test for significant atlas differences of the order rdiff-atlas~0.01).  

To assess the effect of small sample sizes and short recording length, we cut all datasets to a recording 

length of the first 4min58.5s (according to the recording length in dataset 256Ch-3T). Significance was 

tested by randomly switching labels between 4min58.5s and full-length data (5000 iterations, or 512 

permutations for the 64Ch-7T dataset). Then we took only the first nine subjects of each dataset to 

calculate the connectome average of EEG and fMRI (according to the number of subjects in dataset 

64Ch-7T). Significance was defined by comparing the average crossmodal correlation of all subjects 

against the average 9 randomly sampled subjects from the group (5000 iterations). 

Spatial characterization of the crossmodal correlation 
Focusing on the multimodal connectomes in the Desikan atlas averaged over all datasets, we assessed 

the relative contribution of each connection to the correlation between FCEEG and FCfMRI according to 

Colclough et al. (2016). The relative contribution c of each connection i is given by: �� �
�
��

�

∑ �
�

�

�
�

�  
�
��

�

�
 

with ��
� �

��	���

�∑ ���	������

 and ��
�

�
��	���

�∑ ���	������

  given the Pearson correlation coefficient of two vectors x 

and y: 	 �
∑ ���	�������	��� � �

�∑ ���	������ �∑ ���	������

�  ∑ ��
���

�
� . The resulting spatial contribution matrix was then 

correlated across the different datasets to assess the reproducibly of this spatial contribution to the 

crossmodal relationship. To classify the results we mapped the 68 regions of the Desikan atlas to 7 

canonical ICNs (VIS: Visual, SM: Somatomotor, DA: Dorsal Attention, VA: Ventral Attention, L: Limbic, FP: 

Fronto-Parietal, DMN: Default Mode Network) (Amico et al., 2017; Yeo et al., 2011) and we subdivided 

the connections into homotopic, intrahemispheric and interhemispheric connections. We tested if the 

spatial contribution to the crossmodal correlation was more prominent for each ICN, for homotopic 

connections and for interhemispheric connections (one-sided ttest). Finally, we tested if the magnitude 

of the crossmodal correlation was increased for each ICN, for homotopic connections and for 

intrahemispheric connections (one-sided ttest). 
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Reproducibility of the crossmodal correlation from single subject to the average 
connectome 
Besides taking the average multimodal connectome of each dataset we also calculated the correlation

between EEG and fMRI connectomes in each subject. Using a two-way ANOVA we tested if the

crossmodal correlation differs in terms of the dataset and EEG frequency band or the interaction

between dataset and frequency band (Matlab function ANOVAN, p<0.05). To identify any possible

effects of a specific dataset or frequency band on the crossmodal correlation, we used a Tukey Posthoc

test (Matlab function multcompare, p<0.05 Bonferroni corrected). In order to exclude a large effect of

motion on the crossmodal relationship we correlated the average framewise displacement of each

subject to the individual crossmodal relationship (see SI section impact of movement). Additionally, to

limiting the group average to 9 subjects, in order to better understand the relationship between single

subject and dataset averaged estimates we aimed to define the number of subjects needed for a reliable

averaged connectome. To do so now and randomly selected 1,2,…,n subjects (5000 iterations each step)

and averaged the EEG and fMRI connectomes of the selected subjects. Then we calculated the

correlation between FCEEG and FCfMRI for each of the subject steps. We repeated this approach for the

combined dataset sampling an average correlation between the averaged EEG and fMRI connectome

from n randomly drawn subjects. To determine how many subjects are needed for a stable average

connectome we took the average crossmodal correlation over all subjects of each frequency band as

reference correlation. We then compared the value of 1% of reference correlation to the change rate

when adding one random subject (5000 iterations). The crossmodal correlation was considered stable

when the change rate did not differ more than 1% of the total crossmodal reference correlation. 

Fig 1: Overview on the construction of EEG and fMRI connectomes. EEG and fMRI data were parcellated into the 148 cortical 

regions of the Destrieux atlas (and 68 regions of the Desikan atlas, coregistered to each subject’s individual T1) as follows: For 

fMRI, the BOLD signal timecourse was averaged over the voxels in each region for each subject. The Pearson correlation of the 

region averaged fMRI-BOLD timecourse was calculated to build a function connectivity matrix /connectome (FCfMRI). For the EEG,

the signal of each sensor was source reconstructed to the cortical surface (15000 solution points) using the Tikhonov-regularized

minimum norm. Then, the timecourses of the solution points were averaged per cortical region. The imaginary part of the 

coherency (iCoh) or envelope amplitudes correlation (AEC, orthogonalized and non-orthogonalized) of averaged EEG source 

signals were used to calculate FCEEG  for each subject (Figure adapted from (Wirsich et al., 2020a)). Please refer to the methods 

for a detailed description of each step. 
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Results 
Monomodal reproducibility between datasets 
We measured monomodal reproducibility (topographical similarity) by taking correlations of 

connectivities of each modality. Between datasets, monomodal connectivity matrices were all 

correlated for both modalities (Table 1, Table 2). 7T fMRI data correlated less with the other datasets 

(Table 1), EEG correlations were lower than correlations between fMRI (Table 1, Table 2). In terms of 

inter-dataset connectome correlation, delta, theta and beta band connectomes were the most 

correlated across datasets (r>0.65, see Table 2). Unlike otherwise stated, the results of this section are 

all derived from the group averaged connectomes of each dataset. 

Table 1:Inter- and intra-dataset correlation of FCfMRI.; The first row shows the intra-dataset correlation of the dataset’s split-half 

averaged fMRI connectome. The orange cells show the inter-dataset correlation of dataset average fMRI connectome (Desikan 

atlas) between the different datasets 

 64Ch-

1.5T 

64Ch-

3T 

256Ch-

3T 

64Ch-7T 

Split-half 0.82 0.95 0.88 0.78 

64Ch-1.5T  0.81 0.78 0.69 
64Ch-3T   0.90 0.69 

256Ch-3T    0.64 
 

Table 2: Inter- and intra-dataset correlation of FCEEG. The first row shows of each frequency-band the intra-dataset correlation of 

the dataset’s split-half averaged EEG connectome. The orange cells show the inter-dataset correlation of dataset averaged EEG 

connectome (Desikan atlas, imaginary part of the coherency) between the different datasets. 

 64Ch-

1.5T 

64Ch-

3T 

256Ch-

3T 

64Ch-7T 

Delta 

Split-half 0.79 0.82 0.76 0.78 

64Ch-1.5T  0.81 0.68 0.66 
64Ch-3T   0.75 0.71 
256Ch-3T    0.68 

Theta 

Split-half 0.76 0.88 0.79 0.80 

64Ch-1.5T  0.83 0.68 0.66 
64Ch-3T   0.77 0.71 

256Ch-3T    0.72 
Alpha 

Split-half 0.70 0.85 0.75 0.77 

64Ch-1.5T  0.63 0.76 0.71 

64Ch-3T   0.57 0.51 
256Ch-3T    0.73 
Beta 

Split-half 0.85 0.90 0.81 0.79 

64Ch-1.5T  0.84 0.85 0.73 
64Ch-3T   0.79 0.64 
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256Ch-3T    0.69 

Gamma 

Split-half 0.77 0.82 0.47 0.64 

64Ch-1.5T  0.69 0.43 0.68 

64Ch-3T   0.57 0.57 

256Ch-3T    0.47 

 

Crossmodal correlation of group averaged EEG and fMRI connectomes 
Correlations between EEG and fMRI were highest for the beta band, while gamma and delta band were

the most variable across datasets. A grand average across all datasets (72 subjects) resulted in the

highest correlation between EEG and fMRI for all bands (Fig 2a). While the grand average FCfMRI-FCEEG-β

correlation was significantly higher than all the other bands (p<0.0002, 5000 permutations, see SI Table

3), the group-averaged FCfMRI-FCEEG-α correlation was significantly increased only when compared to

FCfMRI-FCEEG-γ (only for 64Ch-3T dataset: p=0.0002 and 256-3T dataset: p=0.0004, 5000 permutations, see

SI Table 3). 

 

Fig 2: a) Crossmodal correlation dataset averaged EEG and fMRI connectomes using the Desikan atlas (FCEEG measure: 

imaginary part of the coherency); b) Crossmodal correlation dataset averaged EEG and fMRI connectomes using the Destrieux 

atlas (FCEEG measure: imaginary part of the coherency). 

Crossmodal correlation of group averaged EEG and fMRI connectomes using an 
alternative atlas and alternative EEG connectivity measures 
In this section we compared the above used atlas (Desikan) and EEG connectivity measures (iCoh) to 

alternatives. Taking an atlas with higher resolution resulted in a reduction of crossmodal FCfMRI-FCEEG 

correlation grand average over all datasets (Fig 2b, p<0.0002 for all frequency bands, 5000 

permutations, see SI Table 4, a subset of the Destrieux connections were randomly chosen for each 
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iteration to match the number of connections of the Desikan atlas: see methods). When using AECnon-

orthogonal as FCEEG connectivity measure crossmodal correlation increased as compared to taking iCoh (Fig 

3b, for FCEEG-γ only, p<0.0002 , 5000 permutations, SI Table 5), the orthogonalization approach 

(AECorthogonal) resulted in lower correlation compared to the iCoh (Fig 3b, all EEG frequency bands, 

p<0.0002, 5000 permutations, see SI Table 5).  We did not find any significant correlation between FCfMRI

and FCEEG-γ in the 256Ch-3T dataset. 

 

Fig 3: Crossmodal correlation dataset averaged EEG and fMRI connectomes using Amplitude envelope correlation (AEC) to 

derive FCEEG a) non-orthogonalized AEC and b) orthogonalized AEC (results for Desikan atlas) 

Effect of number of subjects and length of resting-state recording on the 
crossmodal correlation  
Next connectomes were cut down to the session length of the shortest dataset (4min58.5s, Fig 4a) and

subject averages were calculated using the same number of subjects (9 subjects, Fig 4b). The crossmoda

correlation averaged over all datasets is not significantly different when the sessions are cut down to the

first 4min58.5s (p>0.07 for all frequency bands, 5000 permutations, SI Table 6). Note that though we did

not find any significant differences for group averaged connectomes, we observed significant

differences individual crossmodal correlation when limiting the 30 minutes of the 64Ch-3T dataset to

4min58.5s (one-sided ttest, significant for FCfMRI-FCEEG-δ, FCfMRI-FCEEG-θ and FCfMRI-FCEEG-α, p<0.0003,  S

Table 7). When taking the average connectivity of only the first 9 subjects the crossmodal correlation

between FCfMRI and FCEEG-γ decreases significantly (p=0.0006, 5000 permutations, SI Table 6). 
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Fig 4: Crossmodal correlation between dataset averaged EEG and fMRI connectomes limiting all datasets to: a) the first 

4min58.5s of each subject’s session (according to the session length of the 256Ch-3T dataset) and b) the first 9 subjects of each 

dataset (according to the number of subjects of the 64Ch-7T dataset). 

 

Spatial characterization of differences and ICN crossmodal correlation 

Fig 5: Relative spatial contribution (see methods) of each connection to the crossmodal correlation between FCEEG-β and FCfMRI  

based on the average over all 72 subjects. (a) Spatial contribution is ordered according to the 7 canonical ICNs (Yeo et al. 2010). 

The Visual Network and the Limibic Network contributed the most to the crossmodal relationship. (b) Spatial contribution is 

ordered according to the two hemispheres. Off-diagonals highlight the homotopic connections that contributed the most to the 
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crossmodal correlation. Abbreviations: VIS: Visual, SM: somatomotor, DA: dorsal attention, VA: ventral attention, L: Limbic, FP: 

Fronto parietal, DMN: default mode network 

We defined the connections that contribute most to the FCfMRI-FCEEG correlation using the connectomes 

averaged over all datasets (Colclough et al., 2016). Table 3 shows that the topography this spatial 

contribution is correlated between all datasets. The visual network contributes the most to the 

crossmodal correlation as well as the homotopic connections (Fig 5). Connections of the visual network 

contributed significantly more to the crossmodal FCfMRI-FCEEG correlation as compared to inter-ICN 

connections for all frequency bands (t-test spatial contribution Visual>interICN: FCfMRI-FCEEG-δ/FCEEG-

θ/FCEEG-α/FCEEG-β/FCEEG-γ; p=3.2*10-47/1.8*10-34/p=5.1*10-69/p=4.1*10-53/1.5*10-81
, Bonferroni correction 

threshold for 5 frequencies and 7 ICNs is defined at p=0.05/35=0.0014). Connections of the limbic 

network contributed significantly more to the FCfMRI-FCEEG correlation as compared to inter-ICN 

connections for all frequency bands except EEG-γ (t-test spatial contribution Limbic>inter-ICN: FCfMRI-

FCEEG-δ/FCEEG-θ/FCEEG-α/FCEEG-β; p=5.4*10-06/4.3*10-06
/4.6*10-05/3.2*10-05

, Bonferroni correction threshold 

for 5 frequencies and 7 ICNs is defined at p=0.05/35=0.0014). 

Homotopic connections contributed significantly more to the FCfMRI-FCEEG correlation as compared to the 

rest of the connectome for all bands (t-test spatial contribution homotopic>other connections: FCfMRI-

FCEEG-δ/FCEEG-θ/FCEEG-α/FCEEG-β/FCEEG-γ: p=2.1*10-52/8.710*10-50/4.3*10-52/p=1.2*10-55/9.6*10-56
, Bonferroni 

correction threshold for 5 frequencies is defined at p=0.05/5=0.01). Additionally, intrahemispheric 

connections contributed significantly more than interhemispheric connections to the crossmodal 

relationship (t-test spatial contribution intrahemispheric>interhemispheric: FCfMRI-FCEEG-δ/FCEEG-θ/FCEEG-

α/FCEEG-β/FCEEG-γ: p=1.1*10-13/1.3*10-14/1.6*10-16/9.3*10-23/5.9*10-28, Bonferroni correction threshold for 

5 frequencies is defined at p=0.05/5=0.01) 

Table 3:  Inter- and intra-dataset correlation of spatial region-specific contributions to the averaged FCfMRI-FCEEG crossmodal 

correlation. The first row of each frequency-band shows the intra-dataset correlation of the dataset’s split half averaged EEG-

fMRI connectomes. The orange cells show the inter-dataset correlation of the dataset averaged EEG-fMRI connectome (Desikan 

atlas, imaginary part of the coherency). 

Spatial 

contribution 

64Ch-

1.5T 

64Ch-

3T 

256Ch-

3T 

64Ch-

7T 

Delta 

Split-half 0.72 0.85 0.76 0.79 

64Ch-1.5T  0.76 0.62 0.64 

64Ch-3T   0.76 0.64 
256Ch-3T    0.61 
Theta 

Split-half 0.69 0.87 0.81 0.80 

64Ch-1.5T  0.76 0.65 0.61 
64Ch-3T   0.78 0.62 
256Ch-3T    0.64 

Alpha 

Split-half 0.72 0.84 0.80 0.79 

64Ch-1.5T  0.56 0.75 0.76 
64Ch-3T   0.62 0.50 

256Ch-3T    0.69 
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Beta 

Split-half 0.82 0.88 0.86 0.81 

64Ch-1.5T  0.81 0.80 0.74 
64Ch-3T   0.84 0.65 

256Ch-3T    0.66 
Gamma 

Split-half 0.80 0.86 0.65 0.75 

64Ch-1.5T  0.79 0.66 0.70 

64Ch-3T   0.71 0.66 
256Ch-3T    0.61 
 

To follow up we explored at the crossmodal correlation of FCfMRI-FCEEG while only selecting connections 

inside one ICN. When comparing the crossmodal correlation inside the different canonical ICNs to the 

crossmodal correlation of random in-between network connections of the same network size (randomly 

sampled, 5000 iterations), we observe a higher correlation in the Visual network (rfMRI,EEG-α =0.61 

(r>rrandom: p=0.028),  rfMR,EEG-γ=0.63 (r>rrandom: p=0.007), the Limbic network (rfMRI,EEG-δ=0.56, (r>rrandom: 

p=0.03), rfMRI,EEG-β=0.59 (r>rrandom: p=0.022), rfMRI,EEG-γ=0.60 (r>rrandom: p=0.0034)) and the DMN (rfMRI,EEG-

γ=0.52 (r>rrandom: p<0.0002), all significant at uncorrected threshold p<0.05, Bonferroni correction 

threshold is defined at p=0.05/35=0.0014). 

Reproducibility of crossmodal correlation in individual connectomes 
We generally observed the same distribution of FCEEG-FCfMRI correlation in individual as compared to the 

dataset average such as high crossmodal correlation for FCEEG-β and low crossmodal correlation for FCEEG-

γ (Table 4). Lowest correlation was observed in the 256Ch-3T dataset.  

A 2-way ANOVA of the individual subject crossmodal correlation revealed a significant main effect of 

datasets F(3, 71)=36.61, p=1.6*10-20; and a significant main Effect of EEG Frequency bands F(4, 71)=6.85, 

p=2.6*10-5. The interaction term dataset*band was not significant (F(12, 71)=1.32, p=0.21, significance 

threshold p<0.05). Tukey Posthoc t-tests on the main effect of the datasets established the following 

order of correlation magnitude: 64Ch-3T>64Ch-7T>64Ch-1.5T>256Ch-3T (64Ch-3T > 64Ch-1.5T 

(p<0.0001), 64Ch-3T>64Ch-7T (p=0.0031), 64Ch-3T>256Ch-3T (p<0.0001); 64Ch-7T>256Ch-3T 

(p=0.003)). Tukey Posthoc t-tests on the main effect of EEG frequency bands revealed that FCfMRI-FCEEG-γ 

correlation was significantly smaller than FCfMRI-FCEEG-β (p<0.0001) and FCfMRI-FCEEG-θ correlation 

(p=0.027).  

Table 4: Average crossmodal correlation between EEG and fMRI connectomes of individuals across each dataset and frequency 

band (standard deviation in brackets) 

 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T All datasets 
FCfMRI-FCEEG-δ 0.13 

(0.05) 
0.20 
(0.05) 

0.12 
(0.04) 

0.15 (0.04) 0.15 (0.06) 

FCfMRI-FCEEG-θ 0.12 
(0.04) 

0.19 
(0.06) 

0.13 
(0.05) 

0.16 (0.06) 0.15 (0.06) 

FCfMRI-FCEEG-α 0.12 
(0.05) 

0.18 
(0.06) 

0.13 
(0.05) 

0.16 (0.05) 0.15 (0.06) 

FCfMRI-FCEEG-β 0.16 0.22 0.14 0.17 (0.04) 0.17 (0.06) 
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(0.04) (0.06) (0.04) 

FCfMRI-FCEEG-γ 0.14 

(0.05) 

0.14 

(0.06) 

0.08 

(0.05) 

0.13 (0.04) 0.12 (0.06) 

 

 

Fig 6: Subjects were randomly sampled from all datasets taking 1…n subjects (5000 iterations) then the crossmodal correlation 

between the EEG and fMRI connectome of each frequency band was calculated, the crossmodal correlation does not change 

more than 1% of the maximum value after averaging around 7-12 subjects (see SI Table 2). For maximum correlation see also 

Fig 2 (all datasets). 
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Fig 7: Subjects were randomly sampled for each dataset separately taking 1…n subjects (5000 iterations) then the crossmodal 

correlation between FCfMRI and the FCEEG of each frequency band was calculated, correlation does not change more than 1% of 

the maximum value after averaging around 7-12 subjects (SI Table 2). a) 64Ch-1.5T b) 64Ch-3T c) 256Ch-3T d) 64Ch-7T. While 

the crossmodal correlation is maximum for FCfMRI-FCEEG-β FCfMRI-FCEEG-γ is lowest for all datasets except the 64Ch-1.5 dataset (a). 

For the average crossmodal correlation across each dataset see also Fig 2. 

FCEEG-β correlates the best with FCfMRI for all datasets (Fig 6, Fig 7). On the contrary FCEEG-γ-FCfMRI was

dependent on the data set showing the 2
nd

 strongest correlation for the 64Ch-1.5T dataset and being by

far the lowest correlation for the 64Ch-3T and 256Ch-3T dataset (Fig 7). Independent of the magnitude

of the crossmodal correlation of each EEG frequency band, the crossmodal correlation was observed to

be stable  for each dataset when averaging 7-12 subjects (stable = adding 1 subject did not change the

correlation more than 1% of the total crossmodal correlation when averaging connectomes over 72

subjects, SI Table 2). Combining all dataset to one average connectome maximized the crossmoda

relationship for between FCfMRI and FCEEG-δ, FCEEG-θ, FCEEG-α and FCEEG-β but not for FCEEG-γ. The 64Ch-1.5T

dataset has an exceptionally high crossmodal correlation between FCEEG-γ and FCfMRI.  Consequently the

correlation is not increased by taking the average of all 72 subjects (and effect clearly observed for al

other bands Fig 2a: 64Ch-1.5T dataset: r(FCEEG-γ, FCfMRI)=0.38 vs. all datasets: r(FCEEG-γ, FCfMRI)=0.39). 
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Discussion 
This study showed that the crossmodal correlation between EEG and fMRI connectivity can be 

simultaneously recorded with high reproducibility from a variety of experimental setups and designs, 

notably different MR magnetic fields and EEG electrode configurations (monomodal connectivity 

correlation for EEG and fMRI r~0.5-0.9 between all datasets and crossmodal connectivity correlation 

r~0.3-0.4 across all datasets). Of special note, we demonstrated for the first time that concurrent EEG 

and fMRI connectomes derived from 7T show the same monomodal and crossmodal correlations as 

compared to data from 1.5T and 3T. From an EEG-frequency point of view the crossmodal correlation 

was highest for FCfMRI-FCEEG-β, while from a spatial point of view the visual network and homotopic 

connections contributed the most to the crossmodal correlation. When averaging subjects across all 

datasets, the correlation reaches a stable value from 7-12 subjects (see Fig 6, SI Table 2). From a single-

subject point of view, crossmodal correlation was weak (r~0.12-0.2). When comparing the correlation to 

the more established crossmodal relationships between FCfMRI and SCdMRI we note that our correlations 

between EEG and fMRI have the same order of magnitude for both group averaged connectomes (e.g. 

r=0.36 (Honey et al., 2009), r=0.34 (Goñi et al., 2014)) and single-subject connectomes (e.g. r=0.18 

(Skudlarski et al., 2008), r=0.19 (van den Heuvel MP et al., 2013)). 

Frequency specific contributions 
When combining all datasets, FCEEG-α and FCEEG-β correlated best with FCfMRI (rfMRI-EEG-α=0.41 and rfMRI-EEG-

β=0.43, average over all datasets, see Fig 2a). The weaker crossmodal correlation between FCEEG-γ/FC EEG-δ 

and FCfMRI is in line with previous findings (Tewarie et al., 2016; Wirsich et al., 2017). These results 

suggest that, besides band-specific SNR observed in our monomodal inter- and intra-dataset 

topographical similarity (which would predict the strongest crossmodal coupling between FCfMRI and 

FCEEG-α instead of FC-EEG-β (Colclough et al., 2016; Marquetand et al., 2019)), frequency specific FCfMRI-FCEEG 

correlation can advance the functional understanding of large-scale connectivity. Specifically, the 

particularly strong tie between FCEEG-α / FCEEG-β and FCfMRI may suggest that phase synchrony in α- and β-

band contribute particularly strongly to the intrinsic network organization of the brain first characterized 

in FCfMRI, paralleling conclusions of prior MEG studies (Brookes et al., 2011; Hipp et al., 2012). 

This conclusion may come as a surprise, since neurophysiological investigations using intracranial studies 

(human or animal) have demonstrated highest correlation between local BOLD amplitudes and γ power 

(Logothetis et al., 2001; Nir et al., 2007). In this context, it is important keep in mind the difference 

between local signal amplitudes and whole-brain FC organization. Further, we note that beyond FCEEG-α/β 

we found weaker but significant correlations between FCfMRI and FCEEG-γ (as well as FC EEG-δ) for all 

connectivity measures with the exception of FCfMRI-FCEEG-γ correlation in the 256Ch-3T dataset when 

using orthogonalized amplitude envelope correlations (AEC) (see also section Low SNR of gamma ). 

Additionally, in our previous work we have shown that local (visual) FCEEG-γ as well as distributed FCEEG-δ 

provide additional information (beyond FCEEG-α and FCEEG-β) to explain structural connectivity derived 

from dMRI (Wirsich et al., 2017). Further, we recently demonstrated that FCEEG-γ provides spatially 

independent information to the FCfMRI-FCEEG relationship (Wirsich et al., 2020a). A frequency specific 

crossmodal relationship is further to be expected from the laminar organization of the brain linking EEG-

γ activity to local laminar connectivity while lower frequencies support long range projections 

(Scheeringa et al., 2016; Scheeringa and Fries, 2017). To conclude, FCEEG-γ meaningfully and uniquely 

relates to FCfMRI albeit at a weaker effect size.  
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Spatial contributions and ICN organization across timescales 
We observed that ICNs in general and particularly the connections of the visual and the limbic network 

consistently contributed more than inter-ICN connections to the static crossmodal correlation across all 

frequency bands. Intra-ICN connections do not only have the highest connectivity but were also 

previously found to have the least dynamic connections in the brain (Zalesky et al., 2014). Together with 

our results, this suggests the existence of a crossmodal static core component present in both EEG and 

fMRI (Sadaghiani and Wirsich, 2020), potentially mediated by the structural core of the brain (van den 

Heuvel and Sporns, 2011; Wirsich et al., 2017). This idea of a crossmodal core is further strengthened by 

the observation of a dominance of homotopic connections to the relationship, in line with (Shen et al., 

2015) showing that homotopic regions are among the least dynamic connections of FCfMRI. In the current 

study we extend these results of (Shen et al., 2015; Wirsich et al., 2020a; Zalesky et al., 2014) by 

showing that visual, limbic (temporo-orbitofrontal) and homotopic connections are the largest 

contributors to the static crossmodal FCfMRI-FCEEG relationship. If this property would be only driven by 

SNR of the EEG signal, we would expect that FCEEG-β performs equally well when comparing our results to 

the dynamic crossmodal relationship. As we demonstrated recently (Wirsich et al., 2020b) this is not the 

case: the dynamic crossmodal relationship is dominated by long-range intra-ICN FCEEG-δ, suggesting 

different frequency-specific crossmodal relationships between EEG and fMRI. Taken together, this 

suggests a static FCfMRI core dominated by correlation to FCEEG-β while the results of Wirsich et al. (2020b) 

suggest a tight link of long-range dynamic FCEEG-δ linked to dynamic FCfMRI.  

The relationship between FCfMRI and FCEEG derived by imaginary part of 
coherency and amplitude envelope correlation 
We confirmed that correlation of amplitude envelope correlations (AEC) are related to fMRI (Deligianni 

et al., 2014) and provide consistent estimates of connectivity (Colclough et al., 2016). While AECnon-

orthogonalized correlated the most to FCfMRI, it has been noted that this cross-measure consistency might 

stem from source leakage. It has been proposed that source leakage can be solved by orthogonalization 

of the signal pairs before calculating the AEC (Colclough et al., 2016). Colclough et al. (2016) observed a 

poorer (inter- and intrasubject) topographical similarity of coherence-based measures as compared to 

AEC. Exploring the FCEEG-FCfMRI correlation across datasets, we observed that the imaginary part of the 

coherency (iCoh) had a higher crossmodal correlation than AECorthogonalized but lower crossmodal 

correlation when compared to AECnon-orthogonalized. As we observed higher correlation of AEC-based FCEEG 

with FCfMRI when orthogonalization was not applied, it might be the case that the orthogonalization 

eliminates true FCEEG correlated to FCfMRI. Instead of orthogonalization, Glomb et al. (2020) proposed to 

filter the FCEEG using structural connectivity derived by dMRI. In that sense, it could be argued that 

AECnon-orthogonalized provides the best estimation of neural connectivity as it has been shown to be both the 

most reliable measure of FCEEG (Colclough et al., 2016) and to have a higher crossmodal correlation to 

FCfMRI as compared to iCoh and AECorthognalized (Fig 3). Further work is needed to better understand the 

contribution of veridic neuronal connectivity at zero lag (Engel et al., 1991) that is suppressed by either 

using orthogonalization or iCoh. As the magnitude of the crossmodal correlation of iCoh lies between 

the values for orthogonalized and non-orthognalized AEC, we conclude that our results provide further 

evidence for the overall concordance of amplitude-based and phase-based static connectivity during 

resting-state (Mostame and Sadaghiani, 2020; Sadaghiani and Wirsich, 2020). Beyond the measurement 

of undirected connectivity, EEG has been shown to be able to extract the directional connectivity of ICN 
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organization (Coito et al., 2019). Ultimately a multimodal approach holds the promise to better estimate 

directional connectivity (Wei et al., 2020). 

Crossmodal correlation of high-quality EEG-fMRI connectomes at 7T 
We demonstrated for the first time that simultaneous EEG-fMRI connectivity estimation can be 

undertaken at 7T, providing reproducible monomodal estimates of FCfMRI and FCEEG comparable to data 

at 3T and 1.5T. EEG connectomes remain generally reproducible at 64Ch-7T when compared to the 

other datasets (inter-dataset correlation of FCEEG: r>0.51 vs. r>0.43 for all other datasets, Table 2). This is 

despite the increased interferences between the two modalities at 7T (Debener et al., 2008; Jorge et al., 

2015b; Mullinger et al., 2008b). We controlled for EEG artifacts by using the artifact acquisition 

approach of Jorge et al. (2015a), recording 4 electrodes isolated from the scalp to improve data quality. 

On the other hand, for fMRI, we measured a lower correlation of FCfMRI between the 64Ch-7T dataset 

and the other datasets (r>0.64 vs. r>0.78 for non-7T datasets, Table 1). This is most likely due to artifacts 

induced on the fMRI by strong influence of the EEG leads converging to the superior-parietal regions of 

the cap (Jorge et al., 2015b). This artifact can potentially be avoided by customizing the cabling of the 

EEG cap (Meyer et al., 2019). We note that this interpretation remains speculative as we did not acquire 

a proper control for this analysis (fMRI acquisition in the same subjects without EEG-cap in the scanner). 

Other effects uncontrolled for like TR, scan duration and eyes-closed vs. eyes open might also have a 

significant effect on the differences between datasets. Future studies should investigate the effects of 

such improvement on FCfMRI. 

Crossmodal relationship and the choice of the spatial resolution of the brain atlas 
We observed decreased crossmodal correlation when increasing the number of atlas regions for both 

the 64-channel EEG setup and the 256-channel setup. Nevertheless FCEEG-β remains the strongest 

correlation with FCfMRI. This suggests that, when taking an atlas with more and smaller regions, it might 

be difficult to determine significant differences between frequencies due to lower SNR. Nonetheless, 

overall, this remains speculative as it also seems that those changes might be driven by the datasets 

64Ch1.5T and 256Ch3T, which qualitatively seem to have disproportionally smaller correlations for the 

Destrieux atlas (SI Table 4). For source reconstruction, the optimal number of distinguishable regions (in 

terms of cross talk between source reconstructed M/EEG signals) was found to be around 70 regions 

(Farahibozorg et al., 2018), both for MEG (204 planar gradiometers, 102 magnetometers) and EEG (70 

channels). Previous work confirmed a limited improvement in terms of the source reconstruction’s 

spatial resolution when 256 vs. 64 channels were used (Lantz et al., 2003). Ultimately, our study design 

cannot formally compare a 64- or 256-channel EEG as the 256-channel cap comes with other setup 

differences that might also influence the signal(2m cable from amplifier to cap potentially increasing 

artefacts  (Iannotti et al., 2015)). It has been demonstrated that a longer cable length to the amplifier 

negatively affects the EEG data quality inside the scanner (especially high frequencies such as the 

gamma band (Jorge et al., 2015b)). Additionally, the electrode/sponge/amplifier system used in the 256-

channel setup has generally higher impedances of individual electrodes (e.g. (Foged et al., 2017) used  

impedance limits of <20kΩ for a 64-electrode electrode/gel system and <50kΩ for the 256-channel 

electrode/sponge system). Future work should investigate FCEEG as a function of using 64 or 256 

electrodes outside the MR-scanner room. 
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Low SNR of gamma and the impact of artifacts specific to EEG inside a scanner 
Due to the limitation of recording the electrophysiological signal on the scalp, EEG high-γ frequencies 

(>60Hz) were discarded for analysis. Actually, even the low-γ range from 30-60Hz has been shown to be 

difficult to analyze in a simultaneous EEG-fMRI setup (Uji et al., 2018). Due to its lower signal power, the 

EEG-γ band is most affected by a range of different sources of scanner-related artifacts (Jorge et al., 

2015b; Uji et al., 2018). As EEG artifacts increase as a function of field strength (Debener et al., 2008), 

the 64Ch-1.5T performed by far the best in terms of FCfMRI-FCEEG-γ correlation (this is despite the drop in 

BOLD sensitivity, see Table 1). Additionally, the EEG-γ SNR seems to be particularly decreased by long 

cables (EEG cap to EEG amplifiers) (Jorge et al., 2015b) and vibration artifacts due to the scanner’s 

helium pump (Jorge et al., 2015b; Nierhaus et al., 2013; Rothlübbers et al., 2015). This is highlighted by 

our results combining the 256Ch-3T setup with longer cables and the helium pump turned on, which 

might have caused the additional decrease of FCEEG-γ correlations. An alternative for analyzing the 

gamma signal at higher field was recently proposed with the use of fast multiband sequences with a fast 

TR followed by a ‘silent’ period with no scanning to extract the gamma signal (Uji et al., 2018). As 

another approach to further correct for EEG artifacts in the scanner, the use of electrodes as motion 

artifact sensors (Jorge et al., 2015a; Masterton et al., 2007) has been proposed to monitor all magnetic 

induction effects such as gradient, pulse-related (or cardioballistic), vibration and spontaneous motion. 

Iannotti et al. (2015) proposed a similar approach using cheek electrodes (with less/no neuronal signal) 

to better estimate the pulse artefact. We demonstrate in our 64Ch-7T data that the motion sensor 

approach can help to generate topographically reproducible FCEEG even in an artifact-sensitive ultra-

high-field scanner setting. Our correction technique used in the 64Ch-7T dataset may have greatly 

contributed for FCEEG-γ being most correlated to the less artifactual FCEEG-γ recorded in the 1.5T scanner 

(as compared to the two 3T datasets, Table 2) and FCfMRI -FCEEG-γ correlations being higher than in the 

64Ch-3T and 256Ch-3T datasets (Fig 2).  

Further methodological considerations and future work 
The goal of this study was not to perfectly control for all acquisition and preprocessing steps but to 

assess the generalizability and reproducibility in a heterogeneous setting, representative of the 

variability of center specific protocols (Botvinik-Nezer et al., 2020). The reproducible results of the 

moderate correlation between EEG and fMRI connectivity confirm the feasibility of using this approach 

in multicentric settings. Further, the measured level of reproducibility of monomodal correlation of 

connectomes across recording sites determines the potential upper limit of this measure when trying to 

differentiate (e.g. clinical) outcomes across different datasets (Noble et al., 2019). A measure that does 

not highly correlate across sites would not be suited for this purpose.  

Though brain-wide changes (largest effect size in visual areas) of FCfMRI have been reported between 

eyes-open and eyes-closed conditions (Agcaoglu et al., 2019). In prior fMRI work, from a test-retest 

point of view modest increases of reliability are observed for the eyes-open condition (Noble et al., 

2019). From a crossmodal point of view Tewarie et al. (2016) reproduced for both eyes-open and eyes-

closed condition that MEG and MRI connectomes are correlated (strongest in the beta band consistent 

with our results). In line with this observation, our crossmodal correlation of EEG and fMRI was 

comparable in magnitude between eyes-open and eyes closed conditions (SI results). Eyes-open vs. 

eyes-closed conditions can be interpreted as two separate tasks (Buckner et al., 2013). From this point 

of view a general stability of ICNs across conditions is also supported by the finding that ICNs are not 

only observable during rest but also while performing a task (Cole et al., 2014; Krienen et al., 2014). 
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Future work may study this aspect more specifically by recording both eyes-open and eyes-closed data 

in the same subjects with one specific EEG-fMRI setup. Equally, alertness and wakefulness have been 

shown to further confound FC analysis (Tagliazucchi and Laufs, 2014). The described conservative 

scrubbing of EEG and fMRI and the absence of significant correlation with the crossmodal correlation 

and the framewise displacement (SI Table 8) speak against head motion as primary contributor to the 

cross-modal relationship. Nevertheless, there is a possibility that the 72 subjects in our study did not 

provide sufficient statistical power to measure the potential moderate effect of motion on EEG-fMRI 

association for delta and gamma bands. 

Besides the variability induced by different hardware setups especially for EEG (Pernet et al., 2019), 

source analysis (Mahjoory et al., 2017) and connectivity estimation (Colclough et al., 2016) provide more 

heterogeneous analysis options than the more consolidated field of fMRI processing. Better controlling 

the variable outcome of complex processing pipelines is needed (Botvinik-Nezer et al., 2020; Carp, 

2012). Guidelines might recommend specific steps and strategies of best practice to improve 

neurobiological relevance and reduce erroneous localization/connections (He et al., 2019). Openly 

available toolkits can further help to streamline this process (Meunier et al., 2020; Schirner et al., 2015). 

Conclusion 
In conclusion, we demonstrated the reproducibility of EEG-fMRI connectomes across various acquisition 

setups and established for the first time the feasibility of extracting EEG-fMRI connectomes at 7T. From 

an fMRI perspective, the intrinsic connectivity organization of the brain has been linked both to 

cognitive states and pathology. Reproducible estimation of crossmodal network organization 

demonstrates the existence of a multimodal functional core and adds a new dimension of how we can 

assess the healthy and pathologic brain, by dissociating the neurobiological scenarios that may give rise 

to the observed similarity of FC organization across timescales and modalities. 
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Supplementary Information 
 

 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T 

Subjects     

Number 16 26 21 9 
Mean Age 32.87 24.39 32.13 23.56 

Females 6 8 8 4 
Paradigm     
Eyes-open/closed Open Closed Closed Open 

Duration 10min48s 30 min 4min58.5s 8min 
Hardware stack     
Scanner Siemens Avanto Siemens Tim-Trio Siemens 

Magnetom Trio 
Siemens 
Magnetom 

TR 2160ms 2000ms 1990ms 1000ms 

Helium Pump Off Off On On 
Electrodes 64 (63 active) 64 (62 active) 256 (204 active) 64 (59 active) 

Amplifier Behind the scanner 
(next to the head of 
the participant) 

Behind the 
scanner 

In front of the 
scanner (next to 
the feet of the 
participant) 

Behind the 
scanner 

Impedance <100kΩ <20kΩ <50 kΩ <20kΩ 
Software stack     
Gradient artifact BrainVisionAnalyser 

2 
FMRIB Inhouse (Iannotti 

et al., 2015) 
Inhouse (Jorge et 
al., 2015a) 

Pulse artifact BrainVisionAnalyser 
2 

FMRIB Inhouse (Iannotti 
et al., 2015) 

Inhouse (Jorge et 
al., 2015a) 

ICA cleaning Yes 
(BrainVisionAnalyser 
2) 

No Yes (EEGLab, 
runICA v1.29) 

Yes (inhouse ICA 
ext. Infomax 
algorithm) 

Brainstorm 10th August 2017 10th August 2017 15th January 2019 15th January 2019 
Freesurfer v6.0.0 v6.0.0 v6.0.0 v6.0.0 

SPM SPM12 (revision 
6906) 

SPM12 (revision 
6906) 

SPM12 (revision 
7475) 

SPM12 (revision 
7475) 

FSL v5.0 v5.0 v5.0 V6.0 
ANTs N/A N/A N/A V2.2.0 
SI Table 1: Summary of selected acquisition parameters and data analysis steps 

 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T All datasets 
FCfMRI-FCEEG-δ 11 8 10 8 12 

FCfMRI-FCEEG-θ 11 7 10 8 11 
FCfMRI-FCEEG-α 11 8 9 8 13 
FCfMRI-FCEEG-β 12 8 10 7 11 

FCfMRI-FCEEG-γ 11 9 10 Not stable 15 
SI Table 2: The number of subjects needed to generate a stable crossmodal correlation estimate. The stability is assessed by 

adding a random subject to the average and evaluating the change in crossmodal correlation. The crossmodal correlation is 

considered stable when the change is not more than 1% of the crossmodal correlation of this frequency band derived from all 72 

subjects. Note that for the 64Ch-7T dataset for FCEEG-γ no stability was reached when talking all of the 9 subjects. 
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 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T All datasets 
β>δ 0.0002 0.0102 0.0002 0.0078 <0.0002 

β>θ 0.0014 0.0186 <0.0002 0.1641 <0.0002 

β>α 0.0036 0.0044 0.1918 0.1335 <0.0002 

β>γ 0.1254 <0.0002 <0.0002 0.0215 <0.0002 

      
α>δ 0.2672 0.6978 0.0022 0.1563 0.0172 
α>θ 0.166 0.5862 0.0198 0.6172 0.075 

α>γ 0.8546 0.0002 0.0004 0.6016 0.0084 
      

θ>δ 0.6596 0.6948 0.0044 0.1797 0.0816 
θ>γ 0.9662 0.0094 0.0026 0.3859 0.0752 
      

δ>γ 0.951 0.0012 0.023 0.8926 0.201 
SI Table 3: P-values of permutation tests comparing the dataset averaged crossmodal FCfMRI-FCEEG correlation between different 

EEG frequency bands (5000 iterations/512 iterations for 64Ch-7T dataset, Bonferroni-corrected significance level p<0.05 which 

corresponds to the uncorrected level p<0.05/50 = 0.001, significant cells are marked in bold). Note that the 95% percentile 

binominal proportion confidence interval of the permutation test is given by: p ± 1.96√(p(1-p)/n) with p being the estimated p-

value and n being the number of iterations. For a p-value at Bonferroni-threshold the interval is 0.001 ± 0.00088 (5000 

iterations) and 0.001 ± 0.00274 (512 iterations). 

 64Ch-

1.5T 
64Ch-3T 256Ch-3T 64Ch-7T All datasets 

Desikan>Destrieux      
FCfMRI-FCEEG-δ 0.0068  0.21  0.0036  0.1367 <0.0002 

FCfMRI-FCEEG-θ 0.0052  0.1012  0.0044  0.1191  <0.0002 

FCfMRI-FCEEG-α 0.0098  0.1392  0.0092  0.0781  <0.0002 

FCfMRI-FCEEG-β 0.008  0.0688  0.0074  0.1641  <0.0002 

FCfMRI-FCEEG-γ 0.0068  0.2008  0.0242  0.0840  <0.0002 

SI Table 4:P-values of permutation tests comparing the dataset averaged crossmodal FCfMRI-FCEEG correlation between different 

atlases (5000 iterations/512 iterations for 64Ch-7T dataset, Bonferroni-corrected significance level p<0.05 which corresponds to 

the uncorrected level p<0.05/25 = 0.002, significant cells are marked in bold). Note that the 95% percentile binominal proportion 

confidence interval of the permutation test is given by: p ± 1.96√(p(1-p)/n), with p being the estimated p-value and n being the 

number of iterations. For a p-value at Bonferroni-threshold the interval is 0.002 ± 0.00124 (5000 iterations) and 0.002 ± 0.00387 

(512 iterations). 

 
 

64Ch-

1.5T 
64Ch-3T 256Ch-3T 64Ch-7T All datasets 

AECnon-

ortho > iCoh 
     

FCfMRI-FCEEG-δ 0.291  0.0166  0.0002  0.1445 0.0016  

FCfMRI-FCEEG-θ 0.456  0.283  0.0028  0.5840  0.147  
FCfMRI-FCEEG-α 0.2088  0.073  0.1134  0.3750 0.0396  
FCfMRI-FCEEG-β 0.2258  0.3366  0.302  0.2969 0.1234  

FCfMRI-FCEEG-γ 0.2698  <0.0002 <0.0002 0.1211 <0.0002 

iCoh > AECortho      

FCfMRI-FCEEG-δ 0.0026  <0.0002 0.0004  <0.0020 <0.0002 

FCfMRI-FCEEG-θ 0.069  <0.0002 <0.0002 0.0059 <0.0002 

FCfMRI-FCEEG-α 0.0012  0.0004  <0.0002 0.0020  <0.0002 
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FCfMRI-FCEEG-β 0.907  <0.0002 <0.0002 0.0059 <0.0002 

FCfMRI-FCEEG-γ 0.0146  0.619  <0.0002 0.0098  <0.0002 

SI Table 5: P-values of permutation tests comparing the dataset averaged crossmodal FCfMRI-FCEEG correlation between different 

EEG connectivity measures (5000 iterations/512 iterations for 64Ch-7T dataset, Bonferroni-corrected significance level p<0.05 

which corresponds to the uncorrected level p<0.05/50 = 0.001, significant cells are marked in bold). Note that the 95% percentile 

binominal proportion confidence interval of the permutation test is given by: p ± 1.96√(p(1-p)/n), with p being the estimated p-

value and n being the number of iterations. For a p-value at Bonferroni-threshold the interval is 0.001 ± 0.00088 (5000 

iterations) and 0.001 ± 0.00274 (512 iterations). 

 64Ch-

1.5T 
64Ch-

3T 
256Ch-3T 64Ch-7T All datasets 

All session > truncated 
to 4min58.5 

     

FCfMRI-FCEEG-δ 0.0472 0.1398   0.7715 0.1418  
FCfMRI-FCEEG-θ 0.041  0.2178   0.6621 0.132  

FCfMRI-FCEEG-α 0.1594  0.2748   0.4570  0.2088 
FCfMRI-FCEEG-β 0.0758 0.1558   0.8906  0.2146  

FCfMRI-FCEEG-γ 0.0312  0.0794   0.8555  0.0724  
All subjects > 9 subjects      
FCfMRI-FCEEG-δ 0.0682 0.192 0.0678   0.0116 

FCfMRI-FCEEG-θ 0.015  0.2226  0.0814   0.0076 
FCfMRI-FCEEG-α 0.0388  0.254  0.0292   0.0056  
FCfMRI-FCEEG-β 0.0064  0.2548  0.0682   0.0098  

FCfMRI-FCEEG-γ <0.0002 0.0938  0.0212   0.0006  

SI Table 6:P-values of permutation tests comparing the dataset averaged crossmodal FCfMRI-FCEEG correlation using the complete 

subject session vs. the first 4min58.5s and using the average connectivity over all subjects vs. the first 9 subjects (5000 

iterations/512 iterations for 64Ch-7T dataset, Bonferroni-corrected significance level p<0.05 which corresponds to the 

uncorrected level p<0.05/20 = 0.0025, significant cells are marked in bold). Note that the 95% percentile binominal proportion 

confidence interval of the permutation test is given by: p ± 1.96√(p(1-p)/n), with p being the estimated p-value and n being the 

number of iterations. For a p-value at Bonferroni-threshold the interval is 0.0025 ± 0.00138 (5000 iterations) and 0.0025 ± 

0.00433 (512 iterations). 

 64Ch-

1.5T 
64Ch-3T 64Ch-7T 

All session > truncated 
to 4min58.5 

   

FCfMRI-FCEEG-δ 0.1196 6.4*10
-06

 0.5291 
FCfMRI-FCEEG-θ 0.1597 0.0003 0.6987 
FCfMRI-FCEEG-α 0.3196 0.0199 0.7764 

FCfMRI-FCEEG-β 0.0592 0.0002 0.9533 
FCfMRI-FCEEG-γ 0.1023 0.0352 0.9631 
SI Table 7: P-values of t-test comparing the crossmodal correlation of each subjects between derived from the entire session and 

from the first 4min58.5 (one-sided ttest, Bonferroni-corrected significance level p<0.05 which corresponds to the uncorrected 

level p<0.05/15 = 0.0033, significant cells are marked in bold). Note that the 95% percentile binominal proportion confidence 

interval of the permutation test is given by: p ± 1.96√(p(1-p)/n), with p being the estimated p-value and n being the number of 

iterations. For a p-value at Bonferroni-threshold the interval is 0.0033 ± 0.00159 (5000 iterations) and 0.0033 ± 0.00497 (512 

iterations). 

Impact of movement 
 r p 
FCfMRI-FCEEG-δ vs. FD -0.2440 0.0389  
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FCfMRI-FCEEG-θ vs. FD -0.1674 0.1599  
FCfMRI-FCEEG-α vs. FD -0.0492 0.6812  

FCfMRI-FCEEG-β vs. FD -0.1607 0.1774  
FCfMRI-FCEEG-γ vs. FD -0.2944 0.0121  
SI Table 8: To assess the impact of movement on the individual connectome, we correlated the individual crossmodal correlation 

with the mean framewise displacement derived from fMRI. We did not find any significant correlations between the two 

measures, although qualitatively moderate-sized associations were observed between FD and the EEG-fMRI crossmodal 

correlation for delta and gamma bands (Bonferroni-corrected for 5 frequencies, significance level p<0.05 corresponds to 

p<0.05/5=0.01). 

Impact of eyes-open vs. eyes-resting state 
It has been shown by Mo et al. (2013) that EEG alpha power is coupled to DMN activity when alternating 

between an eyes-open and an eyes-closed paradigm. We tested if we could observe any systematic 

changes of the crossmodal correlation between eyes-open and eyes-closed condition by permuting the 

labels of the different datasets (5000 permutations). As we did not measure eyes-open condition in the 

same subjects and setup these results should not be overinterpreted. We did not observe any significant 

changes of crossmodal correlation between both conditions in any frequency band (p>0.05) except for 

the FCfMRI-FCEEG-γ correlation (p<0.0002). Those changes in FCfMRI-FCEEG-γ most likely stem from the 

general higher crossmodal correlation of FCfMRI-FCEEG-γ for the datasets of the eyes-open condition (64Ch-

1.5T and 64Ch-7T, see Fig 2). In order to exclude that the spatial contributions to the crossmodal 

correlation in the visual network were only driven by eyes-open ore eyes closed effects we recalculated 

the spatial contribution for each dataset. We observe that the significant spatial contribution in the 

visual network is present in all frequencies and in all datasets but the FCfMRI-FCEEG-α of the 64Ch-3T 

dataset (SI Table 9). As such we did not observe any systematic connectivity differences between eyes-

open datasets (64Ch-1.5T and 64Ch-7T) and eyes closed datasets (64Ch-3T and 256Ch-3T), especially for 

FCfMRI-FCEEG-α. This is in line with our previous results when analyzing FC dynamics (Wirsich et al., 2020b). 

We conclude that the FCfMRI-FCEEG crossmodal correlation might be primarily capturing the intrinsic 

coupling networks (ICN) linked to canonical ICNs (Yeo et al., 2011), which are preserved across eyes-

open vs. eyes closed resting state.  

VIS>interICN 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T 

FCfMRI-FCEEG-δ 1.5*10-23 1.1*10-11 2.1*10-83 2.4*10-37 

FCfMRI-FCEEG-θ 1.6*10-21 1.4*10-6 4.5*10-62 2.6*10-50 
FCfMRI-FCEEG-α 1.2*10-120 0.0376 4.2*10-89 5.1*10-85 
FCfMRI-FCEEG-β 3.9*10-63 3.2*10-21 2.3*10-54 4.5*10-62 

FCfMRI-FCEEG-γ 2.6*10-69 7.6*10-87 1.7*10-58 1.2*10-26 
SI Table 9: P-values when comparing the spatial contribution of the visual network connections to the crossmodal FCfMRI-FCEEG 

correlation as compared to inter-ICN connections for each frequency band and dataset (one-sided t-test spatial contribution 

Visual>interICN: Bonferroni correction threshold for 5 frequencies and 4 datasets is defined at p=0.05/20=0.0025). 
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