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High-speed large-scale 4D activities mapping of moving C. elegans
by deep-learning-enabled light-field microscopy on a chip

Tingting Zhu,?* Lanxin Zhu,?* Yi Li,® Xiaopeng Chen,? Mingyang He,? Guo Li, Hao Zhang,® Shangbang

Gao® and Peng Fei™

We report a novel fusion of microfluidics and light-field
microscopy, to achieve high-speed 4D (space + time) imaging
of moving C. elegans on a chip. Our approach combines
automatic chip-based worm loading / compartmentalization
/ flushing / reloading with instantaneous deep-learning light-
field imaging of moving worm. Taken together, we realized
intoto image-based screening of wild-type and
uncoordinated-type worms at a volume rate of 33 Hz, with
sustained observation of 1 minute per worm, and overall
throughput of 42 worms per hour. With quickly yielding over
80000 image volumes that four-dimensionally visualize the
dynamics of all the worms, we can quantitatively analyse
their behaviours as well as the neural activities, and correlate
the phenotypes with the neuron functions. The different
types of worms can be readily identified as a result of the
high-throughput activity mapping. Our approach shows great
potential for various lab-on-a-chip biological studies, such as
embryo sorting and cell growth assays.

Introduction

Microfluidics technology developed over the past few decades
has greatly impacted biomedical research, therapeutics, and
diagnostics. Various applications, such as small compound
screening and gene expression studies, greatly benefit from
increased throughput and sensitivity provided by microfluidics®-
6. Generally, a large-scale microfluidic assay also requires
massive measurement of samples, for example, fluorescence-
activated cell sorting (FACS), through which followed-up
analyses, such as counting and phenotyping, are further
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enabled’!1. Light microscopy techniques, especially well-
established epifluorescence have been
nowadays widely used for various on-chip assays containing
biological specimens from single cell to multi-cellular
organisms. However, as many millisecond transient cellular
processes occur in three-dimensional (3D) tissues and across
long time scales, a recurring challenge for on-chip
measurement is the quest to extract more
spatiotemporal information from targets at sufficiently high
throughput. While the classic microscopy techniques,
including epifluorescence and plane illumination methods, can
image live samples in three dimensions at high spatial
resolution'?'®, they require recording a number of two-
dimensional (2D) images to create a 3D volume, and the
temporal resolution is compromised by the extended
acquisition time of camera. Recently, light-field microscopy
(LFM) has become the technique of choice for instantaneous
volumetric imaging'’-?4. It permits the acquisition of transient
3D signals via post-processing of the light-field information
recorded by a single 2D camera snapshot. Because LFM
provides high-speed volumetric imaging limited only by the
camera frame rate, it has delivered promising results for
various applications, such as the recording of neuronal
activities'®?! and visualization of cardiac dynamics in model
organisms?2. While LFM is suited for the volumetric imaging of
dynamic processes, its previous applications are restricted to
the recording of single live sample, which is still insufficient for
conducting large-scale biological assays that
measuring a number of samples in a short time.
Here we present a hybrid approach that integrates light-
field microscopy with microfluidic chip to achieve high-speed,
high-throughput activity mapping of live C. elegans at large
scale. A multi-layer microfluidic chip with control valves is
designed to rapidly load worm samples, sequentially
compartmentalize them one by one into a chamber for
sustained light-field recording, and flush them one by one to the
outlet for collection?>?7. A customized light-field microscope
combined with a deep-learning-based reconstruction algorithm

microscopes,

ever
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Fig. 1 On-chip light-field microscopy platform for high-throughput C. elegans trapping, 3D imaging and quantitative analysis. (a)
Schematic of the worm manipulation and imaging. The two-layer microfluidic chip is operated with electromagnetic valves to
sequentially transport the C. elegans larva from a reservoir to an imaging chamber (600 x 600 x 50 um), the size of which is
matched with objective’s field of view (Olympus 20x/0.5 water dipping objective). During the 1-minute stay in the chamber, each
mocving C. elegans is imaged by a self-built light-field microscopy system, and then flushed away when the observation finishes.
A new worm will be loaded inside the chamber to repeat this process. The valves and the camera are synchronized by a LabVIEW
program to allow the implementation of whole process in good order. (b) Schematic of light-field reconstruction and image-based
quantitative analysis. Sequential light-field (LF) images are processed by a view-channel-depth (VCD) network, which has been
trained by confocal 3D images paired with 2D light-field projection (LFP) simulation. Reconstructed 3D sequences are subsequently

used for further analysis.

further enables the real-time capture and 3D restoration of the
behaviours and neural activities of each compartmentalized
moving worm. We demonstrated that an assay mixed with wild-
type (WT) and uncoordinated-type (Unc) C. elegans are intoto
imaged and quantitatively analysed using this approach at a
throughput of 42 samples per hour.

Results and discussion

Experimental Setup

We built a platform for high-throughput automatic C. elegans
trapping, imaging and analysis (Fig. 1). A valve-based
microfluidic chip was designed to manipulate the C. elegans via
adapting its channel geometries to the size and shape of the
worms. A LFM system was specifically designed to record the
activities of moving C. elegans inside the chip at high speed. In
the LFM setup, a microlens array (MLA) was placed on the plane
conjugating to microscope’s native image plane to allow the
light-field recording (Fig. S1), by which a 3D volume could be
reconstructed through a single 2D capture. During experiment,
a number of live C. elegans larva (L4 stage) were loaded into the
chip from the reservoir, and sequentially trapped into the chip’s
imaging chamber (~600 x 600 x 50 um) for 1 minute (Fig. S2),
during which each worm was crawling inside the chamber while
simultaneously imaged by the LFM system at a high acquisition
rate of 33 frames per second (fps, up to 100 fps). The

fluorescencely-labelled neural activities (GCaMP Ca?* indicator)
of the behaving worm were thus recorded instantaneously.
After the on-chip tasks, the acquired raw light-field videos of all
the worms were computationally reconstructed by a light-field
recovery program to yield the 4D visualizations (in 3D space +
1D time) of the worm activities. Given the fact that classic light-
field deconvolution (LFD) algorithms suffered from limited
reconstruction quality and low computation speed?é, here we
used a deep neural network (DNN, U-Net?8) to quickly transform
the raw 2D light-field images into a sequence of 3D volumes
with quality notably better than light-field deconvolution
method??. Such a DNN model was iteratively trained on the
high-resolution 3D reference images of the static worms and
their corresponding light-field projections (LFP) which were
projected from the 3D reference images based on wave optics
model?* (Fig. 1b), learning how to transform the views of input
light-field measurements into depth images of a 3D output
through correlating them with the channels of the DNN. Finally,
Such a well-trained view-channel-depth (VCD) transformation
model can directly infer a sequence of high-resolution 3D
images from the raw light-field measurements at a high rate of
~13 volumes per second.

Microfluidic chip design

The microfluidic chip worked on three modes as: worm loading,
trapping and flushing, which could be switched automatically by
LabVIEW program. The flow layer of the chip contained an
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Fig. 2 Microfluidic chip design and valves control process. (a)
Design for sequentially loading the worms inside the micro
chamber for live light-field imaging. The chamber is connected
with four ports P.1-P.4 (magnified view), which can be opened
or closed by four micro valves V.1-V.4, respectively. (b)
Photograph of a fabricated chip. Scale bar 10 mm. (c) Operating
procedure for loading, imaging and flushing the C. elegans larva.
At loading status, P.1 and P.3 are closed and C. elegans are
loaded from P.4. P.2 is also opened as buffer output. At imaging
status: Once a worm is loaded into the chamber, all the four
ports are closed to trap the worm for one minute. Meanwhile,
the camera starts to record the light-field images at video frame
rate. The chip is switched into flushing status after imaging. P.1
and P.3 are opened and the current worm is flushed outside the
chamber by buffer from P.3 to P.1. P.1, P.3 are then closed, and
P.2, P.4 are opened again for another cycle of loading a new
worm.

imaging chamber with 4 fluid channels, C. elegans loading inlet,
flushing inlet, flushing outlet, and water outlet, connected from
four directions (Fig. 2a, b). Under the control of micro valves at
control layer, the worms were sequentially loaded into the
chamber and trapped inside chip’s imaging chamber for light-
field imaging of their neural activities in an automatic way (Fig.
2c¢, Supplementary Video 1,2). A fence-like structure was
designed in port 2 (Fig. 2a) to prevent the worms from escaping.
To allow the loading/washout of worms in good sequential
order, we narrowed down the width of fluid channel from ~600
um at the main part into ~50 um at connecting part, a size
approximately the width of the worm body, thus allowing only
single worm to be pushed into the chamber at a time. The 600
x 600 um sample chamber with size matching the field-of-view
(FOV) of our LFM (20x/0.5w objective and Hamamatsu Flash 4.0
v2 camera) was closed by valves to trap the C. elegans inside
when imaging continued, and opened by valves to wash out the
worm after imaging finished. A LabVIEW program automatically
switched the chip among these three modes through judging
whether there was a worm in the chamber and how long it had

n64f3s2
n64f3s2
n31f3s2

Concatenation
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convolutional \ayerconvomtional la er

Fig. 3 Network architecture of the VCD
reconstruction model. The model contains 4 subpixel
convolutional layers, 5 convolutional layers and 5
deconvolution layers. The hyper-parameters of each
convolutional layer and deconvolution layer were indicated by
n, f, and s, which represented the number of output feature
maps, the convolutional kernel size and the strides,
respectively.

light-field

stayed there. The workflow of LabVIEW program was also
shown in Fig. S3. In our demonstration, totally 42 moving worms
mixed with WT worms and Unc mutants containing motion
deficiency were volumetrically imaged (2000 image volumes for
each worm) and analysed using our microfluidics-based LFM
platform in less than 1 hour.

Light-field measurement and deep-learning reconstruction

We used a 20x/0.5w objective to image the motor neuron
activities of L4-stage C. elegans larva (strain ZM9128
hpls595[Pacr-2(s)::GCaMP6(f)::wCherry] and SGA197 unc-13(s69);
hpls595[Pacr-2(s)::GCaMP6(f)::wCherry]) with 5-ms exposure time
and 33-Hz acquisition rate, yielding 2000 light-fields in a 1-
minute observation for each worm. The deep-learning-enabled
light-field then provided high-quality and
quantitatively-accurate 3D reconstructions to intoto visualize

recovery

the neuron calcium signalling of whole C. elegans at single-cell
resolution during fast body movement (Fig. S4, Supplementary
Video 3). The VCD network model developed for high-
performance light-field recovery is based on well-established U-
(Fig. 3), which contains subpixel convolutional layers, different
convolutional layers, and deconvolution layers. To pair the net?®
views of the light-field projections with the depths of the high-
resolution 3D target, we designed subpixel
convolutional layers to interpolate the extracted views into the

several

size of 3D target images before the U-Net training. There are
four subpixel convolutional layers with each up-scaling the
image by a factor 2. We adopted 5 convolutional layers for
feature extraction and 5 deconvolution layers for image
reconstruction. Compared to either wide-field microscopy
which can only record neuron signals on a single focal plane, or
confocal microscopy which can perform 3D scanning but at low
speed insufficient for instantaneous imaging, our method
volumetrically records all the neurons of moving C. elegans
while noted that conventional confocal microscope typically
works at mega voxels per second throughput, our method can

yield ~1 Giga voxels per second, over two-order-of-magnitude
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Fig. 4 3D traces of the motor neruons in moving WT (strain ZM9128 hpls595[Pacr-2(s)::GCaMP6(f)::wCherry]) and Unc mutant (strain
SGA197 unc-13(s69); hpls595[Pacr-2(s)::GCaMP6(f)::wCherry]) C. elegans larva (L4 stage). The tracing was performed based on the
4D imaging of the worm cocktail (mixed with 33 WT worms and 9 Unc worms) using our microfluidics-based LFM platform. Six
worms were selected from each type to visualize their 3D trajectory and velocity in 150 ms. It’s obvious that WT C. elegans are

much more active than Unc C. elegans. The colormap indicates the time-varying positions of the neurons. Scale bars, 30 um.

faster than commonly-used 3D imaging method.

Locomotion patterns and neural activities of moving WT and
Unc mutant worms

The deep-learning-enabled LFM in conjunction with chip-based
sample manipulation enables sustained recording of C. elegans’
instantaneous positions in three dimensions (Supplementary
Video 4), as well as high-throughput on-chip screening of a large
number of worms. As shown in Fig. 4, the visualized trajectories
of 6 Unc mutant worms (7-12) are significantly different from

those of 6 WT worms (1-6), in term of their larger body
curvatures, lower velocities, and shorter locomotion distance.

Besides the spatial distribution, to further investigate the neural
activities reflected by the fluctuation of Ca?* signals, the
intensity of light-field reconstruction needs to be quantitatively

accurate as well. We validated this through tracing the intensity
fluctuations of reconstructed signals and compared them with
the ground truths. The high similarity shown between the signal
intensity accuracy of
reconstructed signals and their ability to indicate the neural
activities correctly (Fig. S5). Then, for both WT and Unc mutant
worms, we specifically identified their A- and B- motor neurons

fluctuation curves has verified the

been associated with motor-program selection (Fig. 5a, Fig. S6),
and mapped their calcium activities over time (Fig. 5b).
Furthermore, through applying an automatic segmentation of

the worm body contours based on the location and that have
quantitatively analysed the changes of curvature and velocity
related to worm locomotion and behaviour (Fig. 5¢, d). It is quite
easy to tell the significant differences between WT and mutant
worms in term of both their locomotion and neural activities,
from which we can readily sort the WT worms with normal
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Fig. 5 Quantitative analysis of the motor neuron activities and corresponding locomotion behavior of the WT and Unc mutant C.
elegans. (a) Soma position of the motor neurons in WT (left) and Unc (right) C.elegans larva, respectively. (b) Activity of the 16
motor neurons identified in (a). Each row shows a time-series heat map indicating the percent fluorescent fluorescence changes
(AF / Fo) of an individual neuron. (c) Representative kymographs of bending curvature along the body of the moving worms. (d)
Velocity plot of the moving WT and Unc worms during 1 minute.

motion ability and Unc worms with motion deficiency. Finally,
we identified 33 WT worms and 9 Unc worms from totally 42
inputs, and intoto mapped out their behaviours and neural

activities.

Conclusions

Our microfluidics-based LFM approach is the first proof-of-
concept that shows the high-throughput Ilive sample
manipulation in conjunction with instantaneous 4-D imaging of
dynamic processes, both of which could be beneficial to large-
scale assay applications. From the perspective of imaging, the
chip-based automatic sample loading and manipulation greatly
facilitate the implementation of LFM and improves its
throughput. On the other hand, the introduction of LFM also
empowers the lab-on-a-chip system with advanced imaging
capability, for volumetric imaging-based intoto screening and
analysis. Thus, the synergistic combination of LFM
measurement and microfluidics could maximize the efficiency
of various live imaging assays. Using this approach, we
successfully demonstrated high-speed 4D screening on C.
elegans managed with different genotypes and phenotypes.
The dynamic worms’ locomotion, neural activities are

volumetrically recorded and quantitatively correlated to sort
the worms according to the assessment on their personalized
behaviours. Our approach thus provides a paradigm shift which
enables intoto activity mapping of dynamic specimens, a
challenge unmet by other alternative approaches. Considering
the highly flexible design of microfluidic chip for various
purposes, this approach shows good potentials for benefiting a
variety of large-scale, lab-on-chip assays.
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