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 Hundreds of the proteins encoded in human genomes contain domains that vary 

in size or copy number due to variable numbers of tandem repeats (VNTRs) in protein-

coding exons.  VNTRs have eluded analysis by the molecular methods—SNP arrays and 

high-throughput sequencing—used in large-scale human genetic studies to date; thus, 

the relationships of VNTRs to most human phenotypes are unknown. We developed 

ways to estimate VNTR lengths from whole-exome sequencing data, identify the SNP 

haplotypes on which VNTR alleles reside, and use imputation to project these haplotypes 

into abundant SNP data.  We analyzed 118 protein-altering VNTRs in 415,280 UK Biobank 

participants for association with 791 phenotypes. Analysis revealed some of the 

strongest associations of common variants with human phenotypes including height, 

hair morphology, and biomarkers of human health; for example, a VNTR encoding 13-44 

copies of a 19-amino-acid repeat in the chondroitin sulfate domain of aggrecan (ACAN) 

associated with height variation of 3.4 centimeters (s.e. 0.3 cm).  Incorporating large-

effect VNTRs into analysis also made it possible to map many additional effects at the 

same loci: for the blood biomarker lipoprotein(a), for example, analysis of the kringle IV-2 

VNTR within the LPA gene revealed that 18 coding SNPs and the VNTR in LPA explained 

90% of lipoprotein(a) heritability in Europeans, enabling insights about population 

differences and epidemiological significance of this clinical biomarker. These results 

point to strong, cryptic effects of highly polymorphic common structural variants that 

have largely eluded molecular analyses to date.  
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The human genome contains thousands of variable-number-of-tandem-repeat (VNTR) 

polymorphisms1,2, but the effects of these polymorphisms on human phenotypes are largely 

unknown. VNTRs are multi-allelic variants at which a nucleotide sequence (from seven to 

thousands of bp long) is repeated several to hundreds of times, with lengths varying among 

individuals.  Extreme alleles of VNTRs have been implicated in diseases including progressive 

myoclonus epilepsy3 and facioscapulohumeral muscular dystrophy4; long alleles of shorter 

tandem repeats (STRs) are implicated in Huntington’s Disease5 and amyotrophic lateral 

sclerosis6,7.  VNTRs received early attention in human genetics because the length variation 

they introduce is often ascertained on DNA and protein gels.  However, because most VNTRs 

are invisible to SNP arrays and difficult to recognize or measure using short-read sequencing, 

VNTRs have not been considered in the large genotype-phenotype association studies that 

have been central to human genetics for the past 15 years.  Their relationship to human trait 

variation is thus largely unknown, though recent work has begun to explore their relationship to 

gene expression8–10.   

We hypothesized that abundant exome-sequence data might contain heretofore 

unappreciated information about VNTR lengths, and that VNTR alleles might also segregate on 

specific SNP haplotypes in ways that would make them amenable to analysis by statistical 

imputation11 in SNP-phenotype data sets from hundreds of thousands of people, such as UK 

Biobank (UKB)12.  

 

Exploring the phenotypic effects of coding VNTRs 

 

We first identified candidate VNTRs by scanning the human reference genome for 

tandem repeat sequences13.  We then estimated the lengths of these VNTRs in thousands of 

individuals’ genomes using available whole exome sequence data.  Since most VNTRs are far 

longer than individual sequence reads, we first estimated VNTR length by measuring the 

numbers of sequencing reads that aligned to the tandemly repeated sequences.  (We reduced 

technical effects on coverage estimates by normalizing each VNTR measurement to 

measurements from other genomes with similar exome-wide coverage profiles.)  We thereby 

estimated “diploid VNTR content”—the sum of maternally- and paternally-derived allele lengths.  

In downstream analyses, we focused on 118 exon-overlapping repeats (in 118 unique genes) 

for which these measurements exhibited high estimates of cis-heritability, which we estimated 

from sibling pairs by utilizing SNP-based estimates of identity by descent (IBD) at each VNTR 

locus (Supplementary Table 1). 
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We then used these data—together with genotypes for surrounding SNPs—to infer the 

contribution of each haplotype to the diploid “VNTR content” measurement from each individual.  

Intuitively, extended SNP haplotypes provide information about which individuals in a cohort are 

likely to have inherited the same genomic segment from a recent common ancestor, thereby 

enabling resolution of diploid measurements across a cohort into allele-specific contributions; 

given the large SNP+exome sequence data set available from UK Biobank (N=488,377 SNP, 

N=49,959 exome), the accuracy of such inference is limited only by the VNTR mutation rate 

(mutations since recent shared ancestors) and VNTR measurement error.  We developed a 

statistical algorithm to efficiently and accurately perform such analysis on tens of thousands of 

diploid VNTR measurements, using sibling IBD information to benchmark accuracy and 

optimize analysis parameters (Methods).  Using allele-specific VNTR lengths estimated in this 

way for 49,959 UKB participants for whom whole exome sequence data were available14, we 

created reference haplotypes of SNP and VNTR alleles, to use as a reference panel for 

imputing VNTR lengths into SNP-array genotypes available for larger cohorts, including (for the 

current work) the remainder of the UKB cohort (N=437,612). The SNP+VNTR reference panel 

we created will be broadly available via UKB with publication of the current work (see Data 

availability). 

We applied this approach to measure the relationship of coding VNTR alleles to 791 

phenotypes in up to 415,280 unrelated UKB participants (depending on phenotype) of European 

ancestry.  This analysis found 180 statistically significant associations (Supplementary Table 2).  

To determine whether such associations were driven by VNTR length variation, or by other, 

nearby genetic variation with which VNTR alleles are in linkage disequilibrium (LD), we 

performed fine-mapping analyses15 considering nearby genotyped and imputed variants12,16 as 

well as the VNTR.  Because variation at most VNTRs arises from three or more alleles, VNTR 

variation was only partially correlated with individual SNPs, enabling analysis to distinguish 

VNTR from SNP effects in a way that has been challenging for di-allelic variants but recently 

possible for multi-allelic structural variants such as those at the complement component 4 

(C4A/C4B) and haptoglobin (HP) loci17–19. 

Nineteen phenotype associations, involving five distinct VNTRs (Fig. 1), exhibited strong 

evidence (posterior probability >0.95; Methods) that VNTR variation (rather than nearby SNPs) 

drove genotype-phenotype associations. These associations appeared to explain some of the 

largest known GWAS signals for diverse human phenotypes, including height, serum urea, and 

hair phenotypes (Table 1), with multiple associations exhibiting strength comparable to or 
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exceeding that of any SNP in the genome.  Four VNTRs—within exons of ACAN, TENT5A, 

MUC1, and TCHH—had not previously been implicated at these loci.  Analysis also replicated a 

known association between the length of the KIV-2 repeat in LPA and lipoprotein(a) 

concentration20 (P = 4.4 x 10-(25,121)).  All five VNTRs were genotyped and imputed accurately 

according to cross-validation benchmarks (Extended Data Fig. 1a and Supplementary Table 1), 

a conclusion that was further supported by analysis of whole-genome sequencing data 

(Extended Data Fig. 1b) and previous gel electrophoresis studies that reported allele-length 

distributions21–23 similar to those we inferred.   

  

Deep fine-mapping of LPA variants influencing lipoprotein(a) concentration 

 

In addition to identifying the strongest common-variant associations for several 

phenotypes, analysis of VNTRs made it possible to appreciate a complex interplay between 

VNTR length variation and other strong-effect coding variants within these genes—often 

(though not always) within the VNTR itself—in shaping human phenotypes.   

Complex genetics involving VNTRs and SNPs at the same locus was clearly revealed in 

analysis of lipoprotein(a) concentration (Lp(a)), for which elevated levels are a major risk factor 

for coronary artery disease24,25. Lp(a) is almost completely heritable, with roughly half of its 

population variance explained by a VNTR-generated size polymorphism in the kringle-IV 

domain of apo(a)20.  Each KIV-2 repeat unit (~5.6 kb) spans two exons of LPA, which together 

encode a 114-amino-acid copy of this domain. The large size of the VNTR, together with the 

presence of common DNA-sequence variation within the repeat units (which traced multiple 

distinct repeat expansions; Extended Data Fig. 2), enabled us to accurately estimate allele 

lengths from exome sequencing depth-of-coverage (RMSE=0.9 repeat units in cross-validation 

benchmarks; Extended Data Fig. 1 and Supplementary Note), recovering a multimodal 

distribution of KIV-2 VNTR alleles21 (Fig. 2).  Longer alleles—with more copies of the encoded 

kringle repeat—are known to associate with lower Lp(a) levels20,26, reflecting retention of longer 

apo(a) isoforms in the endoplasmic reticulum27.  As expected based on earlier work28, we found 

by sib-pair analysis that inheritance at the LPA locus explained most of the variance in Lp(a) 

measurements (R=0.93 in sib-pairs sharing both LPA alleles), with KIV-2 length explaining 

~61% of this variance in a nonparametric model.   

To identify additional LPA variants that might more completely explain Lp(a), and to 

explore their interactions with KIV-2 length, we utilized individuals heterozygous for either of two 

coding variants (combined MAF=0.05) known to create null alleles that produce undetectable 
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serum Lp(a).  This approach created an effective haploid model for Lp(a), in which genetic 

variation on the haplotype not impaired by the common Lp(a)-null variant could be associated to 

Lp(a) measurements.  This strategy made it possible to identify (and measure the effects of) 

alleles that produce unexpectedly low Lp(a), whose effects are usually made hard to measure 

by the much-larger contribution to Lp(a) from the allele on the homologous chromosome 

(Extended Data Fig. 3).  We performed stepwise conditional analysis to identify LPA sequence 

variants that associated with low Lp(a) despite occurring on short or medium-length KIV-2 

alleles that typically associate with higher Lp(a) levels (Methods).   

 These analyses identified 17 protein-altering variants which appeared to greatly reduce 

Lp(a) (P<1 x 10-17 for each variant); 43% of European haplotypes were affected by at least one 

of these variants.  These variants included six variants predicted to partially or fully abolish 

constitutive splice sites and six missense variants that achieved the strongest associations in 12 

consecutive stages of stepwise analysis; five additional rare (MAF<1%) coding variants 

exhibited top or near-top associations in further conditional analyses (Fig. 2a, Extended Data 

Fig. 4, and Supplementary Table 3).  The two variants with the largest impacts on Lp(a) 

variation in the European population (owing to their high allele frequencies; MAF=13% and 

21%) were variants within the KIV-2 region (i.e., within the VNTR) that were computationally 

predicted to impair splicing29 of KIV-2 exon 2; one of these splice variants had previously been 

experimentally validated30 (Fig. 2a and Extended Data Fig. 4).  These variants appeared to 

reduce Lp(a) by 85% and 89%, respectively, when present within a single KIV-2 repeat unit; 

alleles carrying either variant on multiple repeat units within the VNTR produced nearly 

undetectable Lp(a) (Extended Data Fig. 5).  Further fine-mapping analyses identified three other 

common variants (MAF=14-28%) – two in the 5’ untranslated region of LPA (previously 

observed to regulate translational activity31,32) and one missense variant—that associated with 

more modest effects on Lp(a) levels across a broad range of KIV-2 alleles (Fig. 2a and 

Supplementary Table 3). 

 The strong effects of the VNTR and SNPs at LPA, the large sample size of UK Biobank, 

and the ability to chromosomally phase all these variants accurately, made it possible to identify 

nonlinear and cis-epistatic effects at LPA—something that is often challenging to do in human 

genetics (because large-effect variants are often too rare to meaningfully analyze variant 

combinations with high statistical power and with knowledge about their chromosomal phase). 

For example, accounting for the effects of the 17 implicated coding variants at LPA showed that 

the well-documented inverse relationship between KIV-2 length and Lp(a)20,27 breaks down for 

very short (high-protein-level) alleles (Fig. 2a).  Throughout most of the KIV-2 length range (12-
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24 repeats), each one-repeat-unit decrease in KIV-2 length resulted in a 37% increase in Lp(a) 

(Fig. 2a).  However, this effect was attenuated for alleles with fewer than 12 repeats and 

appeared to invert around 8 repeats, with three extremely short, very rare alleles (4 or fewer 

repeats) exhibiting markedly lower Lp(a) levels (P=5.1 x 10-19) that were not explained by any 

sequence variants we identified (Fig. 2a). 

 Accounting for LPA sequence variants and the apparently nonlinear effect of KIV-2 

length explained 90% of the heritable variance (83% of total variance) in Lp(a) (vs. at most 

~60% of total variance in earlier work20,33).  This model estimated allelic contributions to Lp(a) 

using a parametric fit of the nonlinear relationship of Lp(a) to KIV-2 copy number, with additional 

coding and splice variants acting multiplicatively on Lp(a) (Methods).  Crucially, this analysis 

leveraged phase-resolved KIV-2 length estimates and SNP haplotypes to apply Lp(a)-modifying 

effects only to the KIV-2 allele in cis (i.e., on the same haplotype); these pervasive cis-epistatic 

effects were poorly modeled by the standard additive model that assumes linear effects of allele 

dosages (which explained only 61% of variance in Lp(a)). 

 Lp(a) is known to vary greatly across populations20, with median measurements 4-fold 

higher among Africans than among Europeans, but the reasons for this extensive cross-

population variation have been unclear (since population differences in KIV-2 length are too 

small to explain them).  We found that this variation was largely explained by population 

differences in the allele frequencies of the LPA sequence variants we identified (Fig. 2b).  

Elevated Lp(a) in UKB participants of African ancestry (median 80.1 nmol/L vs.18.5 nmol/L in 

Europeans) was primarily explained by the relative paucity of alleles carrying variants that 

greatly reduced Lp(a) (~13% of African alleles vs. ~43% of European alleles, despite ample 

discovery power in both populations) and the much higher frequency of an Lp(a)-increasing 5’ 

UTR variant among African alleles (MAF=46% vs. 17% in European alleles for rs1800769; Fig. 

2c).  These allele frequency differences also explained the apparent difference in shape of the 

Lp(a)-KIV-2 curve in different populations (Extended Data Fig. 6). 

 The high accuracy of genetically predicted Lp(a) (R2=0.83 in Europeans) made it 

possible to better understand epidemiological associations involving Lp(a).  Higher genetically 

predicted Lp(a) has been found (by Mendelian randomization analysis) to increase 

cardiovascular risk25,34.  We observed that this relationship extends to extreme Lp(a) levels: 

individuals with genetically predicted Lp(a)>400 nmol/L exhibited a three-fold increase in 

myocardial infarction (OR=3.15, 95% CI=1.9-5.2; Fig. 2d).   

The much-stronger genetic prediction of Lp(a) also made it possible to identify when a 

known epidemiological correlation with Lp(a) was not due to Lp(a) itself.  For example, low Lp(a) 
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exhibits epidemiological association to type 2 diabetes (T2D) risk, an association with conflicting 

proposed interpretations20,34 analogous to the debate over whether HDL levels shape 

cardiovascular risk, or are shaped by other cardiovascular risk factors35.  We found (by 

Mendelian randomization analysis in UKB) that genetically predicted Lp(a) did not associate 

with T2D risk, suggesting that either T2D itself, T2D-related liver comorbidities, or T2D 

medication use accounts for the 17% (s.e. 1%) lower levels of Lp(a) seen in T2D patients (Fig. 

2e and Extended Data Fig. 7).  Controlling for genetic effects almost completely by using our 

more accurate genetic predictor of Lp(a) levels also made it possible to identify several 

environmental exposures that further modified Lp(a), including alcoholic liver disease, oral 

contraceptives, and hormone replacement therapy (which all lowered Lp(a)) and anti-epileptic 

medications (which increased Lp(a); Supplementary Table 4). 

 

Human height strongly affected by VNTRs in ACAN and TENT5A  

 

Human height associates with hundreds of common alleles36, generally with small effect 

sizes (individual common alleles generally explain <0.05 standard deviations).  We found that 

size variation of a 57bp (19 amino acid) repeat in the ACAN gene strongly associated with 

height (P=1.7 x 10-234), with an effect size differential of 0.52 standard deviations (s.e. 0.05)—

i.e., 3.4 centimeters—between the longest and shortest alleles sufficiently common to be 

amenable to our analysis (Fig. 3).  SNPs at the ACAN locus were among the first variants in the 

genome to be associated with height37; however, no causal variants that could plausibly underlie 

these associations (which reached P=1.0 x 10-188 for individual SNPs vs. P=1.7 x 10-234 for the 

VNTR) had previously been identified. 

To uncover this association, we estimated ACAN VNTR allele lengths in UK Biobank 

participants (RMSE ~0.85 repeat units; Extended Data Fig. 1) by analyzing counts of exome 

sequencing reads mapping within the VNTR, which had been sequenced to ~400x mean 

coverage due to the tiling of the VNTR by 12 capture probes.  To maximize modeling accuracy 

and minimize capture bias, we independently phased and imputed copy numbers for repeat 

subtypes distinguished by common coding-sequence variation within the 57bp repeat unit 

(Extended Data Fig. 8 and Supplementary Note).  Consistent with previous gel electrophoresis 

studies22, the inferred allele distribution contained common 26-, 27-, and 28-repeat alleles and 

low-frequency alleles with 13-33 repeats; we also identified a very short 6-repeat African allele 

and rare long European alleles of up to ~44 repeats (Fig. 3b,d). 
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Height exhibited an approximately linear relationship with length of the ACAN VNTR, 

with consistently increasing effects observed across a series of at least nine distinct VNTR allele 

lengths, resulting in an association signal (P=1.7 x 10-234) stronger than that of any nearby 

variant, explaining 0.19% of height variance among European-ancestry UKB participants (Fig. 

3c,d).  Moreover, among 7,543 UKB participants of African ancestry, the ACAN VNTR 

association was nearly 50% stronger than the association of any other variant in the genome 

(P=5.2 x 10-12 for the VNTR vs. P=1.4 x 10-8 for the strongest SNP association) and explained 

an even larger proportion of height variance (0.60%), primarily owing to greater VNTR length 

variation among UKB research participants with African ancestry (s.d.=3.7 repeats vs. 1.5 

repeats in Europeans; Fig. 3b). 

Aggrecan, the protein encoded by ACAN, is a prominent component of the extracellular 

matrix in growth plate cartilage and is required for normal growth plate cytoarchitecture38.  The 

VNTR generates 2.4-fold size variation in aggrecan’s first chondroitin sulfate domain (CS1), a 

domain whose amino-acid residues are modified by long, charged polysaccharide chains that 

endow this extracellular matrix with key properties including the ability to hold large amounts of 

water. 22   

As at LPA, incorporation of the ACAN VNTR into genetic association analysis (by 

stepwise conditional analysis) made it possible to identify additional genetic effects —driven at 

ACAN by two common missense SNPs (Fig. 3c and Supplementary Table 5).  The two 

missense SNPs, which affect ACAN globular domains, had two of the top three predicted 

deleteriousness scores39 (CADD = 23.1 for rs3817428 and 27.6 for rs34949187) among 

common missense SNPs in ACAN and were corroborated by Bayesian fine-mapping15 analysis 

(posterior probability >0.99 of causality).  A combined model including the VNTR and these 

SNPs explained 0.33% of height variance in Europeans. 

Despite the strong effects of ACAN VNTR alleles on height, neither end of the allelic 

spectrum appeared to compromise ACAN function in any way detrimental to health.  Whereas 

loss-of-function mutations in ACAN cause autosomal dominant skeletal disorders40, VNTR 

length variation did not associate at Bonferroni significance with any disease in UK Biobank 

(P>7 x 10-4), including lumbar disc degeneration, for which a previously reported association41 

did not replicate despite ample power in UKB (P=0.22 in an analysis with N=18,982 cases).  A 

participant homozygous for the short 6-repeat allele (AF=1.2% among participants with African 

ancestry) had no reported musculoskeletal disease phenotypes. 

A distinct coding VNTR, in the TENT5A gene (previously named FAM46A), also 

associated with height.  Recent work has demonstrated that TENT5A—a poly(A) polymerase in 
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which multiple coding variants have been linked to autosomal recessive osteogenesis 

imperfecta (OI)42—polyadenylates and increases expression (in osteoblasts) of the collagen 

genes COL1A1 and COL1A2 and other genes mutated in OI43.   The short VNTR in TENT5A 

consisted of two to seven repeats of a 15bp repeat unit (encoding a glycine-rich 5 amino acid 

sequence (GGDFG) in a functionally uncharacterized domain), which we genotyped in UK 

Biobank by adapting our methods to directly identify short alleles spanned by single sequencing 

reads (Supplementary Note).  The TENT5A VNTR associated more strongly with height than did 

any other variant at this locus (P=2.5 x 10-53; Fig. 3e), and the six VNTR alleles exhibited 

monotonically increasing effects on height with increased VNTR length (with an effect range of 

~0.1 s.d. (~0.6 centimeters); Fig. 3f). 

 

Kidney-function phenotypes shaped by a VNTR in MUC1 

 

Like ACAN, the MUC1 (mucin 1) gene encodes a secreted (cell-surface-associated) protein 

and has a VNTR that shapes the length of a heavily glycosylated extracellular domain.  Ultra-

rare frameshift mutations within the MUC1 VNTR cause autosomal dominant tubulointerstitial 

kidney disease44; however, the phenotypic effects of the VNTR length polymorphism are largely 

unknown. In our analyses, length of the MUC1 VNTR associated with several renal phenotypes 

(Fig. 4), including serum urea (P=2.7 x 10-163) and serum urate (P=4.7 x 10-99), two metabolic 

waste products normally removed from plasma by the kidney and excreted in urine.  Longer 

VNTR alleles also associated with gout (P=3.6 x 10-17), a painful disease that occurs when 

excessive uric acid crystallizes and deposits in the joints. MUC1 encodes a transmembrane 

protein (mucin 1) with cell-adhesive and anti-adhesive properties; the VNTR encodes 

approximately 20-125 repeats23 of a 60bp (20 amino acid) coding sequence that determines the 

length of the mucin 1 extracellular domain. MUC1 VNTR allele lengths in UK Biobank exhibited 

a broadly bimodal allele distribution along with rare expanded alleles (Fig. 4c), consistent with 

previous work23. Benchmarking these allele length estimates against independent estimates 

from whole genome sequencing data indicated high accuracy (estimated R2 = 0.94; Extended 

Data Fig. 1 and Supplementary Note). 

The MUC1 VNTR length polymorphism appeared to underlie some of the strongest, earliest 

reported SNP associations with serum urea and serum urate, two biomarkers of renal function 

that otherwise have somewhat independent genetics (genetic correlation = 0.25 (s.e. 0.01); Fig. 

4a-c). For urea, the VNTR tied with a SNP on chromosome 5 for the strongest association 

genome-wide, explaining ~1% of heritable variance (~0.2% of total variance) in Europeans and 
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accounting for nearly all of the association signal at the MUC1 locus (previously reported as 

MTX1-GBA45; Fig. 4a). For urate, the VNTR also appeared to be the primary causal variant at a 

locus previously reported as TRIM4646 (Fig. 4b). Longer MUC1 alleles associated with 

increasing levels of both serum urea and urate across the VNTR length spectrum, with an 

incompletely dominant effect on urea (P=2.3 x 10-20 for interaction; Extended Data Fig. 9) but an 

additive effect on urate (P=0.56 for interaction). 

Associations with several additional renal phenotypes indicated a complex relationship 

between MUC1 VNTR length and kidney function (Fig. 4c,d). Long MUC1 alleles (>58 repeat 

units) increased risk of gout (OR=1.10; 95% CI, [1.08-1.13], P=1.2 x 10-16) and chronic 

tubulointerstitial nephritis (OR=1.31 [1.09-1.57], P=3.4 x 10-3, which remained significant after 

correcting for 13 kidney diseases tested). However, MUC1 VNTR allele length did not associate 

with chronic kidney disease (OR=1.01 [0.99-1.04], P=0.33) despite ample statistical power 

(N=14,573 cases) and only weakly influenced glomerular filtration rate as estimated from serum 

creatinine (beta=-0.19% [0.11-0.28%] for long vs. short alleles). Long MUC1 alleles associated 

with modest reductions in red blood cell counts (beta=-0.029 s.d., s.e.=0.002, P=1.5 x 10-39) and 

hemoglobin levels (beta=-0.031 s.d., s.e.=0.002, P=9.9 x 10-44), possibly reflecting an impact of 

reduced kidney function on erythropoietin production. 

 

TCHH VNTR strongly associates with hair phenotypes 

 

Repeat length variation in another coding VNTR—an 18bp repeat in TCHH—associated 

strongly with male pattern baldness (P=1.6 x 10-55). TCHH encodes trichohyalin, an intermediate 

filament protein that associates in regular arrays with keratin intermediate filaments and confers 

mechanical strength to the inner root sheath47. The 18bp VNTR encodes part of a highly-

stabilized alpha-helix that forms an elongated rod structure48. A rare nonsense mutation in 

TCHH has been implicated in uncombable hair syndrome49, and a common haplotype 

containing the TCHH missense SNP rs11803731 (encoding a leucine to methionine substitution 

in TCHH) is by far the strongest genetic determinant of hair curl in individuals of European 

ancestry50,51. In UK Biobank, the TCHH VNTR and rs11803731 exhibited independent 

associations with male pattern baldness (Fig. 5a,b). 

Intriguingly, the TCHH VNTR appeared to be hypermutable and was poorly tagged by all 

nearby individual SNPs (R2<0.1), leading us to wonder whether it might also contribute to hair 

curl in a way invisible to genome-wide association studies of this phenotype. The large size of 

the UKB cohort enabled accurate imputation (R2~0.7) of TCHH VNTR alleles into the TwinsUK 
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cohort52 (N=3,334 genotyped individuals with hair curl phenotypes), which revealed that indeed, 

the TCHH VNTR appeared to be the human genome’s second-largest contributor to hair curl 

variation genome-wide (explaining ~1% of variance; P=3.6 x 10-8) after the missense SNP 

rs11803731 in TCHH (which explained ~4% of variance; Fig. 5c-f). Linkage disequilibrium with 

the VNTR and rs11803731 further explained a distant association previously reported near 

LCE3E (450kb upstream of TCHH) and previously thought to be independent of TCHH51,53 (Fig. 

5b,c). 

 

Discussion 

 

 These results identify many strong effects of protein-coding VNTRs on human 

phenotypes.  Most were among the strongest effects of all common variants identified for these 

phenotypes to date.  VNTRs appeared at multiple loci to be the causal variants explaining the 

strongest, earliest-reported—but previously mysterious—genetic associations for multiple traits.  

Incorporation of multi-allelic VNTRs into fine-mapping analyses also helped identify many more 

functional variants at the same loci, revealing allelic series of SNP and VNTR alleles that will be 

powerful tools for functional studies and epidemiological research. 

 We described the phenotypic relationships of five VNTRs that showed the strongest 

evidence of causality from among 118 autosomal coding VNTRs accessible to our analytical 

approach.  (Further work will be required to determine which of the other VNTR-phenotype 

associations we identified—for which fine-mapping analysis was less definitive due to reduced 

power or the presence of fewer VNTR alleles—are causal.) 

These results are likely just the leading edge of a far-larger set of VNTR-phenotype 

associations that will become visible as VNTR imputation methods and reference haplotypes 

are applied to other SNP data sets, and then ultimately as long-read sequencing of large case-

control cohorts comes to allow direct measurement of far more VNTRs in future long-read 

sequencing studies of human diseases.  We explored here the kinds of common phenotypes 

and quantitative traits that exhibit common variation among UK Biobank participants; imputation 

of our reference VNTR-SNP haplotypes (see Data availability statement) could enable human 

genetics to analyze these VNTRs in a far-larger set of common and rare diseases.  The strong 

associations identified motivate future studies that expand analysis to additional phenotypes 

and to tens of thousands more VNTRs1,2 that we were unable to analyze accurately—either 

because they exist in noncoding sequences, or are too short for depth-of-coverage to accurately 

measure their length variation, or are too mutable to maintain a consistent relationship to SNP 
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haplotypes across generations.  Ongoing and imminent reductions in the cost of long-read 

sequencing are an exciting development in this regard: future studies will yield more insights 

into the impact of VNTRs on human phenotypes and the mutational and evolutionary 

processes54 that produced the VNTR allelic spectra now present in human populations.  

A longstanding frustration in human genetics has been that the overwhelming majority of 

reported genetic associations involve associations to haplotypes of noncoding and missense 

SNPs whose potential phenotypic contributions are challenging to dis-entangle from one 

another, and whose first-order molecular effects are opaque. VNTRs have several important 

attributes that help us overcome this longstanding challenge. First, multi-allelic VNTRs make it 

possible to dis-entangle the phenotypic contributions of VNTR alleles from those of nearby di-

allelic variants such as SNPs with which they are in just partial LD.  Second, associations to 

protein-coding VNTRs implicate the size and copy number of specific protein domains, leading 

to specific, testable hypotheses about the effects of protein domains in biological systems.  

Third, VNTRs provide clear directions of association, revealing whether risk is generated by 

having more or less of a domain.  Finally, VNTRs generate natural allelic series of many 

common, functionally distinct alleles that can be used for dose-response studies in human 

tissues and cellular models.  We hope that these attributes lead to many insights about the 

mechanisms by which gene and protein variation generate variation in human biology. 
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Methods 

 

UK Biobank genetic data.  The UK Biobank resource contains extensive genetic and 

phenotypic data for ~500,000 participants recruited from across the UK55.  We analyzed SNP 

and indel genotypes available from blood-derived SNP-array genotyping of 805,426 variants in 

488,377 participants and subsequent imputation to 93,095,623 autosomal variants (using the 

Haplotype Reference Consortium, UK10K, and 1000 Genomes Phase 3 reference panels) in a 

subset of 487,409 participants12.  We further analyzed exome-sequencing read alignments and 

genotype calls available from whole-exome sequencing (WES) of 49,960 participants14 (which 

achieved >20x coverage by 76bp paired-end reads for an average of 94.6% of targeted sites).  

We augmented the SNP-imputation data set with 4.9 million (predominantly rare) autosomal 

variants from the WES genotype call set that we previously imputed into the full cohort16. 

 

Sample filters for ancestry and relatedness.  We applied strict filters to avoid confounding 

from population stratification and relatedness among individuals in genetic association analyses.  

We performed initial analyses on a stringently-filtered set of 337,466 unrelated, White British 

individuals identified by UKB12 (based on self-report and analysis of genetic principal 

components (PCs)) who had not since withdrawn from the study.  In follow-up analyses of 

VNTRs exhibiting potentially causal phenotype associations, we expanded this sample set to a 

larger set of 415,280 participants that we identified using less-extreme filtering on ancestry and 

relatedness to maximize power to fine-map associations. Specifically, starting with the set of 

individuals who reported White ethnicity, we (i) removed PC outliers (more than six standard 

deviations away from the mean in any of the first 10 PCs); and (ii) removed one individual from 

each ≤2nd-degree related pair (kinship coefficient > 0.0884) previously identified by UKB12, 

prioritizing retaining individuals for whom height measurements were available.  In secondary 

analyses of cross-population variation, we further analyzed smaller subsets of UKB participants 

who self-reported African, South Asian, or East Asian ancestry (comprising 1.6%, 1.9%, and 

0.3% of the UKB cohort, respectively). 

 

UK Biobank phenotype data.  We performed initial analyses on a set of 791 phenotypes that 

we curated from the UK Biobank “core” data set.  This set of phenotypes consisted of: (i) 637 

diseases with >250 reported cases (as of Oct 10, 2019) collated by UKB from several sources 

(self-report and accruing linked records from primary care, hospitalizations, and death registries) 

into single “first occurrence” data fields indexed by ICD-10 diagnosis codes; and (ii) 154 
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continuous and categorical traits selected based on high heritability or common inclusion in 

genome-wide association studies.  Phenotypes in the latter set were derived from physical 

measurements and touchscreen interviews; blood count, lipid and biomarker panels of biological 

samples; and follow-up online questionnaires.  For continuous traits, we performed quality 

control and normalization (outlier removal, covariate adjustment, and inverse normal 

transformation) as previously described16,56. 

 

Protein-coding VNTR ascertainment and genotyping pipeline.  We identified and genotyped 

VNTR allele length variation from exome-sequencing data using an analysis pipeline consisting 

of three main steps (detailed in the Supplementary Note): 

 

1. Identify potential VNTR loci from repeat sequences in the human reference.  We 

identified approximate tandem repeats in the GRCh38 reference using two approaches: 

(i) Tandem Repeats Finder13 v4.09 (using its suggested parameters 2 5 7 80 10 50 2000 

-l 6 -h to detect repeated patterns of up to 2kb); and (ii) a separate algorithm we 

developed to identify large, multi-kilobase repeats such as the KIV-2 VNTR in LPA 

(Supplementary Note).  We filtered to autosomal loci with a repeat unit at least 9bp long 

that overlapped at least one exon (of any transcript) and overlapped the set of WES 

targets. 

 

2. Estimate VNTR lengths from exome-sequencing depth-of-coverage.  At each potential 

VNTR, we estimated diploid VNTR content (i.e., the sum of VNTR allele lengths across 

an individual’s two alleles) for exome-sequenced UKB participants by counting aligned 

reads overlapping the VNTR.  To reduce technical noise in these measurements, we 

normalized depth-of-coverage estimates in each individual against corresponding 

estimates in the 200 other individuals in the cohort with closest-matching exome-wide 

sequencing profiles (Supplementary Note).  To gauge the precision of these estimates, 

we computed the correlation coefficient between estimates in pairs of “IBD2” siblings 

who shared both haplotypes identical-by-descent (i.e., had inherited the same allele from 

their mother and inherited the same allele from their father). 

 

3. Phase and impute VNTR allele length estimates by modeling haplotype sharing.  We 

performed statistical phasing on estimates of diploid VNTR content to estimate haploid 

allele lengths, which we then imputed from the exome-sequenced participants into the 
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remainder of the UKB cohort.  To do so, we developed a computational algorithm to 

efficiently phase multiallelic VNTR variants (with real-valued length estimates) using 

surrounding SNP-haplotype information and simultaneously compute cross-validation-

based benchmarks of phasing and imputation accuracy (Supplementary Note). 

 

The first step of this pipeline (based solely on analysis of the human reference sequence) 

produced a list of 8,186 exon-overlapping tandem repeat sequences in the human genome.  

However, we expected that the large majority of these tandem repeats did not represent true 

protein-coding VNTRs (either because they did not exhibit allele length variation or because 

they did not overlap coding sequence due to imprecise endpoint-calling) or were too short to 

accurately genotype from sequencing depth-of-coverage data.  We therefore developed a 

stringent filtering pipeline to create a high-confidence subset of protein-coding VNTRs suitable 

for analysis, ensuring that estimated lengths of these VNTRs (based on WES depth-of-

coverage) exhibited heritable variation that was not the result of being contained within a larger 

CNV (Supplementary Note).  These filters produced a final set of 118 high-confidence protein-

coding VNTRs modifying 118 distinct genes (Supplementary Table 1). 

 

Genotyping paralogous sequence variation within VNTRs.  We also sought to identify and 

genotype intra-allelic variation within repeat units—i.e., paralogous sequence variants (PSVs) 

—within the LPA and ACAN VNTRs, both to improve the accuracy of VNTR length estimates 

(Supplementary Note) and for downstream fine-mapping of the LPA locus for Lp(a).  To do so, 

we catalogued within-repeat variation observed in exome-sequenced individuals and then 

adapted our genotyping, phasing, and imputation pipeline to analyze PSV copy number 

estimates derived from counting numbers of reference vs. alternate base calls at each such 

variant (Supplementary Note). 

 

Initial VNTR-phenotype association and fine-mapping analyses.  We performed initial 

association tests between the 118 curated coding VNTRs and 791 phenotypes in the 

stringently-filtered subset of 337,466 unrelated White British participants identified by UKB.  We 

first computed the Pearson correlation and P-value for each VNTR-phenotype pair.  (All P-

values reported throughout the manuscript are two-sided.)  For associations passing a 

significance threshold of P<5 x 10-8 (commonly used in genome-wide association studies, and 

slightly conservative here), we recomputed association statistics using linear regression 
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including 20 PCs as covariates, retaining 180 VNTR-phenotype pairs that remained significant 

at P<5 x 10-8. 

 

To determine which of these VNTR-phenotype associations were likely to represent causal 

effects of VNTR allele length variation (vs. tagging of nearby causal SNPs), we first used BOLT-

LMM57 v2.3.4 to compute linear regression association statistics for both the VNTR and all 

nearby SNPs and indels imputed by UKB (within 500kb of the VNTR) using a standard set of 

covariates (assessment center, genotype array, age, age squared, sex, and 20 PCs).  We then 

applied the Bayesian fine-mapping software FINEMAP15 v1.3.1 (options --corr-config 0.999 --

sss --n-causal-snps 5) to estimate the likelihood of causality for the VNTR, accounting for 

linkage disequilibrium with up to 2,000 of the most strongly associated nearby variants.  The 

results of these analyses are summarized in Supplementary Table 2. 

 

Follow-up analyses of potentially causal VNTR-phenotype associations using refined 

genotypes and phenotypes.  For each of six distinct VNTRs involved in 20 VNTR-phenotype 

associations that were assigned a high probability of causality (>0.95), we further optimized 

estimates of VNTR allele lengths by refining VNTR boundaries, carefully modeling biases in 

exome-sequencing read-capture induced by variation within repeat units, and (for the TENT5A 

VNTR) incorporating read-level information from single sequencing reads that spanned short 

alleles (Supplementary Note).  These genotyping optimizations either increased or maintained 

the evidence for causality of all associations except one, between height and a VNTR in 

RRBP1, at which the posterior probability of causality dropped to 0.33 (Supplementary Note); 

we therefore dropped this association from further analysis, leaving nineteen VNTR-phenotype 

associations involving five VNTRs (LPA, ACAN, TENT5A, MUC1, and TCHH). 

 

We curated three derived phenotypes for follow-up analyses based on relevance to the 

associations that fine-mapped to these VNTRs.  For serum lipoprotein(a), the phenotype coding 

provided by UKB had coded 17% of Lp(a) measurements as missing due to falling outside the 

reportable range (3.8-189 nmol/L).  To enable analysis of individuals with such measurements, 

we incorporated binary information available about whether Lp(a) had been below vs. above the 

reportable range by creating a “cropped Lp(a)” phenotype in which we assigned Lp(a) values of 

3.7 or 190 nmol/L to such individuals; we carefully modeled the effect of this cropping in 

subsequent association and fine-mapping analyses (Supplementary Note).  We also computed 

an estimated glomerular filtration rate (eGFR) phenotype (relevant to MUC1) from serum 
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creatinine measurements using the MDRD study equation58, and we computed a male pattern 

baldness score phenotype (relevant to TCHH) following previous work59. 

 

We performed follow-up analyses using the improved VNTR genotypes on an expanded set of 

415,280 PC-filtered, unrelated European-ancestry participants (described above) and further 

optimized statistical power60 by performing linear mixed model association analysis of top 

phenotype associations using BOLT-LMM (Table 1 and European-ancestry genome-wide 

Manhattan plots in Fig. 3a and Fig. 4a,c; for African-ancestry genome-wide association analysis 

of height in Fig. 3a, we ran linear regression using our standard covariates).  To emulate mixed 

model association power in analyses exploring the effects of specific VNTR alleles and SNPs at 

the ACAN and TENT5A loci for height (Fig. 3c-f), we performed analyses on height residualized 

for polygenic predictions of height from array-typed SNPs (omitting those within 2Mb of each 

VNTR) that we generated using BOLT-LMM (--predBetasFile) in 10-fold cross-validation61. 

 

Logistic regression analyses of VNTR associations with disease outcomes.  We 

performed logistic regression to further investigate associations between genetically predicted 

Lp(a) and myocardial infarction (I21) and type-2 diabetes (E11), between ACAN VNTR length 

and intervertebral disk disorders (M51), and between MUC1 VNTR length and 13 kidney 

diseases with at least 100 cases (I12, M10 = gout, N00, N02, N03, N04, N05, N11 = chronic 

tubulo-interstitial nephritis, N17, N18 = chronic kidney disease, N19, N25, and Q61, using the 

ICD-10 coded disease phenotypes collated by UKB).  For LPA and MUC1, we binned data by 

the variable of interest (genetically predicted Lp(a) or MUC1 VNTR length), included an indicator 

variable for each bin (omitting the reference bin; Lp(a) between 10-30 nmol/L in Fig. 2d and 

MUC1 VNTR copy number <58 in Fig. 3d), and reported the effect size estimated for each bin.  

For ACAN, we analyzed VNTR length as a quantitative variable.  We included age, age 

squared, and sex as covariates in these analyses.   

 

Estimating effects of VNTR alleles on quantitative traits.  To estimate effect sizes of VNTR 

alleles or groups of alleles in analyses of quantitative traits, continuous phenotypes effects for 

highlighted VNTR-phenotype relationships, we binned alleles by VNTR length and SNP-

haplotypes (when additional likely-causal SNPs had been identified), plotting the phenotypic 

mean among individuals carrying an allele in the bin (counting homozygous carriers twice) 

against the bin-wise median VNTR length (Figures 2a, 3d,f, 4b, and 5b,f).  In Fig. 2a, we 

extrapolated mean Lp(a) in bins containing a large fraction (>15%) of Lp(a) measurements that 
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exceeded the reportable range (>189 nmol/L) and had been cropped.  We performed this 

extrapolation based on the median Lp(a) value in the and the assumption that Lp(a) within a bin 

was log-normally distributed with a � � 0.304 (which appeared empirically to fit well across a 

broad cross-section of bins with fewer cropped values).  In Fig. 3d (visualizing the effects of 

ACAN alleles on height), we rounded allele length estimates to the nearest integer and plotted 

integer bins with MAF>0.5% as well as extreme allele bins (for the rare 13- and 19-repeat 

alleles and very long alleles containing 40-42 repeats). 

 

Modeling lipoprotein(a) concentration from KIV-2 VNTR allele lengths and LPA sequence 

variants.  Even though Lp(a) is almost completely determined by allelic variation at LPA, the 

specific LPA sequence variants that influence Lp(a) and the way that they interact to determine 

lipoprotein(a) concentration have remained elusive20.  Part of the challenge of fine-mapping the 

LPA locus is the need for accurate genotyping of both KIV-2 length variation and SNP variation 

within the KIV-2 repeat (i.e., PSVs), which has not been available to previous large-scale 

studies.  A further challenge is the multiple forms of nonlinearity that complicate the relationship 

between LPA sequence variation and Lp(a): (i) the nonlinear relationship of KIV-2 length with 

Lp(a) (even controlling for other LPA sequence variants), and (ii) the nonlinearities induced by 

the allele-specific nature of apo(a) production from individual LPA alleles (such that Lp(a)-

modifying sequence variants on one chromosome exhibit effects that depend on the length of 

the KIV-2 repeat on that chromosome, while having no effect on the apo(a) production of the 

LPA allele on the other (homologous) chromosome).  For these reasons, although well-powered 

fine-mapping studies that have applied standard stepwise conditional analyses adjusted for KIV-

2 length have identified dozens of conditionally independent SNP associations at LPA, these 

lists have mostly contained noncoding variants unlikely to have causal effects62,63. 

 

To fully leverage our comprehensive genotyping and imputation of phased KIV-2 allele lengths, 

PSVs in and near KIV-2 exons, and SNPs and indels at LPA in ~500,000 UKB participants—

and to accurately model Lp(a) measurements that had been cropped to the range 3.8-189 

nmol/L—we developed novel statistical methods to fine-map the complex association pattern at 

LPA to causal SNPs, and then to perform predictive modeling of Lp(a) from genotypes of these 

SNPs together with KIV-2 repeat lengths.  Briefly, we first performed fine-mapping within an 

effective-haploid model of Lp(a) created by carriers of alleles producing little or no Lp(a).  This 

framework isolated contributions of individual LPA alleles, greatly elucidating the effects of 

variants that substantially reduced Lp(a) (Extended Data Fig. 3).  Stepwise conditional analyses 
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within this framework identified an allelic series including 18 protein-altering variants and 3 

variants in the 5’ UTR of LPA that each appeared likely to causally influence Lp(a) levels (based 

on achieving top or near-top association strengths in successive steps of analysis); 2 additional 

protein-truncating variants within KIV-2 exons had effects mostly masked by linkage 

disequilibrium with a canonical splice site variant64 (Supplementary Table 3 and Supplementary 

Note).  Second, we created an intuitive model that accurately predicted Lp(a) as a sum of allelic 

contributions determined by KIV-2 length and the combination of alleles of the 23 likely-causal 

LPA SNP and indel variants carried on each haplotype.  This model consisted of a low-

dimensional parametrization of the “baseline curve” relating KIV-2 length to Lp(a) (in the 

absence of other Lp(a)-modifying variants) on top of which SNP modifiers exerted multiplicative 

effects (Supplementary Note). 

 

We compared the above model of Lp(a) to two simpler models corresponding to standard 

analyses: a model predicting Lp(a) from KIV-2 length alone (used in Fig. 2b) and a linear model 

using KIV-2 length together with the 23 likely-causal LPA variants we identified from fine-

mapping.  To model Lp(a) from KIV-2 length alone, we first estimated contributions of KIV-2 

alleles to Lp(a) in a SNP-unaware manner: we binned alleles solely by KIV-2 length in 2-repeat-

unit windows, and we then averaged Lp(a) measurements for the alleles in each bin carried by 

individuals with a low-Lp(a) allele on the homologous chromosome (i.e., alleles plotted in Fig. 

2a).  As in the model above, we then predicted a given individual’s Lp(a) by summing the 

contribution of the two alleles (and cropping values outside the reportable range when 

performing comparisons against measured Lp(a)).  In the linear model, we modeled Lp(a) as a 

linear combination of diploid genotypes (for the 23 LPA SNP and indel variants) and diploid KIV-

2 content, fitting this model using linear regression against measured Lp(a). 

  

Association analysis of medication use and liver diseases with altered Lp(a) levels.  To 

investigate potential effects of exposures including medication use and liver disease on 

lipoprotein(a) levels, we tested these exposures for association with differences between 

observed and genetically-predicted Lp(a) in UK Biobank. These analyses were well-powered 

because genetically-predicted Lp(a) explained ~80% of Lp(a) variance in participants of 

European ancestry (including those not in the exome-sequenced cohort, for whom we imputed 

KIV-2 length and LPA variants), thus serving as a proxy for baseline Lp(a) (prior to the 

exposure). We computed the log ratio of observed vs. predicted Lp(a), adjusted for age, sex, 

and 20 PCs, in 210,755 UK Biobank participants with predicted Lp(a) between 10-100 nmol/L 
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(to avoid bias due to cropping of Lp(a) measurements to 3.8-189 nmol/L) in the unrelated, PC-

filtered European-ancestry cohort. For the subsets of individuals who reported taking each of 

1,314 medications (taken by at least 10 individuals analyzed), we computed a z-test to 

determine whether or not medication use associated (at Bonferroni significance, P<4 x 10-5) with 

a change in the log-ratio of observed vs. predicted Lp(a); if so, we exponentiated this change 

(and its 95% CI) and subtracted 1 to obtain non-log-scale changes in Lp(a). We performed 

analogous analyses for liver diseases (K70-K77) with at least 100 cases and for type 2 diabetes 

for reference. We note that these association analyses do not prove causality, which appears 

plausible or has been reported for many of the associations but is less clear for others; e.g., 

both T2D medications and T2D associate with similar reductions in Lp(a), leaving uncertain 

whether the associations are driven by medication use, T2D itself, or a T2D-related comorbidity 

(Supplementary Table 4). 

 

Association analysis of TCHH VNTR length variation with hair curl in TwinsUK.  To 

explore the potential association of the TCHH 18bp (6 amino acid) repeat with hair curl (which 

was not phenotyped in UK Biobank), we analyzed 3,334 TwinsUK participants for whom both 

SNP-array genotypes and hair curl phenotypes were available and who did not report non-White 

ancestry. Hair curl phenotypes on a 4-point scale had previously been collected from two 

questionnaires (Q18_10, available for 3,015 of the 3,334 individuals we analyzed, and Q19_36, 

available for 1,689 of the individuals we analyzed). We normalized each hair curl phenotype 

separately in males and females by regressing out age, mean-centering, and dividing by the 

standard deviation; for individuals with both hair curl phenotypes available, we then averaged 

the two normalized phenotypes. 

 

SNP-array genotyping had previously been performed using either an Illumina 610K or 317K 

array, which had low overlap with the Affymetrix arrays used by UK Biobank. To enable 

imputation of the TCHH VNTR from our reference panel of UK Biobank exome-sequenced 

participants, we first imputed SNPs in the region of chromosome 1 surrounding TCHH 

(chr1:140-165Mb) using the TOPMed imputation server65,66. (Prior to imputation, we excluded a 

small fraction of A/T or C/G SNPs to avoid potential strand-flipping.) After imputation, we 

improved the phasing of the TOPMed-imputed TwinsUK haplotypes at UK Biobank-typed SNPs 

by setting imputed genotypes that were <95% confident (i.e., 0.05<HDS<0.95 for either haploid 

dosage) to missing and then rephasing non-missing SNP genotypes using Eagle67 v2.4.1 --

Kpbwt=100000, using all UK Biobank phased haplotypes68 as a reference panel. We then 
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imputed TCHH VNTR allele lengths into these rephased SNP-haplotypes using the exome-

sequence UKB participants as a reference panel as in our other analyses (Supplementary 

Note), with only the slight change of ignoring genotypes that had been set to missing when 

computing identity-by-state (IBS) sharing between reference and target haplotypes. 

 

We performed linear mixed model association tests between the normalized, merged hair curl 

phenotype and the TCHH VNTR, imputed SNPs, and array-typed SNPs (with missingness <0.1) 

using BOLT-LMM with genotyping array as a covariate. Mixed model association analysis was 

necessary to account for substantial relatedness among TwinsUK participants (~1,000 

monozygotic or dizygotic twin pairs among the 3,334 individuals we analyzed). 

 

 

Data availability 

Individual-level VNTR allele length estimates (resolved to phased SNP-haplotypes) and 

genetically predicted Lp(a) values will be returned to the UK Biobank resource for download by 

approved researchers.  Access to the following data resources is available by application: UK 

Biobank (http://www.ukbiobank.ac.uk/); Twins UK (https://twinsuk.ac.uk/); the Haplotype 

Reference Consortium imputation panel (http://www.haplotype-reference-consortium.org/).   

 

Code availability 

The following publicly available software packages were used to perform analyses in this work: 

Eagle2 (v2.3.5), https://data.broadinstitute.org/alkesgroup/Eagle/; Minimac4 (v1.0.1), 

https://genome.sph.umich.edu/wiki/Minimac4; BOLT-LMM (v2.3.4), 

https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; FINEMAP (v1.3.1), 

http://www.christianbenner.com/; plink (v1.9 and v2.0), https://www.cog-genomics.org/plink2/; 

Tandem Repeats Finder (v4.09.1), tandem.bu.edu/trf/trf.html; the TOPMed Imputation Server, 

https://imputation.biodatacatalyst.nhlbi.nih.gov/; BLAT (v35), 

http://hgdownload.soe.ucsc.edu/admin/exe/.  Code and scripts used to perform the downstream 

analyses described above are available from the authors upon request. 
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Gene Cytoband Repeat unit 
size 

Repeat 
count 
(EUR) 

Protein 
domain 
(effect) 

Phenotype Effect range (± s.e.) P-value 

LPA 6q25.3-
q26 

~5.6kb 
 (114aa, 
2 exons) 

2-40 Kringle-IV 
(number) 

Lipoprotein(a) 
concentration 

5.1 (± 0.5) s.d. 
(= 233 ± 23 nmol/L) 

4.4 x 10-(25,121) 

ACAN 15q26.1 57bp 
(19aa) 

13-44 Chondroitin 
sulfate (size) 

Height 0.52 (± 0.05) s.d. 
(= 3.4 ± 0.3 cm) 

1.7 x 10-234 

TENT5A 6q14.1 15bp 
(5aa) 

2-7 Unknown 
(size) 

Height 0.09 (± 0.01) s.d. 
(= 0.6 ± 0.1 cm) 

2.5 x 10-53 

MUC1 1q22 60bp 
(20aa) 

20-125 Extracellular 
(size) 

Serum urea 0.16 (± 0.01) s.d. 
(= 0.22 ± 0.01 mmol/L) 

2.7 x 10-163 

TCHH 1q21.3 18bp  
(6aa) 

5-15 α-helix rod 
(size) 

Male pattern 
baldness score 

-0.063 (± 0.006) s.d. 1.6 x 10-55 

 
Table 1. VNTRs within protein-coding sequences affect diverse human phenotypes.  The table 
lists five protein-altering VNTRs that passed stringent fine-mapping criteria, in the sense that the VNTR 
(rather than nearby genomic variants) appears to be the primary driver of association signal at the 
locus.  Here P-values (in linear mixed model analyses of N=415,280 unrelated UKB participants of 
European ancestry) and estimated effect-size ranges (across the longest and shortest alleles 
sufficiently common to be amenable to our computational analysis) are listed for the most-strongly 
associated phenotype; additional associations listed in Supplementary Table 2).  Male pattern baldness 
scores were computed as in Yap et al. (2018)59; aa, amino acids. 
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Figure 1. Exonic VNTRs create large-scale size polymorphisms of protein domains.  VNTR 
alleles of varying lengths are depicted for four VNTRs (within ACAN, TENT5A, MUC1, and TCHH) fo
which we identified large-effect phenotype associations with strong implication of the VNTR by fine-
mapping analysis.  Gene diagrams indicate the position of the VNTR on the GRCh38 reference; 
callouts show examples of expanded and contracted alleles (the longest and shortest common (>1%
AF) alleles identified among UKB participants of European ancestry).  
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Figure 2. Kringle IV-2 repeat length variation and 23 LPA SNPs together explain ~90% of lipoprotein(a) 
heritability.  a, Serum lipoprotein(a) concentration vs. KIV-2 VNTR length in an effective-haploid model of Lp(a), 
involving N=24,969 LPA alleles (in exome-sequenced UKB participants of European ancestry) for which the allele 
on the homologous chromosome was predicted to produce little or no Lp(a) (<4 nmol/L) based on KIV-2 length 
and/or presence of Lp(a)-reducing SNPs.  The inset shows the locations of the 15 most common (unlinked) SNPs 
that we found (by fine-mapping analysis) to further affect Lp(a).  The red, blue, green, and gray curves indicate 
parametric fits of Lp(a) to KIV-2 length (for noncarriers of any Lp(a)-modifying SNP in gray; carriers of rs1800769 
in red; carriers of rs3124784 in blue; and carriers of rs1853021 in green) in an analysis controlling for the Lp(a)-
modifying SNPs; the large points with error bars indicate mean Lp(a) for alleles in KIV-2 length bins.  Small points 
on the plot correspond to individual LPA alleles, color-coded according to which fine-mapped Lp(a)-modifying 
SNPs they carry (black for carriers of additional rare SNPs not pictured in the inset).  Histograms at top and 
bottom report counts of Lp(a) measurements outside the reportable range (<3.8 nmol/L or >189 nmol/L), with 
colors corresponding to Lp(a)-modifying SNPs carried by LPA alleles in these individuals (additional information in 
Methods).  b, Observed and genetically predicted median Lp(a) among individuals of African (AFR; N=893), 
European (EUR; N=42,162), South Asian (SA; N=954), and East Asian (EAS; N=156) ancestry.  c, LPA allele 
frequencies by ancestry.  Counts for VNTR alleles in cis with a large-effect Lp(a)-reducing variant are colored 
grey; counts for VNTR alleles in cis with the Lp(a)-increasing 5’ UTR variant rs1800769 are colored red.  d, 
Myocardial infarction risk vs. measured or genetically predicted Lp(a).  e, Type 2 diabetes prevalence vs. 
measured or genetically predicted Lp(a). Error bars, 95% CIs. 
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Figure 3. Lengths of protein-coding repeat polymorphisms in ACAN and TENT5A associate w
large increases in human height.  a, Genetic associations with height in UKB participants of 
European (top; EUR N=415,280) and African (bottom; AFR N=7,543) ancestry.  b, ACAN VNTR alle
length distributions by ancestry.  c, Height association statistics at ACAN in three consecutive steps 
stepwise conditional analysis (of N=415,280 EUR individuals).  Coding mutations likely to influence 
height are indicated with large markers; variants in partial LD (R2>0.1) with these labeled variants are
highlighted in the same color.  To maximize power, height phenotypes were first adjusted for genetic
predictions computed using the rest of the genome (Methods).  d, Height effect sizes (lines, left axis)
and allele frequencies (in EUR; histograms, right axis) of ACAN alleles defined by VNTR length and 
missense SNP haplotype; error bars, 95% CIs.  Rare long alleles (40-42 repeats) were grouped into 
one bin.   e, Height association statistics at TENT5A.  Variants in LD (R2>0.1) with the TENT5A VNT
are highlighted in orange.  f, Height effect sizes and allele frequencies of TENT5A VNTR alleles; erro
bars, 95% CIs.  
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Figure 4. MUC1 VNTR length associates with multiple renal phenotypes.  a and c, Genetic 
associations with serum urea (a) and serum urate (c) at the MUC1 locus (above in each panel) and 
genome-wide (below in each panel).  Variants in LD with the MUC1 VNTR (R2>0.1 with VNTR length
are highlighted in orange in the locus plots.  b and d, Effect sizes (lines, left axis) and allele frequenc
(histograms, right axis) of MUC1 VNTR alleles on phenotypes related to kidney function (b, quantitat
traits; d, disease traits).  For estimating effect sizes, VNTR alleles were analyzed in three groups: sh
(<58 repeat units), long (58-100 repeat units), and very long (>100 repeat units).  Error bars, 95% CI
eGFR, estimated glomerular filtration rate.  All analyses were performed on N=415,280 UKB 
participants of European ancestry. 
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Figure 5. TCHH VNTR length and missense SNP rs11803731 associate independently with hai
phenotypes.  a, Genetic associations with male pattern baldness at TCHH in N=189,537 male UKB
participants of European ancestry.  Colors indicate partial LD (R > 0.1) with missense SNP rs118037
(blue), the TCHH VNTR (red), or both rs11803731 and VNTR length (purple).  b, Male pattern baldn
effect sizes and allele frequencies of TCHH alleles.  TCHH alleles were binned by VNTR length quin
and missense SNP rs11803731 status.  c, Genetic associations with hair curl at TCHH in N=3,334 
TwinsUK participants, with variants colored as in panel a.  d, Hair curl associations in TwinsUK 
conditioned on rs11803731.  e, Genome-wide genetic associations with hair curl in TwinsUK.  f, Hair
curl effect sizes of TCHH alleles (grouped as in panel b). 
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