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Abstract14

Single-cell multi-omics data continues to grow at an unprecedented pace, and while integrating15

different modalities holds the promise for better characterization of cell identities, it remains a16

significant computational challenge. In particular, extreme sparsity is a hallmark in many modal-17

ities such as scATAC-seq data and often limits their power in cell type identification. Here we18

present scJoint, a transfer learning method to integrate heterogeneous collections of scRNA-seq19

and scATAC-seq data. scJoint uses a neural network to simultaneously train labeled and unla-20

beled data and embed cells from both modalities in a common lower dimensional space, enabling21

label transfer and joint visualization in an integrative framework. We demonstrate scJoint con-22

sistently provides meaningful joint visualizations and achieves significantly higher label trans-23

fer accuracy than existing methods using a complex cell atlas data and a biologically varying24
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multi-modal data. This suggests scJoint is effective in overcoming the heterogeneity in different25

modalities towards a more comprehensive understanding of cellular phenotypes.26

Introduction27

Advances in single-cell technologies have enabled comprehensive studies of cell heterogeneity,28

developmental dynamics, and cell communications across diverse biological systems at an29

unprecedented resolution. There are a variety of protocols profiling the transcriptomics, as ex-30

emplified by single-cell RNA-seq (scRNA-seq). In addition, a number of technologies have been31

developed for other molecular measurements in individual cells towards building a more holistic32

view of cell functions, including chromatin accessibility, protein abundance, and methylation [1].33

34

In particular, single-cell ATAC-seq (scATAC-seq) is an epigenomic profiling technique35

for measuring chromatin accessibility to discover cell type specific regulatory mechanisms36

[2, 3]. scATAC-seq offers a complementary layer of information to scRNA-seq, and together37

they provide a more comprehensive molecular profile of individual cells and their identities.38

However, it has been noted that the extreme sparsity of scATAC-seq data often limits its power39

in cell type identification [4]. In contrast, large amounts of well-annotated scRNA-seq datasets40

have been curated as cell atlases [5, 6], motivating us to transfer cell type information from41

scRNA-seq to scATAC-seq for better classification of cell types in an integrative analysis42

framework.43

44

A number of methods exist to denoise, batch correct, and perform integration of single-omics45

data across multiple experiments for both transcriptomic data [7–12] and scATAC-seq data46

[13]. However, direct applications of these methods to multi-omics data integration are com-47

putationally challenging and often suboptimal, since different modalities have vastly different48

dimensions and sparsity levels. Recently, a growing number of methods have been proposed to49

address the need for integrative analysis across different modalities. When the data consist of50

simultaneous multi-modal measurements within the same cell [14, 15], methods like scAI [16]51

and MOFA+ [17] have been developed based on factor analysis and joint clustering. In general,52

these paired measurements are technically more challenging and costly to perform. More53

commonly, different modalities are derived from different cells taken from the same or similar54

populations. In this setting, most existing methods are broadly based on manifold alignment55
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[18–20] to match the distributions of different modalities globally in a latent space, matrix56

factorization (Liger [21], coupledNMF [22]), or using correlations to identify nearby cells across57

modalities (Conos [23], Seurat [24]). While these methods have demonstrated promising results58

in integrating multiple modalities measured in cells from the same tissue, requiring distributions59

to match globally in manifold alignment is too restrictive for more complex data compositions60

as typically seen in cell atlases, where measurements for different modalities are derived from61

different tissues and cell types. Furthermore, matrix factorization and correlation-based meth-62

ods designed for unpaired data require a separate feature selection step prior to integration for63

dimension reduction, and the method’s performance can be sensitive to which genes are selected.64

65

Here, we present an end-to-end transfer learning method, scJoint, that effectively integrates66

scRNA-seq and scATAC-seq data using a neural network approach (Figure 1a). Our method is67

agnostic to the selection of highly variable genes and adds flexibility to the alignment of the68

two modalities when their cell types do not fully overlap. It is well established that in addition69

to having high prediction power, the hidden units of neural networks are able to learn implicit70

representations from the underlying data distribution [25]. Hence, by leveraging information71

from annotated scRNA-seq datasets, we use the same encoder to simultaneously train the two72

modalities so that (1) implicit features reflecting the annotations can be learnt by a hidden layer73

in an embedding space, and (2) unlabeled data from the ATAC domain can be aligned to similar74

points in the same embedding space. In contrast to methods that need a preliminary dimension75

reduction step, scJoint contains a novel loss function to explicitly incorporate dimension reduc-76

tion as part of the feature engineering process in transfer learning, allowing the low dimensional77

features to be updated throughout training and removing the need for selecting highly variable78

genes. This integrative framework enables scJoint to transfer cell type labels from scRNA-seq to79

scATAC-seq data and construct a joint embedding for the two modalities. By applying scJoint to80

integrate two mouse cell atlases (scRNA-seq [5] and scATAC-seq [26]) and a multi-modal data81

with paired protein measurements (Figure 1b), we demonstrate our method achieves considerably82

higher label transfer accuracy and integration quality over existing methods.83

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2020.12.31.424916doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.424916
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results84

scJoint for co-training labeled and unlabeled data85

The core of scJoint is a semi-supervised approach to co-train labeled data (scRNA-seq) and86

unlabeled data (scATAC-seq), where we address the main challenge of aligning these two87

distinct data modalities via a common lower dimensional space. scJoint consists of three88

main steps (Figure 1a). Step 1 performs joint dimension reduction and modality alignment89

in a common embedding space through a novel neural network based dimension reduction90

(NNDR) loss and a cosine similarity loss respectively. The NNDR loss extracts orthogonal91

features with maximal variability in a vein similar to PCA, while the cosine similarity loss92

encourages the neural network to find projections into the embedding space so that majority93

parts of the two modalities can be aligned. The embedding of scRNA-seq is further guided by94

a cell type classification loss, forming the semi-supervised part. In Step 2, treating each cell95

in scATAC-seq data as a query, we identify the k-nearest neighbors (KNN) among scRNA-seq96

cells by measuring their distances in the common embedding space, and transfer the cell type97

labels from scRNA-seq to scATAC-seq via majority vote. In Step 3, we further improve the98

mixing between the two modalities by utilising the transferred labels in a metric learning loss.99

Joint visualization of the datasets is obtained from the final embedding layer using standard100

tools including tSNE [27] and UMAP [28]. scJoint requires simple data preprocessing with the101

input dimension equal to the number of genes in the given datasets after appropriate filtering.102

Chromatin accessibility in scATAC-seq data is first converted to gene activity scores [29, 30]103

allowing for the use of a single encoder with weight sharing for both RNA and ATAC.104

105

We next compared scJoint with methods recently developed and applied to the integration of106

scRNA-seq and scATAC-seq, including Seurat v3 [24], Conos [23] for label transfer accuracy,107

and additionally Liger [21] (as a representative matrix factorization method) for evaluating the108

joint embedding of the two modalities.109

scJoint shows accurate and robust performance on large atlas data.110

We demonstrate the performance of scJoint in a complex scenario, where the heterogeneity of111

cell types and tissues in atlas data poses significant challenges to data integration. We applied112

our method to integrate two mouse cell atlases: the Tabula Muris atlas [5] for scRNA-seq data113
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and the atlas in [26] for scATAC-seq data, containing 73 cell types (96,404 cells from 20 organs,114

two protocols) and 29 cell types (81,173 cells from 13 tissues) respectively (the latter including115

a group annotated as “unknown”), of which 19 cell types are common. We focus our initial116

evaluation on the subset of the atlas data containing 101,692 cells from the 19 overlapping117

cell types only. Here, we transferred cell type labels from scRNA-seq to scATAC-seq and118

compared the results with the original labels in [26] for accuracy; these original labels were also119

used to evaluate the quality of joint visualizations. An inspection of the tSNE plots shows our120

method effectively mixes the three protocols (FACS, droplet, ATAC) while providing a better121

grouping of the cells in terms of previously defined cell types than the other methods (Figure122

2a, Supplementary Figure S1). This observation is confirmed by the quantitative evaluation123

metrics, with scJoint showing significantly higher cell type silhouette coefficients than all the124

other methods and similar modality silhouette coefficients as Seurat and Liger. Overall, scJoint125

has the highest median F1-score of silhouette coefficients, achieving a better trade-off between126

removing the technological variations in modalities and maintaining the cell type signals (Figure127

2b, Supplementary Figure S2). In terms of label transfer accuracy, scJoint assigned 84% of the128

cells to the correct type, 14% and 13% higher than Seurat and Conos (Figure 2d, Supplementary129

Figure S3).130

131

To assess the robustness of the label transfer results, we performed a stability analysis on132

this subset of atlas data by subsampling 80%, 50%, 20% of the cells from scRNA-seq as the133

training data. Even when only 20% of the cells were used for training, scJoint maintained a134

high accuracy and small variance (Figure 2c), suggesting that scJoint is potentially applicable to135

situations where only a subset of the scRNA-seq data is annotated.136

Label transfer using highly heterogeneous atlas data refines cell type anno-137

tations in scATAC-seq.138

We next performed the more challenging task of integrating the full atlas data. Since the139

scRNA-seq atlas contains more cell types than the scATAC-seq atlas, we use this application140

to illustrate how transferred labels can refine and provide new annotations to ATAC cells. To141

compare with the original labels, tSNE plots were constructed in the same way as [26], using142

singular value decomposition of the term frequency-inverse document frequency (TF-IDF)143

transformation of scATAC-seq peak matrix (Figure 3a). We observe that scJoint labels cells144
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close together in this ATAC visualization space in a more consistent way than the other methods.145

Qualitatively this is supported by scJoint’s higher overall accuracy rate (77% compared with146

60% for Seurat and 55% for Conos).147

148

Examining the transferred labels further, we find scJoint labels a group of cells (originally149

labeled as “unknown” or “endothelials”) as “stromal cells” (4352 cells) and “fibroblasts” (1602150

cells), which are two cell types not present in the original ATAC labels. These cells show high151

gene activity scores for Col1a1, Col1a2, Dcn and Ccdc80, all of which are markers with high152

expression levels in stromal cells and fibroblasts but low expression levels in endothelial cells153

from the scRNA-seq data (Figure 3b). Hence, the new annotations are more consistent with the154

marker expression levels.155

156

More interestingly, we note scJoint allows us to annotate 5931 cells labeled as ‘unknown’157

in [26] with probability score greater than 0.80. These cells are clearly clustered into groups158

in the tSNE visualization of scJoint’s embedding space (Figure 3c), with the main groups being159

endothelial cells, stromal cells, neurons and B cells. Using cell type markers identified from the160

scRNA-seq data, the aggregated gene activity scores of these ATAC cells show clear differential161

expression patterns (Figure 3d).162

scJoint enables accurate integration of single-cell multi-modal data across163

biological conditions.164

We demonstrate scJoint is capable of incorporating additional modality information to RNA-seq165

and ATAC-seq and applicable to experiments with different underlying biological conditions.166

We consider multi-modal measurements profiling gene expression levels or chromatin acces-167

sibility simultaneously with surface protein levels, which can be obtained via CITE-seq [31]168

and ASAP-seq [32]. We analyzed CITE-seq and ASAP-seq data from a T cell stimulation169

experiment in [32], which sequenced cells with these two technologies in parallel. A total170

of 18,088 cells were studied under two conditions: one with stimulation of anti-CD3/CD28171

in the presence of IL-2 for 16 hours and the other without stimulation as control. We first172

clustered and annotated these cells using CiteFuse [33]. Compared to the cell type labels in the173

original study, we were able to identify cellular subtypes with CiteFuse, further annotating five174

subgroups in T cells. Next, we performed integration analysis of CITE-seq and ASAP-seq by175
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concatenating gene expression or gene activity vectors with protein measurements. The analysis176

was performed in two scenarios: within the stimulated and control condition separately and177

across the two conditions.178

179

In both scenarios, scJoint generated a better joint visualization of the two technologies180

(Figure 4a, Supplementary Figures S4, S5). In particular, in the case where stimulated and181

control cells are combined, subtypes of T cells (e.g. naive CD8+, effector CD8+, naive CD4+,182

and effector CD4+) are clearly separated while cells from the two technologies are well mixed183

(Figure 4a-b). The median cell type silhouette coefficient of scJoint is 0.51, outperforming184

the other three methods by a large margin (Seurat 0.11, Conos 0.13, and Liger -0.06). With185

the highest silhouette coefficient F1 scores (median F1 score: 0.59) representing a 16% - 28%186

improvement over the other methods, scJoint demonstrates the best balance between removing187

technical variations and preserving biological signals (Figure 4c, Supplementary Figure S6).188

189

Moreover, scJoint achieves higher accuracy in label transfer under all scenarios (88% in190

control, 84% in stimulation, and 87% in the combined case), compared with Seurat (80% in191

control, 79% in stimulation, and 75% combined) and Conos (53% in control, 67% in stimulation,192

and 56% in combined) (Figure 4d and Supplementary Figure S7). In addition, the transferred193

labels of scJoint from the two scenarios (control / stimulation alone, and combined) are highly194

consistent, with 95% of cells having the same annotation, substantially greater than Seurat (84%)195

and Conos (59%) (Supplementary Figure S8).196

Integration of multi-modal data with scJoint captures additional biological197

signals in cell types and conditions198

In the combined analysis of stimulation and control, we find that the joint embedding generated199

by scJoint contains additional information that allows for the identification of a cellular200

subtype. In the CiteFuse annotation of ASAP-seq data, we labeled one cluster of 142 cells with201

ambiguous marker expression as “unknown”. Interestingly, in the joint visualization of scJoint,202

while these “unknown” cells are labeled as “natural killer cells (NK)” by label transfer, they are203

still clearly separated from the majority of NK cells and form a small cluster together with cells204

from CITE-seq. We then examined the gene and protein expression levels of NK cell and T cell205

markers in this subgroup. We find these cells have high expression of CD3 and GNLY at gene206
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level as well as CD3, CD56, CD57, and CD244 at protein level, but low expression of CD8A207

and CD4. This suggests these cells may be natural killer T cells, a minority of immune cells208

in PBMC sample (Figure 4e, Supplementary Figure S9) [34]. By contrast, although these cells209

lack CD8 expression, the other methods are unable to distinguish them from effector CD8+ T210

cells in their visualizations (Figure 4e, Supplementary Figure S10).211

212

Lastly, by appropriately aligning the two technologies in the embedding space, scJoint is able213

to reveal the biological difference between stimulation and control within the same cell type. In214

the joint visualization of scJoint, three subtypes of T cells (naive CD4+, naive CD8+, effector215

CD4+) are less well mixed between the two conditions than the other cell types, consistent with216

the stimulation experiment aiming to activate T cells. In particular, the naive CD4+ T cells show217

the most notable separation between the two conditions (Figure 4a). We then performed differ-218

ential expression analysis of the scRNA-seq part of CITE-seq within each cell type across the219

two conditions using MAST [35]. We find that the naive CD4+ T cells have the largest number220

of unique differentially expressed genes (FDR < 0.01) (Supplementary Figure S11a). Simi-221

larly, differential proteins analysis of both CITE-seq and ATAC-seq using wilcoxon rank sum222

test on the log-transformed protein abundances also suggests that naive CD4+ T cells have the223

most unique differential proteins compared with other cell types (FDR < 0.01) (Supplementary224

Figure S11b-c).225

scJoint shows versatile performance on paired measurements of scRNA-seq226

and scATAC-seq.227

Although scJoint is designed for integrating unpaired data, it is still directly applicable to paired228

data. Such an application also enables us to compare its performance with methods that incor-229

porate pairing information and use the pairing information to validate the label transfer results.230

We consider the integration of adult mouse cerebral cortex data generated by SNARE-seq [14],231

a technology that can profile gene expression and chromatin accessibility in the same cell. In232

addition to Seurat and Liger, we compared scJoint with two other methods designed specifically233

for paired data, scAI [16] and MOFA+ [17]. In our assessment, all the unpaired methods (scJoint,234

Seurat, Liger) treat the RNA and ATAC parts of SNARE-seq as two separate datasets, while the235

paired methods take the pairing information into account. We find that scJoint is able to provide236

clear groupings of cells according to cellular subtypes (Figure 5a) and achieves comparable or237
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better cell type silhouette coefficients (Figure 5b) than the paired methods. This suggests that238

scJoint is versatile enough to be applied to paired data, which are becoming increasingly popular.239

240

Comparing the performance among the unpaired methods, scJoint has the highest medians241

in cell type silhouette coefficients and F1-scores (Figure 5b, Supplementary Figure S13). For242

label transfer, scJoint achieves an accuracy rate of 70.9%, retaining better performance than the243

other two methods (70.1% for Seurat and 49.5% for Conos). Looking closer at the performance244

in each cell type, scJoint performs the best in 10 out of 22 cell types in terms of F1 scores for245

classification (Supplementary Figure S14). Together, these results suggest that scJoint performs246

the best among the unpaired methods and on par with the paired methods, despite treating paired247

data as separate.248

Discussion249

scJoint approaches the integration of scRNA-seq and scATAC-seq as a domain adaptation250

problem in transfer learning, using the same neural network to co-train labeled data from the251

source domain (RNA) and unlabeled data from the target domain (ATAC) following a different252

distribution. scRNA-seq data serve as a natural source domain for transferring information to253

other modalities due to rapidly growing collections of annotated public data and RNA-focused254

computational tools that can output accurate classifications [36]. Using mouse cell atlases and255

multi-modal data with protein measurements, we demonstrate scJoint achieves significantly256

higher label transfer accuracy and provides better joint visualizations than other methods even257

when 1) the data is highly complex and heterogeneous and 2) meaningful biological conditions258

are mixed with technical variations. We have shown that integrative analysis of single-cell259

multi-omics data by scJoint facilitates re-annotation of cell types in scATAC-seq and discovery260

of new subtypes not present in training data.261

262

scJoint provides a concise training framework with one main tuning parameter in the263

construction of cosine similarity loss. As shown in Supplementary Figure S15a, our results264

are quite stable with respect to the choice of this parameter. Similar to other methods based265

on neural networks, the number of hidden nodes in the architecture and other optimization266

details can be considered tunable as well, although they do not appear to affect our results267

(Supplementary Figure S15b).268
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269

The superior performance and robustness of scJoint illustrate its utility as a tool to au-270

tomatically label cells from other modalities given an annotated scRNA-seq database. By271

embedding all cells in a common lower dimensional space, scJoint assigns a probability score272

to a cell type prediction by combining the softmax probabilities of its nearest neighbors. As273

we vary the level of cutoff, the accuracy of scJoint still consistently outperforms the other274

methods (Supplementary Figure S16). The robustness of scJoint was demonstrated through275

subsampling experiments, where the stability of our results implies the method can be applied to276

partially labeled databases. Despite being a semi-supervised method guided by labeled data, the277

dimension reduction component in our design lends it sufficient flexibility to preserve implicit278

data signals, including biological variations induced by experimental conditions and additional279

cellular subtypes. One can conceivably extend scJoint to an unsupervised setting, replacing the280

softmax prediction layer with a decoder minimizing reconstruction loss.281

282

Although designed for unpaired data, scJoint is still directly applicable to paired data283

and generates joint visualizations with cells coherently grouped by cell types. In the current284

training scheme, the pairing information between RNA and ATAC is only used to validate the285

label transfer results. We expect that adapting scJoint to take paired vectors during training286

would enhance its performance on this type of data, and this would be especially useful in the287

unsupervised setting mentioned above.288

289

We have focused on scATAC-seq as an example of epigenomic data, but in principle scJoint290

extends to other modalities such as methylation data, provided the input can be summarized291

as gene-level scores. While the gene-level summaries are amenable to generalization and292

widely adopted by unpaired integration methods, this step itself is also a limitation as improper293

aggregation can incur information loss. Extending scJoint to directly handle epigenomic data at294

locus level will require designing a separate encoder that is suitable for the high dimensionality295

and remains easy to train, and we will pursue this for future work.296

297

In summary, we have developed scJoint as a generalizable transfer learning method for per-298

forming integrative analysis of single-cell multi-omics data. scJoint was shown to effectively299

integrate multiple types of measurements from both unpaired or paired profiling, outperforming300

other methods in label transfer accuracy and providing joint visualizations that remove technical301
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variations while preserving meaningful biological signals. scJoint’s ability to integrate multi-302

omics data by capturing various aspects of cell characteristics unique to different data modalities303

will facilitate a more comprehensive view of cell functions and cell communications.304
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Figure 1: (a) Overview of scJoint. The input of scJoint consists of one (or multiple) gene activity

score matrix, calculated from the accessibility peak matrix of scATAC-seq, and one (or multiple)

gene expression matrix including cell type labels from scRNA-seq experiments. The method

has three main steps: (1) Joint NNDR and semi-supervised transfer learning; (2) Cell type label

transfer by k-nearest neighbor in joint embedding space; (3) Joint training with transferred labels.

(b) Three data collections used in this study: (1) Mouse cell atlases; (2) Multi-modal data from

PBMC; (3) Paired data from adult mouse cerebral cortex data generated by SNARE-seq.
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Figure 2: Analysis of mouse cell atlas subset data containing 19 overlapping cell types from RNA

and ATAC. (a) tSNE visualization of scJoint (left column) and Seurat (right column), colored by

cell types defined in [26] (first row) and three protocols (second row). (b) Scatter plot of mean

silhouette coefficients for scJoint, Liger, Seurat, and Conos (left panel), where the x-axis shows

the mean cell type silhouette coefficients and the y-axis shows ‘1 - mean modality silhouette

coefficients’; ideal outcomes would lie in the top right corner. Boxplots of F1 scores of silhouette

coefficients for scJoint, Liger, Seurat, and Conos (right panel). (c) Accuracy rates of scJoint,

Seurat and Conos using 20%, 50% and 80% of cells from scRNA-seq data as training data. 10

random subsamplings were performed for each setting to generate the variance. (d) Predicted

cell types and their fractions of agreement with the original cell types given in [26] for scJoint

(left panel), Seurat (middle panel) and Conos (right panel). Clearer diagonal structure indicates

better agreement.
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Figure 3: Analysis of mouse cell atlas full data. (a) A 2 ⇥ 2 panel of tSNE plots generated

from top 100 dimensions of singular value decomposition of the TF-IDF transformed ATAC-seq

data, colored by the original labels (top left), scJoint transferred labels (top right), Seurat trans-

ferred labels (bottom left), and Conos transferred labels (bottom right). (b) Marker expressions

in stromal cells and fibroblasts: Col1a1, Col1a2, Dcn and Ccdc80. The left column shows the

gene activity scores of the markers in ATAC-seq data (4352 stromal cells, and 1602 fibroblasts).

The right column shows the log-transformed gene expression of the markers in stromal cells,

fibroblasts, endothelial cells versus others; all cells here are taken from the FACS scRNA-seq

data. (c) tSNE plot of cells originally labeled as ‘unknown’ and annotated by scJoint with prob-

ability scores greater than 0.80, colored by predicted cell types (5931 cells). (d) Heatmap of

z-scores of average gene activity scores, calculated from cells aggregated by predicted cell types

in ATAC. The rows indicate the top four predicted cell types by size. The columns indicate the

top differential expressed genes of the corresponding cell type in RNA.
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Figure 4: Integration of multi-modal PBMC data across biological conditions. (a) tSNE visual-

ization of scJoint (first column), Seurat (second column), Conos (third column) and Liger (fourth

column) of PBMC data generated from CITE-seq and ASAP-seq, colored by cell type obtained

from CiteFuse and manual annotations (first row), technology (second row), and biological con-

dition (third row). (b) Barplots of cell type silhouette coefficients for scJoint, Seurat, Conos and

Liger for all cells, colored by cell type. Larger values on the x-axis indicate better grouping.

(c) Scatter plot of mean silhouette coefficients for scJoint, Seurat, Conos and Liger (left), where

the x-axis denotes the mean cell type silhouette coefficients, and the y-axis denotes 1 - mean

modality silhouette coefficients; ideal outcomes would lie in the top right corner. Boxplots of

F1 scores of silhouette coefficients for scJoint, Liger, Seurat, and Conos (right). (d) Heatmaps

comparing the original labels and the transferred labels of scJoint, Seurat and Conos. Clearer

diagonal structure indicates better agreement. (e) tSNE visualization of scJoint colored by the

predicted cell types with gene expression levels of CD3D, NKG7, CD8A and CD4 in natural

killer cells.
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Figure 5: Analysis of paired gene expression and chromatin accessibility data from SNARE-seq.

(a) tSNE visualization of SNARE-seq data for scJoint, Seurat, MOFA+ and scAI , colored by

cell types given in [14]. All unpaired methods treat the RNA and ATAC parts of SNARE-seq as

two separate data. (b) Boxplots of cell type silhouette coefficients for scJoint, Seurat, Conos and

Liger, colored by methods.
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Methods305

Architecture and training of scJoint306

The neural network in scJoint consists of one input layer and two fully connected layers. The307

input layer has dimension equal to the number of genes common to the expression matrix308

of scRNA-seq and the gene activity matrix of scATAC-seq, after simple filtering (see Data309

preprocessing). Now that the two modalities have matching input features, we co-train them310

using the same encoder which is equivalent to weight sharing. The first fully connected layer has311

64 neurons with linear activation and serves as the joint low dimensional embedding space that312

captures aligned features from all cells. visualizations of clustering structure can be obtained313

by applying tSNE or UMAP to the output of the embedding layer. The second fully connected314

layer has dimension equal to the number of cell types in scRNA-seq data. Through a softmax315

transformation, this layer outputs a probability vector for cell type prediction. For cells in316

scRNA-seq, this layer can be trained in a supervised fashion using the cross entropy loss.317

318

Given S scRNA-seq experiments with expression matrices and T scATAC-seq experiments319

with gene activity score matrices, assume suitable intersections have been taken so that all320

matrices have the same set of genes. Let {x(s)
i }Ns

i=1 be the expression profiles of cells after321

preprocessing from a scRNA-seq dataset indexed by s 2 {1, . . . , S}, and {y(s)i }Ns
i=1 be the322

corresponding cell type annotations. Here each x(s)
i is a G-dimensional vector, where G323

is the number of genes; y(s)i 2 {1, . . . , K}, where K is the number of cell types; Ns is324

the number of cells in experiment s. Similarly, let {x(t)
i }Nt

i=1 be the vectors of gene activity325

scores after preprocessing from the t-th scATAC-seq dataset with Nt cells (t 2 {1, . . . , T}),326

whose cell types are unlabeled. The neural network is parametrized by a set of weights and327

biases, collectively denoted ✓. Let f (s)
✓,i = f(x(s)

i ; ✓) 2 RD, D = 64, be the output of the328

embedding layer when the input x(s)
i has gone through a transformation of f parametrized by329

✓. Similarly g(s)✓,i = softmax(h(f(x(s)
i ; ✓))), where h denotes the output from the prediction330

layer that goes through the softmax transformation. Thus g(s)✓,i is a probability vector after the331

softmax transformation. f (t)
✓,i and g(t)✓,i are defined in the same way for input x(t)

i from scATAC-seq.332

333

The training of scJoint consists of three steps.334
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Step 1: Joint neural network based dimension reduction (NNDR) and semi-supervised335

transfer learning336

We first perform joint dimension reduction and feature alignment by imposing suitable loss337

functions on the outputs of the two fully connected layers. A mini-batch B0 of data for338

training is constructed by sampling equal-sized subsets of cells from each dataset, that is,339

B0 = {B(s)}Ss=1 [ {B(t)}Tt=1, where each subset B(s) (or B(t)) has B cells.340

1. NNDR Loss. In a spirit similar to PCA, the NNDR loss aims to capture low dimensional,341

orthogonal features when projecting each data batch into the embedding space. For now342

we omit the dataset-specific superscript with the understanding that this loss function is343

applied to each B(s) and B(t). Given input vectors {xb}b2B, define f̄✓,· =
1
B

P
b2B f✓,b 2344

RD, and ⌃✓,· as the sample correlation matrix. The NNDR loss is:345

346

LNNDR(B, ✓) =
 

1

BD

X

b2B

DX

j=1

|f✓,b(j)� f̄✓,·(j)|
!�1

+
1

D2

X

i 6=j

|⌃✓,·(i, j)|347

+
1

BD

X

b2B

DX

j=1

|f̄✓,·(j)|.348

349

Note that to minimize this loss, we maximize the variability within each coordinate (inverse350

of the first term) and minimize the correlation between all coordinate pairs (the second351

term) to achieve orthogonality. The last term tries to fix the means of all coordinates352

near zero for model identifiability, preventing ✓ from drifting to unstable regions of the353

parameter space.354

2. Cosine similarity loss. This loss is applied to the embedding layer outputs from B(t) and355

BR = [S
s=1{B(s)}, for every t, and attempts to maximize the similarity between best356

aligned ATAC and RNA data pairs. Let p be the fraction of data pairs we expect to have357

high cosine similarity scores. Setting p < 1 accounts for situations where RNA and ATAC358

do not share all their cell types. We set p = 0.8 for all the results presented in the paper,359

and our results appear to be stable with respect to this parameter (Supplementary Figure360

S15a) when the cell types fully overlap. Recall that for a pair of general vectors (u, v), the361

cosine similarity is defined as cos(u, v) = hu, vi/(kukkvk). For each x(t)
b with b 2 B(t),362

we find the corresponding i(b) 2 BR with input xi(b) that maximizes cos(f (t)
✓,b , f✓,i(b)). From363

B(t), we then choose the top p fraction of cells with the highest cosine score and denote the364

index set Ip. (Ip has size bBpc.) The loss is given by365
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Lcos(B(t),BR, ✓) = � 1

bBpc
X

b2Ip

cos(f (t)
✓,b , f✓,i(b)).366

367

3. Cross entropy loss. For every B(s) with cell type annotations {y(s)b }b2B(s) , we apply the368

cross entropy loss to the prediction layer after softmax transformation to supervise the369

learning of scRNA-seq datasets:370

Lentropy(B(s), ✓) = � 1

B

X

b2B(s)

KX

k=1

1(y(s)b = k) log g(s)✓,b(k),371

372

where 1(·) is an indicator function.373

In Step 1, the final loss function we minimise with respect to ✓ for a mini-batch B0 is374

L1(B0, ✓) =
SX

s=1

�
LNNDR(B(s), ✓) + Lentropy(B(s), ✓)

�
+

TX

t=1

�
LNNDR(B(t), ✓) + Lcos(B(t),BR, ✓)

�
.375

376

Step 2: Cell type label transfer by KNN in joint embedding space377

The output of Step 1 is a joint embedding space that has roughly aligned RNA and ATAC with378

cells from either modality lying close if they have similar low dimensional representations in379

this space. Therefore using the embedding vectors for cells in all the datasets and calculating380

the Euclidean distances, we can determine the KNN among all RNA cells for each cell i in381

ATAC; denote this set of RNA cells N (i). The cell type label of i is estimated via majority vote382

using {yj}j2N (i). All the results in the paper were obtained from using 30 nearest neighbors.383

Let the majority cell type be k⇤, then the probability score of cell type prediction for cell i in384

ATAC is an average of its nearest neighbors in RNA. Since for each j 2 N (i), g✓,j is already385

a probability vector after the softmax transformation, we take p✓,j = g✓,j(k⇤) as the probability386

score of RNA cell j in the majority class M(i) ⇢ N (i). For other j 2 N (i)\M(i), we threshold387

the probability score as 0. Then the probability score of ATAC cell i is calculated as388

p̂✓,i =
1

30

X

j2M(i)

p✓,j.389

Step 3: Joint training with transferred cell type labels390

In the final step of the training, we refine the joint embedding space and improve mixing of cells391

from the same cell type using the transferred labels from Step 2. We include an additional loss392
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function commonly used in metric learning for enhancing embedded clustering structure given393

labeled data. The other loss functions and network architecture remain the same as Step 1 with394

ATAC cells and their transferred labels added to Lentropy.395

396

For each cell type k 2 {1, . . . , K}, we initialize the class center ck 2 RD randomly. We397

construct mini-batches of cells from all the datasets in the same way as Step 1. Now that all cells398

have cell type labels (given or transferred), for convenience we will refer to cells in a mini-batch399

B0 without explicitly labeling which dataset they come from. For a given B0, we first update the400

class centers by taking the average of ck and {f✓,b} with b 2 B0 and yb = k. Let the updated401

centers be c0k. As the number of mini-batches grows, the influence of the initial ck becomes402

negligible. The metric learning loss we use is the center loss:403

Lcenter(B0, ✓) =
1

|B0|K
X

b2B0

KX

k=1

kf✓,b � c0kk21(yb = k).404

405

The total loss function we minimise in Step 3 is given by406

LscJoint(B0, ✓) = L1(B0, ✓) + Lcenter(B0, ✓).407
408

We perform a final round of majority vote by KNN using distances in the embedding space.409

If the prediction of any ATAC cell is different from Step 2, we update both its prediction and410

probability score in the same way as Step 2. Before visualization with tSNE, all embedding411

vectors are normalized using L2 norm.412

Training details413

The batch size B was set to 256 in all cases. The other training details including learning rate414

and number of training epochs used in each dataset can be found in Table S1. We started all the415

training with learning rate set to 0.01, since a large learning rate has the benefit of faster training.416

However, if the values of the loss functions were observed to have too much fluctuation, we417

decreased the learning rate to 0.001 for more stable training.418

Data preprocessing419

• Mouse atlas data. The processed gene expression matrix and the cell type annota-420

tion of the Tabula Muris mouse data of scRNA-seq were downloaded from https:421

//tabula-muris.ds.czbiohub.org/, which have 41965 cells from protocol422
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fluorescence-activated cell sorting (FACS) and 54439 cells from microfluidic droplets423

(droplet). The quantitative gene activity score matrix and the cell type annotation of Mouse424

sci-ATAC-seq Atlas were downloaded from https://atlas.gs.washington.425

edu/mouse-atac/, including 81173 cells in total. The number of common genes be-426

tween two modalities is 15519. We manually checked the cell type annotations from the427

original studies and re-annotated the labels such that the naming convention is consistent428

across the datasets. For example, the cell type “Cardiac muscle cell” in the sci-ATAC-seq429

dataset was changed to “Cardiomyocytes”. We also combined some of the cellular sub-430

types in the sci-ATAC-seq data to increase the percentage of overlapping labels between431

two atlases for evaluation. More specifically, we combined “Regulatory T cell” and “T432

cell” into “T cell”; “Immature B cell”, “Activated B cell” and “B cell” into “B cell”; “Ex-433

citatory neurons” and “Inhibitory neurons” into “Neuron”.434

• SNARE-seq data. The SNARE-seq data from adult mouse cerebral cortex was downloaded435

from the National Center for Biotechnology Information (NCBI) Gene Expression Om-436

nibus (GEO) accession number GSE126074 [14], with both raw gene expression and DNA437

accessibility measurements available for the same cell. The fastq files were downloaded438

from the Sequence Read Archive (SRA) for SRP183521. We first derived the fragment439

files from the fastq files using sinto fragments (sinto v0.7.2), and then generated440

the gene activity matrix using Signac (v1.1.0.9000) [30]. The cell type information was441

obtained from the original study [14]. We filtered out the cells that were originally labeled442

as “Misc” (cells of miscellaneous cluster), resulting in a dataset with 9190 cells and 15725443

genes for the integrative analysis.444

• Multi-modal data (CITE-seq and ASAP-seq PBMC data). The ASAP-seq and CITE-seq445

data were downloaded from GEO accession number GSE156478 [32], which included the446

fragment files and antibody-derived tags (ADTs) matrices for ASAP-seq, the raw unique447

molecular identifier (UMI) and ADT matrices for CITE-seq, from both control and stim-448

ulated conditions. The gene activity matrices for ASAP-seq were generated by Signac.449

Most of the thresholds we used for quality control metrics were consistent with those in450

the original paper [32]. The control and stimulated CITE-seq were filtered based on the451

following criteria: mitochondrial reads greater than 10%; number of expressed genes less452

than 500; total number of UMI less than 1000; total number of ADTs from the rat iso-453

type control greater 55 and 65 in the control and stimulated conditions respectively; total454
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number of UMI greater than 12,000 and 20,000 for the control and stimulated conditions455

respectively; total number of ADTs less than 10,000 and 30,000 for control and stimulated456

conditions respectively. We further filtered out cells that were classified as doublets in457

original study. For the ASAP-seq data, we filtered out cells with the number ADTs more458

than 10,000 and number of peaks more than 100,000. Finally, 4502 cells (control) and459

5468 cells (stimulated) from ASAP-seq, 4644 cells (control) and 3474 cells (stimulated)460

from CITE-seq were included in the downstream analysis. The number of common genes461

across the four matrices is 17441 and the number of common ADTs is 227. We used462

CiteFuse to integrate the peak matrix or gene expression matrix with their corresponding463

protein expression and obtain clustering for ASAP-seq and CITE-seq within each condi-464

tion separately [33]. For ASAP-seq, the similarity matrices of the chromatin accessibility465

are calculated by applying the Pearson correlation to the TF-IDF transformation of the466

peak matrix. We then followed the procedure described in [37] to annotate the clusters.467

For scJoint, all the gene expression matrices and gene activity score matrices were binarized as 0468

or 1, with 1 representing any non-zero original values, as the final input for training. Binarization469

scales the two modalities so that their distributions have the same range and reduces the noise470

level in the data for easier co-training.471

Settings used in other methods472

For the unpaired data (mouse cell atlases and multi-modal data from CITE-seq and ASAP-seq),473

we benchmarked the performance of scJoint against three other methods designed for integrating474

unpaired single-cell multi-modal data: Seurat (v3), Conos and Liger. We compared the label475

transfer accuracy with Seurat and Conos and the joint visualizations with all three methods.476

For the paired data (SNARE-seq), we further compared joint visualizations with two methods477

specifically designed for paired data, scAI and MOFA+. For all the unpaired methods, we used478

gene activity matrices derived from the above data preprocessing step as input for scATAC-seq.479

For the two paired methods, we used the peak matrices of scATAC-seq data as input. Detailed480

settings used in each method are as follows.481

• Seurat. R package Seurat v3.2.0 [24] was used for all the datasets. The raw count482

matrix of scRNA-seq and unnormalized gene activity score matrix of scATAC-seq were483

used as input, which were then normalized using the NormalizeData function in Seu-484

rat. Noted that for the CITE-seq and ASAP-seq data, the input was a concatenated485

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2020.12.31.424916doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.424916
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrix of log-transformed normalized gene expression data/gene activity score matrix486

and log-transformed ADTs matrix. Top 2000 most variable genes were selected from487

scRNA-seq using FindVariableFeatures with vst as method. To identify the an-488

chors between scRNA-seq and scATAC-seq data, FindTransferAnchors function489

was used with “cca” as reduction method. The scATAC-seq data was then imputed using490

TransferAnchors function, where the anchors were weighted by latent semantic in-491

dexing (LSI) reduced dimension of scATAC-seq. Principal component analysis was then492

performed on the merged matrix of scRNA-seq data and imputed scATAC-seq data. For all493

the datasets, 30 principal components (PCs) were used for joint visualization with tSNE494

(function RunTSNE).495

For the mouse cell atlas data, we first integrated the two scRNA-seq datasets (FACS and496

droplet) using FindIntegrationAnchors and IntegrateData, and then the inte-497

grated matrix was scaled using ScaleData and used as reference to find transfer anchors.498

• Conos. R package conos v1.3.1 [23] was used for all the datasets. Function499

basicP2proc in pagoda2 package (v0.1.2) was performed to process the raw500

count matrix of scRNA-seq and unnormalized gene activity score matrix of scATAC-501

seq. The joint graph was built using buildGraph with k=15, k.self=5, and502

k.self.weigh=0.01, which were set as suggested in the tutorial for integrating503

RNA and ATAC (http://pklab.med.harvard.edu/peterk/conos/atac_504

rna/example.html). The joint visualization of scRNA-seq and scATAC-seq were505

generated using largeVis by embedGraph, which is the default visualization in Conos.506

• Liger. R package liger v0.5.0 [21] was used for the datasets. The raw count matrix of507

scRNA-seq and unnormalized gene activity score matrix of scATAC-seq were used as in-508

put, which were normalized using normalize function in liger. Highly variable genes509

were selected using the scRNA-seq. For the mouse cell atlas data, both FACS and droplet510

scRNA-seq data were used to select features. For all the datasets, number of factors was511

set to 20 in optimizeALS. tSNE was then performed on the normalized cell factors512

to generate the joint visualization of scRNA-seq and scATAC-seq (function runTSNE in513

liger).514

• scAI. R package scAI v1.0.0 [16] was used for the integration of SNARE-seq data. The raw515

count matrix of scRNA-seq and raw peak matrix of scATAC-seq were used as input. We516
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ran scAI using run scAI by setting the rank of the inferred factor set as 20, do.fast =517

TRUE, and nrun = 1, with other parameters set as default, as suggested in the pipeline in518

the github repository. tSNE plots were generated using reducedDims function in scAI.519

• MOFA+. R package MOFA2 v1.0 [17] was used for the integration of SNARE-seq data.520

Following the suggested integration tutorial for SNARE-seq in the github repository, we521

first selected top 2500 most variable genes using FindVariableFeatures in Seu-522

rat package with vst as method and top 5000 most variable ATAC peaks with disp as523

method. By subsetting the counts matrix of scRNA-seq and peak matrix of scATAC-seq524

with the selected features, we ran MOFA+ by setting the number of factors as 10, with525

other parameters set as default. tSNE plots were generated using run tsne function in526

MOFA2.527

Evaluation metrics528

Joint embedding evaluation - Silhouette coefficients529

To evaluate whether the joint embeddings from different methods show clustering structure530

reflecting biological signals or technical variations, we calculated the silhouette coefficient531

for each cell by considering two different groupings: (1) grouping based on the modalities532

(scRNA-seq or scATAC-seq), called the modality silhouette coefficient (smodality); (2) grouping533

based on known cell types, called the cell type silhouette coefficient (scellTypes). Note that for534

the atlas data, we consider FACS and droplet in scRNA-seq as two distinct technologies and the535

modality silhouette coefficient has three groups (FACS, droplet, ATAC) in the calculation. For536

SNARE-seq, the paired methods (scAI and MOFA+) have no modality silhouette coefficients537

since each cell has one paired profile of RNA and ATAC. An ideal joint visualization should have538

low modality silhouette coefficients, suggesting the removal of the technical effect, and large539

cell type silhouette coefficients, indicating the cells are grouped by cell types. The euclidean540

distance for all methods except Conos is obtained from the tSNE embedding. For Conos, the541

distance is obtained from the largeVis embedding, which is the method’s default output.542

543

We then summarize the two silhouette coefficients by calculating an F1-score as follows:544

F1sil =
2 · (1� s0modality) · s0cellTypes

1� s0modality + s0cellTypes

,545
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where s0 = (s + 1)/2. A higher F1 score indicates better performance in the alignment of the546

modalities as well as the preservation of biological signals.547

Accuracy evaluation of transferred labels548

We evaluated the accuracy of label transfer from two aspects: (1) Overall accuracy rate; (2)549

Cell type classification F1-score. The overall accuracy rate was computed only accounting for550

the common cell types between scRNA-seq and scATAC-seq data. The cell type classification551

F1-score is the harmonic mean of precision and recall of each cell type.552

Software availability553

scJoint was implemented using PyTorch (version 1.0.0) with code available at https://554

github.com/SydneyBioX/scJoint.555
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