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Abstract

The research landscape of single-cell and single-nuclei RNA sequencing is evolving
rapidly, and one area that is enabled by this technology, is the detection of rare cells. An
automated, unbiased and accurate annotation of rare subpopulations is challenging. Once
rare cells are identified in one dataset, it will usually be necessary to generate other datasets
to enrich the analysis (e.g., with samples from other tissues). From a machine learning
perspective, the challenge arises from the fact that rare cell subpopulations constitute an
imbalanced classification problem.

We here introduce a Machine Learning (ML)-based oversampling method that uses
gene expression counts of already identified rare cells as an input to generate synthetic
cells to then identify similar (rare) cells in other publicly available experiments. We
utilize single-cell synthetic oversampling (sc-SynO), which is based on the Localized
Random Affine Shadowsampling (LoRAS) algorithm. The algorithm corrects for the
overall imbalance ratio of the minority and majority class.

We demonstrate the effectiveness of the method for two independent use cases, each
consisting of two published datasets. The first use case identifies cardiac glial cells in
snRNA-Seq data (17 nuclei out of 8,635). This use case was designed to take a larger
imbalance ratio (~1 to 500) into account and only uses single-nuclei data. The second use
case was designed to jointly use snRNA-Seq data and scRNA-Seq on a lower imbalance
ratio (~1 to 26) for the training step to likewise investigate the potential of the algorithm to
consider both single cell capture procedures and the impact of “less” rare-cell types. For
validation purposes, all datasets have also been analyzed in a traditional manner using
common data analysis approaches, such as the Seurat3 workflow.

Our algorithm identifies rare-cell populations with a high accuracy and low false
positive detection rate. A striking benefit of our algorithm is that it can be readily
implemented in other and existing workflows. The code basis is publicly available at
FairdomHub (https://fairdomhub.org/assays/1368) and can easily be transferred to
train other customized approaches.
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1 Introduction

Single-cell RNA-sequencing (scRNA-Seq), as well as single-nuclei RNA-sequencing (snRNA-
Seq), open up a transcriptome-wide gene expression measurement at single-cell level, enabling
cell type cluster identification, the arrangement of populations of cells according to novel
hierarchies, and the identification of cells transitioning between individual states [1]. This
facilitates the investigation of underlying structures in tissue, organism development, and
diseases, as well as the identification of unique subpopulations in cell populations that were
so far perceived as homogeneous.

1.1 Using single-cell technology for the identification of rare cells

Classifying cells into cell types or states is essential for many biological analyses [2]. For
example, investigating gene expression changes within a cell type or cell subpopulation can
be of high interest across different biological conditions, time-points, or in patient samples. To
be able to compare these different cell types, reliable reference systems, especially in sparse-
cell states are necessary. However, the lack of markers for rare-cell types motivates the use of
unsupervised clustering approaches. Method development for such unsupervised clustering
of cells has already reached a certain level of maturity [3, 4, 5]. Furthermore, many studies are
interested in specialized cells (e.g., cancer cells, cardiac pacemaker cells) with an occurrence of
less than 1 in 1000. The identification of such clusters, solely based on unsupervised clustering
of a single dataset, remains very challenging [6]. For this reason, almost every cell clustering
characterization approach is driven by manual cluster annotation, which is time consuming
and involves a bias of the annotating domain expert, thus limiting the reproducibility of
results. One possible solution requires a so-called cell atlas, as a curated reference system that
systematically captures cell types and states, either tissue specific or across different tissues [7].

Here, we show how the limitation of identifying already annotated rare-cell types in newly
generated scRNA-Seq data can be overcome, by using an synthetic oversampling approach
(sc-SynO). sc-SynO is able to automatically identify rare-cell types in an unbiased and precise
manner in novel data.

1.2 Using machine learning algorithms to generate cell types in silico

Machine learning (ML) algorithms are widely used to deal with classification problems and,
thus, are used here to automate the annotation of rare-cell types from single-cell or nuclei RNA-
Seq data. However, the scarce number of these cells within samples (less than 1 out of 1000
cells) often results in highly imbalanced data. An imbalanced dataset is a type of dataset where
one or more classes have a significantly less number of samples compared to other classes (e.g.,
sinus node cells in the heart). A class having such a low number (minority class) is difficult to
detect for unsupervised clustering approaches or classification algorithms in general [6]. The
reason behind this is the inability of ML algorithms to perceive or learn underlying patterns
from the minority class due to the scarcity of samples and thereby failure of these algorithms
to classify them properly [8].

To overcome the problem of imbalance, oversampling techniques have been an area of research
in the field of ML for more than a decade. Among several approaches proposed to deal with
such issues is the approach of synthetic oversampling [9]. The philosophy of generating
synthetic samples is to impute minority class instances, here cell types, in an attempt to
enhance the capacity of an ML algorithm to learn. The idea of oversampling is thus commonly
used to re-balance the classes [8].

In our study, we compared and benchmarked the ML-based annotation of rare cells with no
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oversampling and the most commonly used oversampling algorithm SMOTE [10], as well
as our own sc-SynO approached based on the recently described LoRAS algorithm [11]. We
provide a brief description of all the oversampling algorithms we have used to pre-process
our data as follows:

SMOTE: Creates minority class instances by an underlying mathematical assumption. It
assumes, that for two close enough minority instances, a convex combination of those two
minority instances can be considered as a synthetic minority instance. Generating oversamples
with SMOTE has been used to enrich the minority class enabling improvement of ML
algorithm performances in case of imbalanced datasets [10].

• Borderline-SMOTE: Considers the majority class distribution along with the minority
class to look for ‘Borderline’ samples [12].

• SVM-SMOTE: Considers the majority class distribution along with the minority class to
look for ‘Borderline’ samples, which are selected using support vectors of a pre-trained
SVM model. [13].

• ADASYN: Decides ‘adaptively’ the number of synthetic samples to be generated from
each minority class data point depending on their importance in improving the learning
capability of a classifier[14].

• sc-SynO: Our proposed approach is based on the LoRAS algorithm and integrates the
idea of approximating the minority class data manifold with a more comprehensive
modelling of the convex data space of the minority class, while generating synthetic
minority class samples resulting in more balanced model performance in terms of F1-
Score and Balanced accuracy [11].

2 Data and Methods

2.1 Use case preparation

To evaluate the potential of synthetic oversampling to precisely annotate cell populations in
newly generated data, we generated two use cases by utilizing already published single-cell
and nuclei RNA-Seq datasets. Normalized read counts were processed with Seurat [15] (any
other normalization method is also applicable). These are then used as an input to generate the
synthetic samples and train the different ML classifiers. In addition, we tested the influence of
using all transcripts for a classification, or only the top 20, 50, or 100 pre-selected ones (basic
feature selection function of Seurat 3 was used). This helps us to investigate the influence of
further downstream information obtained from standard feature selection workflows that are
usually applied during scRNA-Seq analysis.

The first use case identifies cardiac glial cells in snRNA-Seq data (17 nuclei out of 8,635) [16],
which were used as a training set. The trained sc-SynO ML-classifier was subsequently applied
to independently generated snRNA-Seq data sets of Wolfien et al. [17] and Vidal et al. [18] to
automatically detect the cardiac glial cells (Glial cells). This use case was designed to take a
larger imbalance ratio (~1 to 500) into account and only uses single-nuclei data.

In contrast to this, the second use case was designed to jointly use snRNA-Seq data and
scRNA-Seq on a lower imbalance ratio (~1 to 26) for the training step to likewise investigate
the potential of the algorithm to consider both single cell capture procedures and the impact
of “less” rare-cell types. In particular, studies of Galow et al. [19] (snRNA-Seq), and Linscheid
et al. [20] (scRNA-Seq) were used to identify prolifertive cardiomyocytes (Prl cardio).
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For validation purposes, all datasets have also been analyzed in a traditional manner using
common data analysis approaches, such as the Seurat3 workflow, as already described
elsewhere [17]. Key statistics of the imbalance ratio (Imb. ratio), number of minority samples,
cross-validation folds, and oversampling neighbors of the use cases are presented in Table 1.

Table 1: Key statistics of the datasets used during this study. The column ’Oversampling nbd’
shows the number of nearest neighbours considered for each minority class data points to
generate synthetic samples

Dataset Imb. ratio minority samples CV folds Oversampling nbd
Glial cells 506.94 17 3 3
Prl cardio 26.21 625 10 30

2.2 Transferring the LoRAS algorithm to single-cell data

The LoRAS algorithm as a basis for sc-SynO: The LoRAS algorithm is designed to create
a better approximation of the underlying data manifold by a rigorous modelling of the
convex data space compared to pre-existing algorithms, like SMOTE and several of its already
presented extensions. A brief outline of the sample generation of sc-SynO approach, as well
as the resulting benefits, are shown in Figure 1. To generate a synthetic sample, the algorithm
first considers the k-nearest neighbours of a minority class data point from a two dimensional
embedding of the minority class achieved by using t-SNE. When there are enough data points
in the minority class this provides the algorithm a better approximation of the local data
manifold for the minority class.

Once the k-nearest neighbours are decided for a minority class data point p and thereby
the neighbourhood of p is identified, Gaussian noise is added to all the data points in the
neighbourhood of p. The pseudo data points generated by the Gaussian noise are called
shadowsamples. A random convex combination of multiple shadowsamples is used to create
a Synthetic LoRAS sample. A mathematical explanation of the algorithm asserts that, using
convex combination of multiple shadowsamples in LoRAS, can produce a better estimate of
the local mean considering the synthetic samples generated in a neighbourhood are random
variables [11].

ML model description: For our benchmark study, we chose the k-nearest neighbours (knn)
and logistic regression model (lr) as our ML classifiers. The reason behind choosing knn is
that this model is known to perform well for imbalanced datasets, especially while using
oversampling algorithms [21]. We also used the lr model because we observed that the
effectiveness of the model in other benchmarking studies using different imbalanced datasets
is performing well jointly with the LoRAS oversampling algorithm [11]. The knn model was
used with k = 30 parameter value. After oversampling there are almost equal data points in
the majority and the minority class. For the knn classifier model, we choose a k value of thirty
to ensure that the classifier’s decision is made on a statistically significant number of samples.
The lr model was used with default parameter settings.

Given the proliferative cardiomyocytes dataset, for every ML model, we use a 5 × 10-fold
stratified cross-validation framework to judge model performances. For the cardiac glial
cell dataset, due to the extremely small minority class of only 17 cells, we used a 5 × 3-fold
stratified cross-validation. First, we shuffle the dataset randomly. We divide the dataset into
k-folds depending on the dataset as described above. The folds are kept distinct maintaining
approximately the same imbalance ratio in each fold. After we train and test our models using
stratified cross validation, we identify an appropriate model for a given dataset based on the
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Figure 1: Visualization of the workflow demonstrating a step-by-step explanation for a sc-
SynO analysis. a) Several or one snRNA-Seq or scRNA-Seq fastq datasets can be used as an
input. Here, we identify our cell population of interest and provide raw or normalized read
counts of this specific population to sc-SynO for training. b) Further information for cluster
annotation and processed count data are serving as input for the core algorithm. c) Based
on the data input, we utilize the LoRAS synthetic oversampling algorithms to generate new
cells around the former origin of cells to increase the size of the minority sample. The trained
Machine Learning classifier is validated on the trained, pre-annotated dataset to evaluate the
performance metrics of the actual model. The model is now ready to identify the learned
rare-cell type in novel data.

F1-score and balanced accuracy. The selected model is then trained over the whole dataset and
is then used to detect rare cells in two corresponding validation datasets.

Oversampling procedure: For our comparative study, we apply the already presented
oversampling algorithms. Although there are several other oversampling strategies, convex
combination based oversampling can work particularly well when there are too few data
points in the minority class due to a lesser chance of overfitting. For every test fold, we
oversample only on the training fold, so that the test fold is completely unseen to the
classifiers. We specify the most important parameter values of the oversampling model
to ensure full reproducibility of our models. For the proliferative cardiomyocytes dataset
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having 625 minority class samples, we choose 30 of the nearest neighbours of a minority class
sample, as the oversampling neighbourhood of all algorithms. sc-SynO has some additional
parameters, such as Naff, Lσ, and Ngen, enabling a better approximation of the minority
class data manifold. For the Glial cell dataset, with only 17 minority class samples, we
use three of the nearest neighbours of a minority class sample, as well as the oversampling
neighbourhood of all algorithms. The num_afcomb parameter is chosen to be 23 and 100 for
the two cases studies of the proliferative cardiomyocytes dataset with 23 and 100 prioritized
marker-genes respectively. For the Glial cell dataset, num_afcomb is chosen to be 50 in both
case studies. For detailed parameter values please see the code published on FairdomHub
(https://fairdomhub.org/assays/1368).

Choosing proper performance metrics are also often a challenge for imbalanced datasets. The
usual performance measures such as accuracy or area under the curve (AUC) of receiver
operating characteristic (ROC) might be unreliable in this scenario [22]. In our studies, we
used two performance measures, the F1-Score (Harmonic mean of precision and recall) and
the Balanced accuracy. A lower F1-Score, in our case studies, implies many false negatives and
a lower Balanced accuracy implies a lower rate of detection of the minority class. These two
measures together can provide a fair understanding of a classifier performance on the datasets
we address.

Model implementation, execution, and distribution: To allow for an enhanced reusability
and transparency of our analysis we provide jupyter notebooks, which can be easily utilized
to rerun our analyses or adapt our proposed algorithm to other sc/snRNA-Seq experiments.
We used python version 3.7.4. The initial code basis of LoRAS is described in Bej et al. [11]
and can be accessed at Github (https://github.com/sbi-rostock/LoRAS). To ensure a broad
and versatile use of the proposed algorithm, we performed our benchmarking study on a
basic personal computer (Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 4 Core(s), 8
Logical Processor(s), 16 GB RAM), which indicates that the actual runtimes on more powerful
computers can be shortened significantly.

3 Results

Our studies confirm that the pre-selection of features (marker genes) is an important pre-
processing. Pre-selection of features not only results in faster models but also produces more
reliable results. In Table 2 we show the comparison of runtimes for several pre-selection
scenarios using a knn model. We observe a much higher runtime without pre-selection of
features. Moreover, the performance of the predictive model on both validation datasets is
highly unreliable as in validation dataset VD1 and VD2 there are only 5 and 3 cardiac glial
cells respectively as per expert annotations. In contrast, pre-selection of features yields much
more accurate results [18, 16]. Without pre-selection the predictive model uses a large number
of features leading to an overfitted model. For this reason, we developed our workflow based
on pre-selected features obtained from automated feature selection methods in our in-depth
comparisons.

The results for both model training use cases including pre-specified cellular markers and 5-
fold stratified cross validation are presented in Table 3.

3.1 sc-SynO achieves a low false negative rate for the identification of glial cells

Training data: For the cardiac glial cell dataset all models produce an F1-Score of more than 90
percent. This means that for this dataset irrespective of the used model the risk of getting false
negatives is low. However, for the knn models, we observed that the Balanced accuracy is very
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high for almost all oversampling models including LoRAS. Since this dataset has a extremely
rare minority class, only 17 training samples, here detecting the minority class would be more
important, especially when the risk of getting false negatives is low. We thus used the knn
model with 20 marker genes and LoRAS oversampling to predict on the validation dataset.

Table 2: Table showing comparisons among several feature pre-selection scenarios in terms of
runtime and efficiency in detection of glial cells for two different validation datasets (VD 1 &
2)

Dataset Pre-selection Pre-processing Data generation time Train-test time Detected/Actual cells

VD1 All features None - 11min 56s 0/5
VD2 All features None - 2min 19s 0/3
VD1 All features sc-SynO 4min 3s 28min 24s 2423/5
VD2 All features sc-SynO 4min 19s 5min 8s 299/3
VD1 50 features sc-SynO 1.23 s 1.94 s 5/5
VD2 50 features sc-SynO 1.12 s 484 ms 3/3
VD1 20 features sc-SynO 1.12 s 679 ms 6/5
VD2 20 features sc-SynO 1.11 s 236 ms 3/3

Table 3: Table showing F1-Scores/Balanced accuracies for several oversampling models for
our two ML classifiers (lr and knn) and for several numbers of pre-selected features (Marker
genes).

Dataset ML Features Baseline SMOTE Bl-1 Bl-2 SVM ADASYN sc-SynO

Glial cells lr 20 .924/.965 .927/.971 .920/.969 .909/.983 .930/.968 .924/.971 .921/.971
Glial cells knn 20 .940/.952 .949/.999 .923/.98 .923/.98 .949/.999 .949/.999 .949/.999
Glial cells lr 50 .929/.956 .957/.981 .966/.986 .963/.981 .957/.981 .966/.986 .957/.981
Glial cells knn 50 .910/.923 .945/.999 .945/.980 .945/.980 .945/.999 .945/.999 .945/.999
Prl cardio lr 20 .800/.867 .646/.932 .546/.948 .455/.941 .564/.952 .532/.947 .705/.937
Prl cardio knn 20 .851/.898 .731/.967 .66/.966 .622/.962 .698/.966 .613/.963 .76/.964
Prl cardio lr 100 .867/.919 .767/.956 .760/.959 .630/.962 .758/.963 .682/.958 .854/.940
Prl cardio knn 100 .859/.893 .756/.970 .673/.967 .612/.962 .710/.968 .631/.965 .698/.964

Validation: We tested the sc-SynO algorithm, which was trained on snRNA-Seq normalized
read count data of two independent snRNA-Seq data sets. We identified four out of five cardiac
glial cells (Cluster 32) in the first validation set of Wolfien et al. and three out of three cells
(Cluster15) for the second validation dataset from Vidal et al. (Figure 2A, 2B) [18, 16]. In both
data sets no false positive predictions have been observed. Figure 2C shows the average gene
expression of particular cardiac glial cell markers that are highly expressed in the identified
clusters and weakly in other clusters with a close proximity.

3.2 Oversampling approaches improve the overall identification of proliferative
cardiomyocytes

Training data: For the proliferative cardiomyocytes dataset, we notice that the performance
of the classifiers clearly improves with including more marker genes as features (Figure 3A,
3B). Note that all oversampling models improve on the balanced accuracy compared to the
baseline case. However, all of them compromise on the F1-Score. This means, oversampling
improves the ability of the classifiers to detect the minority class (the rare-cell type), but renders
the classifiers more prone to produce false negatives. Note that for three out of the four case
studies, LoRAS compromises the least on the F1-Score compared to the baseline case, while
improving on the balanced accuracy. For this dataset, all oversampling models except for
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Figure 2: Validation of the sc-SynO model for the first use case of cardiac glial cell annotation.
a) UMAP representation of the manually clustered Bl6 dataset of Wolfien et al. Precicted cells
of sc-SynO are highlighted in blue, cells not chosen are grey [17]. b) UMAP representation
of the manually clustered dataset of Vidal et al.. Precicted cells of sc-SynO are highlighted in
blue, cells not chosen are grey [18]. c) Average expression of the respective top five cardiac
glial cell marker genes for both validation sets, including the predicted clusters and those in
close proximity.

LoRAS, produce an F1-Score less than 80 percent, which means they tend to produce more
false negatives. Here, the LoRAS algorithm improves on the detection of rare-cell types, while
producing less false negatives. Therefore, the lr model with 100 marker genes with LoRAS
oversampling was chosen for predictions on the validation dataset.

Validation: We applied the sc-SynO algorithm on the two validation datasets for the
proliferative cardiomyocytes. We were able to identify 10 out of 11 cells, when using top
20 features. Interestingly, the model using the top 100 genes identifies 48 cells, including 8
common cells with the top 20 model, which may imply that this higher set of transcripts can
detect a larger, yet similar, set of cells that are closely related to the cells of investigation. Since
the second use case was about a transient cell type, the assigned cells of the model might
indicate related cells that have already been or closely to enter the actual state of a proliferative
cardiomyocyte. The second validation set assigned 40 cells out of 67 correctly (top 20 features).
By using 100 features, the amount of correctly assigned cells increased further up to 340.
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Figure 3: Validation of the sc-SynO model for the second use case of proliferative
cardiomyocytes annotation. a) UMAP representation of the manually clustered single-nuclei
dataset of Linscheid et al. Predicted cells of sc-SynO are highlighted in blue (based on top 20
selected features in the training model), red (based on top 100 selected features in the training
model) cells not chosen are grey. b) UMAP representation of the manually clustered dataset of
Vidal et al.. Precicted cells of sc-SynO are highlighted in blue (based on top 20 selected features
in the training model), red (based on top 100 selected features in the training model) cells not
chosen are grey. c) Average expression of the respective top five proliferative cardiomyocyte
marker genes for both validation sets, including the predicted clusters and those in close
proximity.

4 Discussion

Our tool is the first oversampling approach to identify and annotate rare-cell populations
from scRNA-Seq and snRNA-Seq data. We already compared and benchmarked the LoRAS
algorithm to currently applied other oversampling techniques like SMOTE or Borderline-
SMOTE, and present LoRAS as a well-suited algorithm for a broad set of applications in terms
of F1-score and balanced accuracy [11]. A principal limitation of SMOTE has been to over-
generalize the minority class. This means that the SMOTE algorithm generates many minority
class samples, which often are also quite similar to the majority class and divert from the
minority class [23]. This results in detection of more minority class samples at the cost of mis-
classification of majority class samples as minority class. In other words, the SMOTE algorithm
often results in too many false negatives, especially in our use case of single-cell and -nucleus
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data.

On the other hand, the approach of oversampling using the Borderline samples might lead the
algorithms to ignore other important portions of the minority class data space. This causes
the oversampled data distribution of the minority class to be too dense in the borderline
regions, while too sparse in the other regions. Moreover, oversampling with sc-SynO produces
comparatively balanced ML model performances on average, in the sense that, in most cases
our algorithm produces less mis-classifications on the majority class with a reasonably small
compromise for mis-classifications on the minority class.

Our tool facilitates the identification of very similar cells for smaller sets of feature genes and
biologically related cells for larger sets of genes. The initial clustering of the training data
plays an essential role, in which we observed that smaller clusters with a distinct border to
other clusters are better suited for an analysis in comparison to larger cell populations with
transient borders. However, the algorithm still has high accuracies in identifying those cells,
but the rate of false positive predictions likewise increases.

In comparison to other current tools, such as cscGAN [24], MARS [25], FiRE [26], and ELSA
[27], sc-SynO uses synthetic oversampling of previously, manually curated cell populations
to identify such rare cells in novel data. In addition, sc-SynO is easily applicable and only
requires a single, well-curated dataset, including only a few cells of interest, to be able to
achieve already a high predictive accuracy. Likewise, our algorithm can be used on integrated
datasets as well, which commonly represent the underlying biological heterogeneity of the
sample in an improved manner [17].

Our approach can be seamlessly incorporated in single-cell and single-nuclei data analysis
workflows after the identification and annotation of cell populations on raw or normalized
read count data. Once a rare-cell population has been identified and carefully checked by a
domain expert, sc-SynO can be used on this manually curated dataset to train the specific cell
type. Applying sc-SynO on a novel dataset to identify the same rare-cell type is magnitudes
less time-consuming than manually curated data processing and annotation of scRNA-Seq
data.

Availability of data and materials

The computational scripts can be obtained from our FairdomHub instance (https://
fairdomhub.org/assays/1368). The single-cell RNA-Seq data utilized during this study is
already publicly available at the Single Cell Expression Atlas via ArrayExpress (E-MTAB-7869,
E-MTAB-8751, E-MTAB-8848)
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