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Abstract

Thousands of genetic variants acting in multiple cell types underlie complex disorders, yet most gene expres-
sion studies profile only bulk tissues, making it hard to resolve where genetic and non-genetic contributors act.
This is particularly important for psychiatric and neurodegenerative disorders that impact multiple brain cell
types with highly-distinct gene expression patterns and proportions. To address this challenge, we develop a
new framework, SPLITR, that integrates single-nucleus and bulk RNA-seq data, enabling phenotype-aware
deconvolution and correcting for systematic discrepancies between bulk and single-cell data. We deconvolved
3,387 post-mortem brain samples across 1,127 individuals and in multiple brain regions. We find that cell
proportion varies across brain regions, individuals, disease status, and genotype, including genetic variants in
TMEM106B that impact inhibitory neuron fraction and 4,757 cell-type-specific eQTLs. Our results demon-
strate the power of jointly analyzing bulk and single-cell RNA-seq to provide insights into cell-type-specific
mechanisms for complex brain disorders.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.426000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.426000
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

The progression of most neurodegenerative and neuropsychiatric disorders, including Alzheimer’s disease
(AD), commonly disrupts a broad spectrum of regulatory networks at the genomic and epigenomic levels,
and poses a significant challenge to elucidating the mechanisms underlying the disease progression. In the
genome-wide association studies (GWAS), AD is highly heritable, and most of the heritability is explained
by common genetic variants. However, it is also highly polygenic, involving potentially hundreds of indepen-
dent regulatory mechanisms.1–3 From the transcriptomic and epigenomic profiling of postmortem samples
across different brain regions, we discover the target genes and regulatory elements perturbed by the disease
progression and gain insights into the mechanisms of the genetic variants through the regulatory networks.3–5

However, many different factors contribute to the variability of the existing postmortem brain data, and it
is crucially important to identify and classify these factors by information source.

A large part of the complexity in mental health traits stems from cell-type heterogeneity in brain tissues.6
Transcriptomic and epigenomic profiling at single cell-level resolution provides a principled tool with which
to investigate the relationship between changes in cell-types and AD pathology. In our recent study, using
single-cell RNA-seq (scRNA-seq) data across 80,660 nuclei isolated from post-mortem brain samples across
48 individuals, we discovered seven major types and 40 subtypes of the brain cells. We used these data
to recognize cell-type-specific alterations associated with diverse pathological variables including age, sex,
and AD pathology.6 However, single-cell RNA-seq profiling is often limited to a small number of individuals
and optimized to yield a large number of cells. However, most single-cell studies, including our published
scRNA-seq analysis,6 only involve at most tens of individuals:7 too few to measure correlations with other
population-level variables such as genotype information. At the bulk tissue-level, however, RNA-seq studies
routinely profile hundreds of individuals. For example, the Religious Orders Study and the Memory and
Aging (ROSMAP) study has profiled bulk RNA-seq from more than 400 individuals with matched genotype
information3,8 , and the Genotype-Tissue Expression consortium (GTEx) has profiled more than 2,500 brain
samples across 13 brain regions from genotyped individuals.9

Here we develop a novel integrative framework to uncover cell-type-specific alterations of bulk samples,
by combining both single-nucleus and bulk RNA-seq data with computational deconvolution followed by
comprehensive association analysis. We develop a highly accurate deconvolution method which takes into
account individual-level heterogeneity present in both single-nucleus and bulk data. We also directly ad-
dress systematic discrepancies between single-nucleus and bulk data by characterizing substantial technical
inconsistencies between them and developing a transformation approach to overcome them. We apply this
method systematically across 3,387 samples to study the variation of neural cell-types across brain regions
and their association with other variables measured in the bulk data. We then interrogate the mechanisms
at the resolution of pathways and genetic regulatory networks by deconvolving the tissue-level eQTL models
into cell-type-specific models.

Results

SPLITR deconvolution accounting for biological covariates and bulk-vs-single-
cell differences.

Existing deconvolution methods10,11 estimate cell-type fractions from bulk RNA-seq data by making the
explicit or implicit assumption that bulk RNA-seq data should match the sum of the same set of scRNA-seq
data across the different cell types. In practice, however, aggregated scRNA-seq data and bulk RNA-seq
data show substantial discrepancies, even for the most established marker genes. One reason for these
discrepancies is that single-cell data and bulk data have highly distinct biases due to gene length, mRNA
subcellular localization, transcriptional burstiness, mRNA stability, and the cell-to-cell variability of each
gene’s expression patterns. This is most pronounced in single-nucleus RNA-seq datasets, as they only
capture the nuclear component of each cell’s expression profile. Thus, aggregation of individual single-
nucleus expression profiles is not expected to match bulk RNA-seq profiles that also capture the cytoplasmic
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component of each gene’s expression levels. Systematic corrections are therefore required to relate single-cell
datasets into bulk datasets, which are currently not known.

In addition, existing deconvolution methods typically use a single reference profile for each cell type.10,11

Such profiles are sometimes obtained by averaging multiple cells of the specific cell type,12–14 and other
times by using a predicted developmental trajectory.15 However, biological variables such as disease status,
age, or biological sex can substantially influence expressions of marker genes in both single-cell RNA-seq
and bulk RNA-seq samples, making it inappropriate to use the same cell-type-specific reference expression
profile for each individual. For example, the expression of several neuronal markers alters with age, sex, and
disease status. Similarly, markers for nearly all cell types vary in their expression based on the phenotypic
status of each individual. New methods are therefore needed which can tailor the cell-type-specific reference
expression profiles used for each individual to their biological covariates.

To address these challenges, we developed a new deconvolution method, SPLITR (for Single-cell Phenotype-
aware deconvoLution across Individuals from Total RNA-seq), which explicitly models: (1) inter-individual
variation in both bulk and cell-type-specific gene expression levels across biological covariates including age,
biological sex, and disease status; and (2) platform-specific biases and differences between single-cell and
bulk RNA-seq datasets, including differences in subcellular localization of each gene’s mRNA population in
the nucleus/cytoplasm. We achieve this by executing the following three steps of model estimation.

In step 1 of the SPLITR method (Fig. 1a), we use reference single-cell datasets to establish marker genes and
reference average expression levels for each target cell type. Here, we focus on brain cell types and use snRNA-
seq profiles that our group previously generated across 80,000 cells from 48 individuals, clustered into seven
cell types, consisting of excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, oligodendrocyte
progenitor cells (OPCs), microglia, and pericytes & endothelial cells.6 We used these clusters to define a set
of 117 marker genes that were the most characteristic of each cell type, based on their differential cell-type-
specific gene expression patterns (Supplementary Fig. 1), and confirmed these marker genes agreed with
cell-sorted expression profiles16 and independent single-cell expression profiles.

In step 2 (Fig. 1b), we study the impacts of three phenotypic/biological covariates on cell-type-specific
expression profiles. We use the cell-type-specific expression matrix (pseudo-bulk), created by taking average
values over 80k cells across the 48 individuals within the seven cell types. We learn effects of the covariates by
estimating a negative binomial model regressing cell-type-specific gene-vectors on the covariate and intercept
terms. This modeling enables us to establish phenotype-aware adjustments to cell-type-specific expression
patterns according to the phenotypic covariates of each individual whose bulk RNA-seq expression levels are
to be deconvolved. For the application to Alzheimer’s Disease, we used age, sex, and pathological AD status,
given their correlation with global gene expression changes in each major brain cell type.

In step 3 (Fig. 1c), we build a model that adjusts each marker gene’s bulk expression levels for experimental
platform differences between scRNA-seq and bulk RNA-seq learn gene-specific correction terms. In particular,
we find that scRNA-seq, and single-nucleus RNA-seq in particular, show gene-specific systematic differences
stemming from each gene’s mRNA localization patterns, gene length, transcriptional burstiness, mRNA
stability, cell-to-cell variability, and nuclear vs. cytoplasmic fractions. We assume the overall impact of such
biases is shared across individuals (samples), and estimate the corresponding terms by leveraging control
genes that show consistent expression patterns between the bulk and snRNA-seq data (see Online Methods
for details).

In step 4 (Fig. 1d), we use these learned parameters to deconvolve the bulk expression profile by fitting
a negative binomial regression of the bulk profile, adjusting for the learned phenotype-specific correction
terms for each individual, and the platform-specific correction terms for each gene. For each cell type, we
calculate an activity fraction estimate, corresponding to the number of transcripts produced by each cell,
and a cell proportion estimate, correcting for the overall activity level of each cell type (Supplementary Fig.
3). In the case of brain, for example, we found that neuronal cells generate nearly four times more mRNA
transcripts than glial cells, so their activity fraction estimates are approximately four times larger than their
cell proportion estimates.
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Deconvolution of 3,386 bulk samples and experimental validation of cell type
proportions.

We used SPLITR to deconvolve a total of 3,386 bulk RNA-seq post-mortem brain samples, encompassing 15
brain regions from 1,127 individuals across three different studies (Fig. 2): (1) 482 dorsolateral prefrontal
cortex (DLPFC) samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) from
Rush University3,17; (2) 263 temporal cortex samples from the Mayo Clinic Brain Bank18, and (3) 2,642
samples across 13 brain regions in the Genotype-Tissue Expression (GTEx) data9.

Despite common discrepancies in the literature between different methods of estimating cellular proportions
in brain samples19, we found that the resulting activity-corrected cell type fraction estimates were consistent
with several previously-reported fractions from direct measurements. For example, the average cell count
fractions estimated from the 482 dorsolateral prefrontal cortex samples in the ROSMAP cohort were 31%
for neurons, 51% for glial cells, and 18% for vascular cells, consistent with previous estimates using the frac-
tionator sampling method20 and the isotropic fractionator21. Excitatory neurons were 4 times as abundant
as inhibitory neurons, in line with previous reports22.

We also experimentally confirmed these cell type fractions using immunostaining in matched samples (Fig.
2c). Our SPLITR estimated of astrocytes were 18% of cells (±5%), consistent with our immunostaining-
measured average of 18% across 8 ROSMAP samples. Even for microglia, which are both less abundant and
smaller cells, thus biasing their abundance in some single-cell preparations, our SPLITR-based estimate of
9% (±5%) was consistent with our immunostaining-measured average of 10%.

The cell type proportion estimates sometimes differed from the counts of nuclei obtained for each cell type
from the 10X protocol6, with the single-nucleus counts sometimes closer to our activity fraction estimates.
This is likely due to experimental biases in earlier versions of the 10X protocol to more efficiently capture
larger nuclei with more transcripts. For example, astrocytes, microglia, pericytes, and endothelial cells were
under-represented in our 10X datasets, while excitatory neurons and oligodendrocytes were overrepresented
compared to previous estimates. This indicates that SPLITR deconvolution can provide accurate estimates
of cell type proportions, even when based on single-cell datasets with skewed proportions, as it is based
on the expression patterns inferred from the single-cell datasets, rather than the cell proportions in those
datasets.

Our estimated cell type proportions also captured known variability across different brain regions. For
example, we found a substantially higher fraction of oligodendrocytes in hippocampus than frontal cortex
(48% vs. 16% on average), more microglial cells in hippocampus than cortex (12% vs. 6% on average), and
fewer neurons in hippocampus than in temporal cortex or in frontal cortex (15% vs. 21% vs. 42% on average).

Our estimates also captured cell type proportions vary across different cohorts associated with the different
age ranges of the individuals profiled (Supplementary Tab. 1). Comparing the younger GTEx cohort (59
years old on average) with the older ROSMAP cohort (88 years old on average), we found that neurons
decreased from 42% to 31% of cells, while glia increased from 38% to 50%, consistent with neuronal loss
during aging.

We also compared the results of SPLITR with CIBERSORT10, using the same marker gene profiles (Supple-
mentary Fig. 2). We found a general agreement for higher-abundance cell types, including excitatory neurons,
oligodendrocytes, astrocytes, and microglia. However, for two of the cell types, CIBERSORT showed sys-
tematic problems, resulting in 0% estimates for inhibitory neurons for 68% of samples, and 0% estimate for
oligodendrocyte progenitor cells for 79% of samples. Moreover, while SPLITR captured differences due to
sex and age, CIBERSORT did not capture these subtle differences (Supplementary Fig. 2b-c).

Discovery of genetic variants influencing cell type proportion.

We first sought to recognize genetic variants that may underlie these cell type proportion differences between
individuals. Treating the SPLITR-inferred proportions of each of the 7 cell types as a quantitative trait,
we carried out a cell-fraction genome-wide association study (cfGWAS) to recognize genome-wide significant
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and sub-threshold loci associated with cell type fraction (cfGWAS hits), which we define as single-nucleotide
polymorphisms (SNPs) that govern cell type proportions. Using 403 ROSMAP individuals that have both
genotype and RNA-seq data, we found several genome-wide significant (P<5e-8) and sub-threshold (P<1e-5)
associations with cell type proportions.

The strongest association (P=6.4e-09) was between reduced excitatory neuron fraction and >100 SNPs in
the TMEM106B locus of chromosomal segment 7p21.3, including the A-to-G rs1990620 SNP (Fig. 3a). This
locus is not previously-associated with AD, but it is associated with an AD-related neurodegenerative disease,
frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), and also with decreased-neuronal-
fraction allele showing increased FTLD-TDP risk and decreased cognition in amyotrophic lateral sclerosis
(ALS)23–26. Indeed, this association was not due to AD pathology in our cohort, and the cell-type-proportion
association remained statistically significant after conditioning on the pathological phenotypic variables, such
as the accumulation amyloid-beta and neurofibrillary tau (NFT) proteins, and pathogical AD. These results
suggest that the TMEM106B locus is an AD-independent contributor to cognitive decline, via decreased
neuronal fraction.

Genotype-associated expression variation indicates that two nearby genes may mediate the TMEM106B
locus genetic effect on neuronal fraction: the TMEM106B gene itself, a transmembrane gene invoved in
dendrite morphogensis and the regulation of lysosomal trafficking, and GRN, an age-associated27 essential
gene involved in tau-negative FTLD28 and lysosomal dysfunction during FTLD progression.29 Both genes
showed significantly-reduced tissue-level expression associated with the decreased-neuronal-fraction allele
(p<3e-06 and p<2e-03, respectively), and previous studies indicate that TMEM106B interacts with GRN,
and that rs1990620 may be the causal variant in this locus, via disruption of a CTCF binding motif that alters
a topologically-associated domain and up-regulates TMEM106B30. The associations were still significant
when only including the controls (p<9e-04 and p<1.5e-02, respectively), and cell-type-specific eQTL analysis
with cell-sorted and snRNA-seq data confirmed over-expression of TMEM106B in neurons, astrocytes, and
oligodendrocytes, consistent with the previous reports31,32.

Several additional subthreshold-level associations with excitatory neuron fraction were found overlapping
known causal genes in neurodevelopmental processes, including: ERBB4, a risk gene for schizophrenia
and a selective and functional marker gene for glutamatergic33 and GABAergic synapses34 in inhibitory
neurons and interneurons; DAOA associated with schizophrenia in an Asian cohort35; and NPAS2, conferring
neuropsychiatric anxiety disorder and regulating GABAergic signal transmissions36. While the main signal
in the TMEM106B locus affects excitatory neurons, we found an additional genetic signal associated with
both inhibitory neurons associated with rs1990620 (P=3.08e-6). Lastly, we found an additional association
with inhibitory neurons within the TMEM106B locus, with cfGWAS SNP rs4721064 (p=1.69e-06), whose
effect is independent and additive with that of rs1990620.

Deconvolved cell-type fractions are associated with increased risk for diverse
phenotypes.

We found that changes in cell type fraction were also associated with increased risk for multiple traits, even
when these were not directly measured in our cohort (Fig.3c-d). For all 944 genotyped individuals across
ROSMAP and GTEx, we used their complete genotype information across millions of common variants
to calculate their genetic risk for a set of 56 traits (Supplementary Tab. 2), using polygenic risk score
(PRS) estimates from GWAS summary statistics data (p-value threshold 0.01, with linkage disequilibrium
decorrelation37,38 instead of pruning). A total of 17 traits showed nominal significance (p-value<0.05),
including Alzheimer’s Disease and Crohn’s disease.

We found several noteworthy examples (Fig. 3c-d): higher microglial fraction was associated with increased
AD risk and increased body fat percentage, but decreased risk for type 2 diabetes (T2D) in ROSMAP; higher
oligodendrocyte progenitor cell fraction was associated with increased risk of depression; higher pericyte
and endothelial fractions was associated with increased risk of post-traumatic stress disorder (PTSD) and
decreased risk of smoking; higher astrocyte fraction was associated with increased risk of depression and
decreased risk of drinking; higher inhibitory neuron fraction was associated with higher cognitive performance
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and lower schizophrenia risk; lastly, an increased oligodendrocyte fraction was associated with decreased risk
of Inflammatory Bowl Disease (IBD).

Many traits associated with the same cell type showed only negligible correlation at the overall PRS level,
indicating that our method can capture correlations not directly visible using only genetic information.

Cell-type fraction differences associated with Alzheimer’s pathology, biological
sex, and age.

We next investigated whether cell type proportion changes were associated with phenotypic differences
between individuals within the ROSMAP cohort, where phenotypic variables are readily available (Fig. 4).

We found that AD-related pathological variables were strongly associated with cell type proportion differences
(Fig. 4c; Supplementary Fig. 4). Amyloid-beta deposition showed the strongest associations with fewer
excitatory neurons (P<8e-5), fewer inhibitory neurons (P<3e-3), more oligodendrocytes (P<2e-6), more
astrocytes (P<3.8e-3), and more pericytes/endothelial cells (P<1e-4). Tau-protein deposition and loss of
cognition also showed significant associations with fewer excitatory neurons and more oligodendrocytes.

We also found that cell type proportions were strongly associated with both biological sex and age (Fig. 4a-
b). Male samples showed a higher fraction of excitatory neurons than female samples (P<0.004, Wilcoxon
rank-sum test) and a lower fraction of astrocytes (P<0.03), oligodendrocyte progenitor cells (P<.006), and
vascular cells (P<2e-5) (Fig. 4a). In addition, older individuals (>100 years old) showed different cell type
proportions than younger groups (<90 years old), with fewer excitatory neurons (P<0.008), more astrocytes
(P<0.003), and fewer microglia (P<0.002) (Fig. 4b).

These results indicate that our deconvolved cell type fractions successfully capture cell type proportion
changes associated with phenotypic differences, even though only bulk samples were utilized for these anal-
yses.

Cell-type-specific gene expression changes in AD show biologically-meaningful
functional enrichments.

We found 2,470 genes with cell-type-specific changes associated with amyloid-beta, neurofibrillary tangles,
and episodic memory decline in one of the seven cell types (Fig. 5a-b), using a generative model that
captures the relationships between each gene’s transcript level with an interaction term of cell type and each
pathological variable (age, sex, RIN scores, and other phenotypes). We controlled the FDR at 4.4% with the
null distribution constructed by the Freedman-Lane permutation39 of only one interaction term at a time
while fixing all other correlated variables (Fig. 5a, Supplementary Fig. 5a). Only 12 of these 2,470 genes
are among the 171 cell-type-marker genes.

These 2,470 genes showed highly cell-type-specific enrichment across 191 gene ontology (GO) terms (Fig.5c)
and 88 MSigDB40 canonical pathways (Fig.5d) (FDR < 5%). Distinct enrichments were sometimes found
for distinct AD phenotypes, between memory loss, neurofibrillary tangles, and amyloid-beta.

For example, genes with inhibitory-neuron-specific expression differences associated with AD pathology
were enriched in intracellular transport (including endoplasmic reticulum) for memory-associated expression
changes, and with mitochondrial biology for amyloid-associated changes. Genes with oligodendrocyte-specific
expression differences associated with AD pathology were enriched in notochord development for memory-
associated changes consistent with their roles in remyelination41,42 and with our single-cell analysis results6,
and with mesenchymal differentiation for tangles-associated changes. Genes with microglia-specific expres-
sion differences in AD were enriched in synaptic plasticity43 for neurofibrillary-tangles-associated expression
changes, in mitochondrial functions for memory-associated expression changes, and fatty acid metabolism
for amyloid-beta-associated expression changes. Genes with astrocyte-specific expression differences in AD
were enriched in cytokines and secretion for amyloid-beta-related phenotypes, consistent with secretion of
pro-inflammatory cytokines in astrocytes with the accumulation of amyloid-beta44.
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These results reveal a complex set of cell-type-specific alterations in diverse pathways associated with distinct
phenotypic signatures of AD, provide important insights into the cellular and molecular changes in AD, and
demonstrate SPLITR’s ability to recognize cell-type-specific from bulk RNA expression.

Sparse Bayesian regression deconvolves tissue-level genetic effects into cell-type-
specific eQTLs.

To help elucidate causal paths between genetic variation and complex brain disorders, we next sought to rec-
ognize genetic variants with cell-type-specific effects on brain gene expression, both at the bulk level and at
the cell-type-specific level. For tissue-level eQTLs, we used our previously-described sparse Bayesian multi-
variate model45, and for cell-type-level eQTLs we developed a new Bayesian eQTL deconvolution framework
that models the observed bulk genetic effects as a mixture of cell-type-specific genetic effects, and infers a
cell-type-specificity score (between 0 and 1) for each eQTL gene (eGene) in each cell type, corresponding to
the probability with which this gene has cell-type-specific genetic effects for that cell type (Fig. 6a; Methods).
To compare the performance of our deconvolved multivariate approach, termed deQTL, with other interac-
tion QTL methods, we simulated realistic gene expression data, embedding a single causal cell type for each
gene. We repeated our experiments on 121 randomly-selected linkage disequilibrium (LD) blocks, varying
the level of expression heritability and number of causal eQTL variants (see Methods). In power analysis,
our proposed approach clearly outperforms the other methods frequently used in cell-type interaction QTL
analysis (Fig. 6b). Moreover, under the high heritability regime (> 10%), the posterior probability of the
deQTL model accurately distinguish causal cell types from the non-causal ones (Fig. 6c).

We applied this method to the 403 ROSMAP individuals that have both genotype information and gene
expression information available. At the tissue level, we found a total of 5,586 eQTL genes (eGenes) with
highly-heritable gene expression, associated with a total of 7,783 independent SNPs. At the cell-type-level,
we found a total of 3,869 eGenes with cell-type-specificity score >0.9, associated with 4,757 independent
SNPs. Approximately half of tissue-level eGenes (N=2,687, 48%) were also discovered at the cell-type level
(Supplementary Fig. 5), enabling us to partition their genetic effects into the cell-types where they act.

A large fraction of cell-type-specific eGenes (N=1,182, 30%) were not discovered in our tissue-level analysis,
indicating that our approach can discover high-confidence cell-type-specific eGenes even when these are not
visible at the tissue level (Supplementary Tab. 3). For example, DRD5 showed no genetic association at the
tissue level, but individuals with the TT allele of rs6448858 (chr4:9595918) were in the top 40% of samples
with highest excitatory neuron content, resulting in a high interaction term in our model, and a high cell-type-
specificity score (Fig. 6d). Similarly, ICA1 showed no tissue-level genetic effect, but individuals carrying the
CC allele of rs6965329 (chr7:8161981) lay were among the 20% of samples with highest inhibitory neuron
fractions (Fig. 6e).

Most cell-type-specific eGenes act in a single cell type (N=3,133, 81%), and a minority act in multiple cell
types (N=736, 19%). Most act in inhibitory and excitatory neurons (61%), followed by oligodendrocytes
(n=710), astrocytes (n=588), microglia (n=364), pericytes & endothelial cells (n=319), and oligodendrocyte
progenitor cells (n=24) (Supplementary Tab. 1). For 872 cell-type-specific eGenes we found multiple in-
dependent eQTL variants, indicating more complex genetic control. Conversely, for 267 cell-type-specific
eQTLs, we found multiple target eGenes, implicating gene-level pleiotropy.

Stratification of the GWAS polygenic risk score (PRS) models by the decon-
volved eQTL annotations.

Lastly, we sought to recognize the cell types where disease-associated genetic variants exert their effect for
diverse brain disorders, using genome-wide statistics for 56 neuronal, behavioral, psychiatric, and neurode-
generative traits (Supplementary Tab. 1). For each of the seven major cell types, we computed a PRS for
each of the traits, using all nominally-significant (P-value<1e-2) SNPs that lie within a ±1 kb window of an
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annotated cell-type-specific eQTL for that cell type (Fig. 7a). We then calculated the enrichment for each
cell type by comparing the cell-type-specific PRS score to the PRS score obtained using all the SNPs.

Across all 1,682 individuals in the ROSMAP cohort46, we found 15 GWAS traits that show significant
cell-type-specific PRS scores across 19 cell types (FDR<10%), indicating that genetic variants in that trait
preferentially act through cell-type-specific eQTLs in that cell type (Fig. 7b-c). For example, we find that
microglial-specific eQTLs contribute disproportionately to the risk scores of AD2, OCD (obsessive-compulsive
disorder)47,48 and ASD (autism spectrum disorder)49. Similarly, oligodendrocyte-specific eQTLs signifi-
cantly enrich GWAS signals of osteoarthritis50 and cognitive performance51. Pericyte and endothelial-specific
eQTLs contribute disproportionately to increased risk of smoking52, UC (ulcerative colitis)53, allergy54, and
depression and bipolar disorders54.

The importance of microglial cells in AD is well-recognized55,56, and several AD genes, such as BIN157

and MS4A458, are shown to act specifically in microglial cells. For ASD, the previous analysis showed
male-specific over-expression of microglial marker genes in the cortex59; for OCD, a mouse study showed
that over-expression of NFKB/TNF-alpha pathways causally acts on relevant traits, such as excessive self-
grooming behavior and hyperexcitability of the corresponding neurons60.

Discussion

Understanding the mechanism of complex traits, including neurodegenerative disorders, has become a crucial
component of prevention and treatment, yet remains a challenging and open problem. Part of the challenge
stems from the complexity of the diseases at the cellular and molecular levels. A causal mechanism of
complex traits is often manifested through multiple layers of genomic and epigenomic regulatory networks.
The emerging technology of single-cell and single-nucleus sequencing provides unbiased profiling of cell types
from a mixture of samples. Knowing the relevant cell-type context is a crucial step toward dissecting the
complexity of diseases. Cell-type information enables biologically-informed Bayesian and causal inference,
and improves experimental design in a matched cellular environment.

However, most single-cell-resolution profiling experiments cover a limited sample size and do not include the
investigation of variation across individuals. On the other hand, while tissue-level bulk RNA-seq data fail to
reach a cell-type resolution, they often carry a sufficiently large sample size. From richly-phenotyped bulk
data, we can identify population-level associations of transcript measurements with other variables, such as
genetic variants and phenotypes. Associations with small-effect variables are only made possible with a large
cohort. Computational deconvolution methods, including SPLITR, abridge the gap between snRNA-seq and
bulk RNA-seq data. We learn cell-type models from snRNA-seq and estimate cell-type fractions in the bulk
data so that subsequent analysis can leverage a large sample size and rich phenotypic information.

Here, we present a highly calibrated deconvolution method, SPLITR, followed by a series of integrative
studies with the variables in large-sampled bulk data. We identified cell-type-specific mechanisms of AD and
other relevant disorders at the phenotype, demographic information, pathway, and genotype-level. Moreover,
we characterized putative mechanisms, which may have impacted AD and other diseases, while pinpointing
a molecular and pathway-level basis for understanding the comorbidity of complex neurodegenerative dis-
orders. For instance, our results already suggest that microglial cells are a converging point of AD and
neuropsychiatric disorders, such as OCD and ASD. Genetic markers in TMEM106B implicate potential
pleiotropy between AD and FTLD in neuronal cells. Applying the same principle, we can investigate other
neurodegenerative and neuropsychiatric disorders and even diseases in other domains, such as diabetes and
cardiovascular disorders.
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Materials and Methods

Preprocessing of the ROSMAP, Mayo, and GTEx RNA-seq data

We downloaded the ROSMAP RNA-seq data in the Dorsolateral Prefrontal Cortex (DLPFC) from Synapse
(https://www.synapse.org/#!Synapse:syn3388564). We used gene-level expression data quantified by
RSEM61, including a total of 55,889 coding and non-coding genes according to the GENCODE annotations
(v19). The RNA-seq raw count data in the temporal cortex of 263 individuals from the Mayo RNA-seq
project was downloaded from Synapse (https://www.synapse.org/#!Synapse:syn3163039). From the GTEx
project (v8), we obtained gene-level count data in 13 brain regions, which will be made publicly available.
We removed low-expressed genes (those genes for which fewer than three individuals had counts-per-million
> 1) before normalization. We then normalized the RNA-seq raw counts using the trimmed mean of
M-values normalization method62.

Definitions of an individual-specific deconvolution model

The ultimate goal of the deconvolution is to estimate the cell type fraction 𝜋𝑖𝑘 of each cell type 𝑘 in an
individual 𝑖, treating the selected marker genes as data points. In each bulk sample 𝑖, we fit the NB model
by regressing the bulk profile vector y𝑖 on the estimated cell type profile matrix 𝑋̂𝑖, learned from snRNA-seq
data.

We assume each gene-level quantification, 𝑌 (or 𝑌𝑔𝑖 for a gene 𝑔 on sample 𝑖), follows Negative Binomial
(NB) distribution.63 Namely, we define the data likelihood of 𝑌 with the mean 𝜇 and over-dispersion 𝜙
parameters:

NB(𝑌 |𝜇, 𝜙) ≡ Γ(𝑌 + 𝜙−1)
Γ(𝜙−1)Γ(𝑌 + 1) ( 𝜇

𝜇 + 𝜙−1 )
𝑌

( 𝜙−1

𝜇 + 𝜙−1 )
𝜙−1

.

We define the NB model for the deconvolution problem:

𝑃(𝑌𝑔𝑖|⋅) = NB (𝑌𝑔𝑖∣𝛿𝑔𝑠𝑖
7

∑
𝑘=1

𝜋𝑖𝑘𝑋̂𝑔𝑖𝑘, 𝜙𝑔) .

Here, we introduce auxiliary parameters, besides the 𝜋 parameter:

• 𝑠𝑖: sample-specific bias term for each individual 𝑖 (easily estimable)

• 𝜙𝑔: over-dispersion parameter for each gene 𝑔 (easily estimable)

• 𝛿𝑔: gene-specific bias term for each gene 𝑔 in the bulk data

As for the first two parameters, we simply replace the sampling bias 𝑠𝑖 with the sequencing depth of the bulk
sample and find a suitable gene-level dispersion parameter 𝛿𝑔 using an empirical Bayes method implemented
in edgeR63. However, finding a suitable 𝛿 value is non-trivial as this can be tightly dependent with 𝜋 and is
shared across all the samples. We discuss posterior inference algorithms in the next section.

Reference cell-type models with the sample-specific covariates adjusted (steps 1
and 2)

From the snRNA-seq profiling followed by clustering analysis6, we construct a cell type-specific marker
gene expression matrix 𝑅𝑔𝑖𝑘 (of gene 𝑔, sample 𝑖, cell type 𝑘), including the 171 marker genes (~25 most
differentially expressed in each cell type). Unlike conventional deconvolution methods10,11 that directly use
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these marker gene profiles to estimate cell type fractions of bulk RNA-seq data, we adapt the cell type-specific
marker gene model to the heterogeneity of biological and technical covariates.

We train each cell type 𝑘’s model by conducting the following NB regression model, 𝑁𝐵(𝑅𝑔𝑖𝑘|𝑙𝑖𝜇𝑔𝑖𝑘, 𝜓𝑔)
across 𝑖 = 1, … , 48 individuals, where 𝑙𝑖 is the library size of sample 𝑖. We further specify the mean function
𝜇𝑔𝑖𝑘 as: ln 𝜇𝑔𝑖𝑘 = 𝛽𝑔𝑘0+∑3

𝑟=1 𝛽𝑔𝑘𝑟𝐶𝑖𝑟 with the baseline activity 𝛽𝑔𝑘0 and the observed covariates 𝐶𝑖1, 𝐶𝑖2, 𝐶𝑖3
correspond to the age, sex, and AD of an individual 𝑖, respectively.

We first estimate the overdispersion parameter 𝜓𝑔 using DESeq264. We then estimate the NB regression
parameters using Stan65 and construct the adjusted reference panel for a new sample 𝑖 by plugging in the
trained model parameters, 𝑋̂𝑔𝑖𝑘 = exp ( ̂𝛽𝑔𝑘0 + ∑3

𝑟=1
̂𝛽𝑔𝑘𝑟𝐶𝑖𝑟). If all the coefficients (𝛽) except the baseline

were set to zero, our reference panel would be identical to the marker gene profiles used in the existing
methods, but by including any non-zero effects of the known covariates, we prevent the marker genes from
being influenced by these covariates in the subsequent deconvolution steps.

Learning gene-specific bias between the bulk and snRNA-seq (step 3)

In our preliminary experiments, a brute-force parametric estimation method that directly estimate the
posterior distribution of the bias and the cell-type fraction parameters often yielded poor results, e.g., high
variance. Instead, we estimate 𝛿𝑔, assuming individual-level cell type fractions 𝜋𝑖𝑘 can be summarized average

̄𝜋𝑘:

∏
𝑖

171
∏
𝑔=1

NB (𝑌𝑔𝑖∣𝛿𝑔𝑠𝑖
7

∑
𝑘=1

̄𝜋𝑘𝑋̂𝑔𝑖𝑘, 𝜙𝑔) .

To estimate the average ̄𝜋, we leverage the subset of 69 “control” genes (Supplementary Fig. 1b, 1d) whose
relative expression levels are robustly stable between the bulk RNA-seq and snRNA-seq data, and less
variable across individuals:

∏
𝑖

69
∏
𝑔=1

NB (𝑌𝑔𝑖∣𝛿𝑔𝑠𝑖
7

∑
𝑘=1

̄𝜋𝑘𝑋̂𝑔𝑖𝑘, 𝜙𝑔)

We optimize them in an EM algorithm by alternating between the two models: one for 𝛿 holding ̄𝜋 fixed and
the other for ̄𝜋 fixing 𝛿 values.

Deconvolution to estimate the individual-specific cell type composition (step 4)

Provided that we have estimated auxiliary variables (𝛿, 𝑠, and 𝜙) along with the parameters in the individual-
specific reference cell type models (𝛽), we resolve the individual-level cell type compositions (𝜋𝑖𝑘) in Bayesian
inference using using Stan65.

Additional calibration step to compute the cell-level fraction estimates of cell
types.

To convert the transcript-level cell type fraction estimates to the composition of actual cell counts, we need
to adjust a differential level of transcript abundance per cell across different cell types. Using the average
number of transcripts ̄𝑥𝑘 per cell within each cell type 𝑘 in the snRNA-seq data, we reverse-engineer the
cell-level fraction (𝜋′) of each type that could have generated the estimate transcript-level fractions (𝜋). We
solve the following optimization for 𝜋′:
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min
𝜋′

𝑛
∑
𝑖=1

(𝜋𝑖𝑘 − ̄𝑥𝑘𝜋′
𝑖𝑘/

7
∑
𝑗=1

̄𝑥𝑗𝜋′
𝑗𝑘)

2

subject to ∑7
𝑘=1 𝜋′

𝑖𝑘 = 1 for each 𝑖 and 𝜋′
𝑖𝑘 > 0.

Pathway enrichment

We measure the impact of cell-type fractions on downstream transcript levels at the pathway-level. Within
each pathway, and for each cell type, we compute gene-level z-scores that estimate significance of covariance
between the cell-type fraction and the genes in the pathway. Say that we construct a test statistic for a
pathway with m genes on a cell type 𝑘: we first standardize the cell-type fraction scores 𝑝𝑖𝑘 (for individual
𝑖 = 1, … , 𝑛, and cell type 𝑘) and gene expression 𝑥𝑖𝑔 (for an individual 𝑖 and a gene 𝑔), and construct a
gene-level score 𝑧𝑘𝑔 = 𝑛−1/2 ∑𝑖 𝑝𝑖𝑘𝑥𝑖𝑔. Combining these, we have test statistic 𝑚−1 ∑𝑔 𝑧𝑘𝑔 across 𝑚 genes
within each pathway. We estimate the null distribution by sample permutation along the individual axis.

Genotype data imputation

We collected genotypes of 672,266 SNPs in 1,709 individuals from the Religious Orders Study (ROS) and
the Memory and Aging Project (MAP)46 in the GWAS for detecting cfGWAS hits. We mapped hg18 coor-
dinates of SNPs (Affymetrix GeneChip 6.0) to hg19 coordinates, matching strands using publicly available
information

(http://www.well.ox.ac.uk/~wrayner/strand/GenomeWideSNP_6.na32-b37.strand.zip). We retained only
those SNPs with MAF>0.05 and Hardy-Weinberg equilibrium (HWE) p-value>1e-04, computed based on
432 individuals who had all phenotype, genotype, and gene expression data. We imputed the genotypes
by pre-phasing haplotypes based on the 1000 genome project66 (phase I version 3) using SHAPEIT67. We
then imputed SNPs in 5MB windows using IMPUTE268 with 100 Markov Chain Monte Carlo iterations
and 10 burn-in iterations and retained only SNPs with MAF> 0.05 and imputation quality score>0.6. For
the Mayo RNA-Seq project, we used a genotype dataset imputed by the Michigan Imputation Server69 with
the Haplotype Reference Consortium (hrc.r1.1.2016) panel70. The following documents provide more details
about the Mayo dataset: https://www.synapse.org/#!Synapse:syn8650955 .

Polygenic risk scores

We modeled the polygenic risk 𝜌𝑖 of an individual 𝑖 as a weighted average of scaled genotype information71:
𝜌𝑖 = ∑𝑗 𝐺𝑖𝑗𝜃𝑗 where we take weighted average of genotype information 𝐺𝑖𝑗 (of individual 𝑖 and SNP 𝑗) with
the coefficients 𝜃𝑗 transferred from GWAS summary statistics data with the p-value threshold (p < 0.01)
but the LD (linkage disequilibrium) structures decorrelated. Lacking individual-level phenotypes on all the
available GWAS statistics, we fixed the p-value cutoff and the LD pruning steps were replaced with the
decorrelation steps.37,38 However, fine-tuning these parameters will only improve the performance.

Sparse Bayesian regression to deconvolve tissue-level genetic effects into cell-
type-specific eQTLs.

We designed the deconvolved eQTL (deQTL) model from the following Bayesian generative scheme:

(1) For each genetic variant 𝑗 and cell type 𝑘 , we sample unique multivariate eQTL effect sizes 𝜃𝑗𝑘 ∼
a spike-slab prior.72 (2) Each cell type 𝑘 generates expression variation across individuals by a linear
model 𝜂𝑖𝑘 = ∑𝑗 𝐺𝑖𝑗𝜃𝑗𝑘 on genetic information 𝐺𝑖𝑗 of each individual 𝑖 in SNP 𝑗. (3) However, we only
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observe bulk gene expression profile ̄𝑌𝑖 that is a mixture of cell type-specific genetic effects 𝜂𝑖𝑘 across
the seven cell types, with some mixing proportion 𝜋𝑘 (Fig. 6a). Provided that the estimate cell-type
composition 𝜋 is unbiased, we can model the mean of bulk profile as:

𝔼[ ̄𝑌𝑖|𝐺, 𝜃, 𝜋] =
7

∑
𝑘=1

𝜋𝑖𝑘 (
𝑝

∑
𝑗=1

𝐺𝑖𝑗𝜃𝑗𝑘𝜆𝑘)

where we additionally include probabilistic loading factor 𝜆𝑘 ∈ (0, 1).
If we estimate the deQTL model SNP by SNP and cell-type by cell-type (𝑝 = 1), this model simply resorts
to an interaction eQTL model73, testing non-zero-ness of the coefficient 𝜃𝑘 in 𝑌𝑖 ∼ 𝜃𝑗𝑘𝜋𝑖𝑘 × 𝐺𝑖𝑗 without
two singleton terms, which are 𝜋 and 𝐺. In our multivariate model, we could include these non-interacting
terms, but we only found such an over-parameterization was not as powerful as one might have expected.
We concluded that these extra terms are rather unnecessary because these are likely to mediate the effect
of cell-type-specific genetic variables by construction. It is widely accepted that effect size estimation of a
causal path, while conditioning on an intermediate variable, can easily produce a biased result.74

Simulation of bulk eQTL data using actual cell type composition and genotype
matrix

We first select a causal cell type out of seven brain cell types where there are genetic effects on causal SNPs.
In the Fig. 6b, we only show the results on the data simulated with three causal SNPs, but we varied the
number of causal SNPs from 1 to 3. Our simulator generates gene expression data using the actual genotype
matrix (𝐺, standardized) and the deconvolved cell type estimations (𝜋). We evaluated statistical power
under the different level of total expression heritability (ℎ2), varying from 5% to 40%. Provided that there
is one cell type (out of total K=7) genetically-regulated with three causal SNPs, our simulator generates
convolved gene expression profiles in the following steps.

1. For each celltype 𝑘 ∈ [𝐾] (K=7), if 𝑘 is causal: we select three causal SNPs (𝑗’s) uniformly at random
and sample each genetic effect size 𝜃𝑗𝑘 ∼ 𝒩(0, (𝐾/3)2). For non-causal SNPs, we simply let the effect
size 𝜃𝑗𝑘 = 0. The deconvolved expression vector is constructed by a linear combination of the selected
SNPs: y𝑘 ∼ 𝐺𝜃𝑘𝜋𝑘.

2. For the rest of non-causal cell type 𝑙 ≠ 𝑘, we assign the expression vector y𝑙 tonon-genetic signals by
sampling from isotropic standard Gaussian distribution, and combine them by taking a weighted linear
combination, y0 = ∑𝑙∈non-causal y𝑙𝜋𝑙 except for the genetically regulated cell types.

3. We rescale y0 by multiplying a scaling factor to to achieve 𝕍[y0] = 𝕍[𝜂𝑔](1/ℎ2 − 1) to ensure that the
simulated heritability to match with the assumed level, namely, ℎ2 = 𝕍[𝜂𝑔]/(𝕍[y0] + 𝕍[𝜂𝑔]).

4. The bulk RNA-seq data can be just a linear combination of these simulated celltype profiles: ̄𝑌 =
∑𝐾

𝑘=1 y𝑘 + y0.

Competing deconvolved eQTL methods

We include comparison with other commonly used interaction QTL methods (Fig. 6):

• deQTL (this work): We fit multivariate deQTL model with stochastic variational Bayes inference algo-
rithm. We then prioritize cell types in descending order of maximal posterior inclusion probability of
genetic effects max max𝑗∈[𝑝] 𝑃 (𝜃𝑗𝑘 ≠ 0| ̄𝑌 , 𝜋, 𝐺) for each cell type 𝑘.

• deQTL (this work with additional terms): We prioritize cell types by the same procedure as above
(deQTL) except that we added extra (and unnecessary) non-interaction terms of genotypes and cell
types.
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• Interaction QTL: We estimate the full set of p-values for conventional interaction QTL analysis using
lm(y ~ cell type * genotype + cell type + genotype) in R. We then summarize each cell type’s
score by minimum p-values across SNPs within each cell type. Prioritize the cell types in the ascending
order of the minimal p-values.

Immunostaining validation of the predicted cell-type fractions

Fixed human brain tissue (prefrontal cortex, BA10) was sectioned at 50 �m using a vibratome (Leica). The
sections were boiled in IHC Antigen Retrieval Solution (ThermoFisher Scientific; catalog number 00-4955-
58) containing 0.05% Tween-20 for 10 minutes and then placed in PBS for 20 minutes at room temperature.
After washing with ddH2O (three times 15 minutes) followed by one wash with PBS for 15 minutes, the
brain sections were incubated in quenching solution (50mM ammonium acetate, 100mM CuSO4) at room
temperature overnight. After washing with ddH20 (one wash for 15 minutes) and PBS (three times 15
minutes), the sections were permeabilized in PBS containing 0.3% Triton X-100 for 10 minutes and blocked
in PBS containing 0.3% Triton X-100 and 5% normal donkey serum at room temperature for 2 h. The
sections were incubated for 2 hours at room temperature in primary antibody in PBS with 0.3% Triton
X-100 and 5% normal donkey serum. Primary antibodies were an anti-GFAP antibody (1:100; Abcam;
ab53554, Goat polyclonal) and anti-Iba1 Antibody (1:500; Synaptic Systems; Cat. No. 234 004, Polyclonal
Guinea pig antiserum). The sections were washed with PBS containing 0.3% Triton X-100 and 5% normal
donkey serum at room temperature (four times 15 minutes) and then incubated with secondary antibodies
(dilution 1:2000) for 2 hours at room temperature. Primary antibodies were visualized with Alexa-Fluor 488
and Alexa-Fluor 594 antibodies (Molecular Probes), and cell nuclei visualized with Hoechst 33342 (Sigma-
Aldrich; 94403). The sections were washed with PBS containing 0.3% Triton X-100 and 5% normal donkey
serum at room temperature (four times 15 minutes) and then mounted on Fisherbrand (TM) Superfrost
(TM) Plus Microscope Slides in ProLong (TM) Gold Antifade Mountant. Images were acquired using a
confocal microscope (LSM 710; Zeiss) with a 20x or 40x objective, and cell numbers were quantified using
Imaris 8.3.1.
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Figures

Figure 1.

Overview of our deconvolution method.
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Figure 2.

Figure 2. Deconvolution of 3,386 tissue-level RNA-seq data across 15 brain regions reveals unique cell type
compositions across different brain regions. Different colors indicate different cell types. (a) Average cell type
fractions across different brain regions. (b) Population-level variation of cell type compositions in ROSMAP
and Mayo cohorts. (c) The estimated cell type compositions are experimentally validated against the cell
counts in microscopic images of neurons and microglial cells.
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Figure 3.

Genetic variation across individuals induce markedly differential cell type compositions. (a) Genome-wide
association studies of excitatory neuron fraction. X-axis: genomic location across 22 autosomes; y-axis:
-log10 p-value of association effect sizes. (b) Genome-wide association studies of inhibitory neuron fraction.
(c) Association of cell type fractions with the polygenic risk scores of 56 relevant traits. The boxes are
scaled proportionally to association p-value (larger, more significant). The colors reflect the directionality of
associations (blue for negative, yellow for positive). (d) Examples of the significant associations between cell
types and GWAS traits at the polygenic risk score-level. X-axis: quantile of polygenic scores; y-axis: cell
type fractions estimated from ROSMAP cohort.
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Figure 4.

Cell-type fractions in the brain samples dramatically change with known pathology and demographic vari-
ables. Y-axis: cell type composition; X-axis: pathological and demographic variables. (a) Cell type compo-
sitions change between female and male samples. X-axis: female vs male. (b) Cell type composition changes
across different age groups. X-axis: age groups (years at death). (c) Cell type compositions as a function of
pathological variables. X-axis: amyloid-beta (in square root).
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Figure 5.

Figure 5. Cell-type-specific gene expressing chanes in AD phenotypes show biologically-meaningful func-
tional enrichment. (a) We estimated the null distribution (y-axis) for the posterior probability (x-axis) of
non-zero cell-type-specific gene-level associations by Freedman-Lane permutation39 (marked by “+”). Using
them, we empirically calibrated the false discovery rate of the optimized posterior probabilities of genes
(marked by solid dots). (b) Controlling FDR at 4.4% (posterior probability > 0.5), we found 2,470 genes
are significantly associated in a cell-type-specific manner. The number in each circle accounts for the genes
found associated with a different phenotype (the column) in a particular cell type. (c) Cell-type-specific gene
ontology (biological process) enrichment results for the significantly-associated genes. X-asis: cell types; y-
axis: keywords (gene sets). (d) Cell-type-specific pathway enrichment results for the significantly-associated
genes.
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Figure 6.

Deconvolved eQTL (deQTL) analysis dissects tissue-level genetic effects into the cell-type level mechanisms.
(a) A schematic diagram for our deQTL method. 𝜋: cell type fraction estimated by the deconvolution
step. G: genotype matrix. 𝜃: cell-type-specific multivariate effect size. 𝜆: cell-type loading. 𝜂: cell-
type-specific genetic effect aggregated over multiple SNPs. (b) Power comparison with competing methods.
Different colors and shapes mark different methods. X-axis: gene expression heritability in simulation. Y-
axis: statistical power of causal cell type identification with empirical false discovery rate (FDR) controlled
at 5%. (c) Our deQTL method separates causal cell types (think lines) from non-causal ones (thin lines).
Each panel, we simulate data assuming one causal cell type (the title of each panel). X-axis: gene expression
heritability in simulation. Y-axis: the fraction of cell types discovered by the PIP cutoff > 0.5. (d-e) Examples
of the genes that are significantly regulated in the deQTL models, but fail to reach significance under a
marginal eQTL model. X-axis: genotype of the lead SNP; y-axis: quantile-normalized gene expression.
Total ROSMAP samples are partitioned by the cell type fractions. (d) A significant deQTL on DRD5. (e)
A significant deQTL on ICA1.
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Figure 7.

Deconvolved eQTL SNPs partition heritability of GWAS summary statistics into 7 cell types. (a)A schematic
diagram showing our approach to partition GWAS data by significant deQTL SNPs. We construct 7 PRS
models, each of which is stratified by the cell-type-specific genomic regions. (b)We calibrate the significance
of cell-type-specific enrichment by cell-type label permutation. (c)Summary of significant cell-type-specific
deQTL SNPs. The boxes are scaled proportionally to association FDR (larger, more significant). The colors
indicate different cell types. For those significant enrichments (FDR < 10%), we denote the percentage of
genetic variance explained by deQTLs.
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Tables

Table 1.

Polygenic risk scores significantly correlated with the estimated cell type fractions (p-value < 0.05).

GWAS celltype effect p-value q-value ROSMAP Mayo GTEx
Alzheimer
Disease

microglia 2.749621 0.0059664 0.0417649 0.12
(1.4e-02)

0 (9.4e-01) 0.1 (9.4e-02)

Anger astrocytes -2.008674 0.0445717 0.3120018 -0.03
(5.7e-01)

-0.1 (1.3e-01) -0.1 (9.9e-02)

Chron
disease

oligodendrocyte
progenitor
cells

-2.763591 0.0057169 0.0400184 -0.05
(3.0e-01)

-0.08
(2.1e-01)

-0.09
(1.4e-01)

Depressed
affect

astrocytes -2.212236 0.0269504 0.0943262 -0.06
(2.7e-01)

-0.01
(8.3e-01)

-0.15
(1.2e-02)

Depressed
affect

excitatory
neurons

2.617282 0.0088633 0.0620432 0.04
(4.2e-01)

0.07
(2.6e-01)

0.15
(1.0e-02)

Eczema and
dermatitis

microglia -2.477348 0.0132363 0.0926538 -0.09
(9.5e-02)

0.01
(9.3e-01)

-0.13
(2.1e-02)

Educational
attainment

microglia 1.969783 0.0488633 0.3345703 0.06
(2.6e-01)

0.05
(4.0e-01)

0.04
(5.0e-01)

Gastroesophageal
reflux disease

excitatory
neurons

2.063535 0.0390619 0.2734330 0.1 (3.8e-02) 0.07
(2.3e-01)

0 (9.4e-01)

Hypothyroidism
/
myxoedema

astrocytes 1.982280 0.0474479 0.1660676 0.04
(4.2e-01)

0.1 (1.2e-01) 0.12
(3.4e-02)

Hypothyroidism
/
myxoedema

oligodendrocyte
progenitor
cells

2.163069 0.0305358 0.1660676 0.06
(2.5e-01)

0.09
(1.3e-01)

0.07
(2.2e-01)

Obsessive
compulsive
disorder

excitatory
neurons

-2.378993 0.0173600 0.0648418 -0.09
(9.1e-02)

-0.03
(6.5e-01)

-0.1 (1.0e-01)

Obsessive
compulsive
disorder

oligodendrocytes 2.354929 0.0185262 0.0648418 0.12
(2.4e-02)

0.03
(6.6e-01)

0.07
(2.5e-01)

Post-
traumatic
stress
disorder

pericytes /
endothelial
cells

1.961637 0.0498048 0.3486334 0.08
(1.3e-01)

0.17
(6.2e-03)

0 (9.7e-01)

Type 2
diabetes
BMI
adjusted

microglia -2.144866 0.0319636 0.2237450 -0.12
(1.4e-02)

0.03
(5.9e-01)

-0.05
(3.5e-01)

Ulcerative
colitis

oligodendrocyte
progenitor
cells

-1.994747 0.0460705 0.3224934 -0.02
(6.2e-01)

-0.07
(2.7e-01)

-0.08
(1.6e-01)

Worry pericytes /
endothelial
cells

-1.971289 0.0486908 0.3408359 -0.06
(2.2e-01)

-0.03
(6.6e-01)

-0.11
(6.2e-02)
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Supplementary Figures

Supplementary Figure 1.

Average expression profiles of cell type marker genes in snRNA-seq data. (a) A total set of marker genes’
average expression profiles in snRNA-seq data. (b) The average expression profiles of the control genes in
snRNA-seq data. (c) There exists gene-length bias in the total set of marker genes. (d) We select the
control genes to avoid the gene length bias.
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Supplementary Figure 2.

Comparison with CIBERSORT. (a) We compared the performance of our cell-type deconvolution methods
(SPLITR) with the other method (CIBERSORT10), providing the same maker gene profile matrix. (b)
We highlight the difference between two methods in pericytes and microglia can be explained by sex (male
vs. female) difference in the bulk data. (c) We highlight the difference between the two methods in pericytes
and microglia can be explained by age difference in the bulk data.
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Supplementary Figure 3.

Average cell type fractions estimated at cell-count-level.
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Supplementary Figure 4.

Correlation between cell-type fractions in the brain samples with known pathological variables. Y-axis: cell
type composition; X-axis: pathological variables. (a) X-axis: amyloid-beta (in square root). (b) X-axis:
neurofibrillary tangles tau protein (in square root). (c) Cell type compositions change between AD and
non-AD samples.
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Supplementary Figure 5.

Empirically-calibrated false discovery rates of non-zero effects. (a) For the cell-type-specific gene models,
we constructed the null data by Freedman-Lane permutation39. X-asis: posterior probability cutoff; y-axis:
false discovery rate. (b) For the deQTL models, we constructed the null data by permuting samples after
adjusting non-genetic factors. X-asis: posterior probability cutoff; y-axis: density (log2 scaled).
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Supplementary Figure 6.

Cell-type-specific gene ontology (cellular component) enrichment results for the significantly-associated genes.
X-asis: cell types; y-axis: keywords (gene sets).
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Supplementary Figure 7.

Cell-type-specific gene ontology (molecular function) enrichment results for the significantly-associated genes.
X-asis: cell types; y-axis: keywords (gene sets).
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Supplementary Tables

Supplementary Table 1.

Summary of cell type deconvolution results

cohort celltype region Mean(%) SD(%) N Mean(cell,%) SD(cell,%)
GTEx astrocytes Amygdala 24.90 12.98 152 26.96 13.45
GTEx astrocytes Anterior

cingulate
cortex
(BA24)

11.92 8.80 176 17.60 10.36

GTEx astrocytes Caudate
(basal
ganglia)

23.44 9.64 246 22.59 8.47

GTEx astrocytes Cerebellar
Hemisphere

33.48 7.61 215 52.78 7.44

GTEx astrocytes Cerebellum 37.64 8.10 241 57.43 7.70
GTEx astrocytes Cortex 9.24 6.27 255 13.74 7.09
GTEx astrocytes Frontal

Cortex
(BA9)

11.00 9.04 209 15.90 9.96

GTEx astrocytes Hippocampus 10.85 6.63 197 10.50 6.67
GTEx astrocytes Hypothalamus 17.27 9.17 202 16.39 9.14
GTEx astrocytes Nucleus

accumbens
(basal
ganglia)

17.38 9.38 246 20.60 9.27

GTEx astrocytes Putamen
(basal
ganglia)

16.00 8.12 205 14.27 6.94

GTEx astrocytes Spinal cord
(cervical c-1)

6.14 3.66 159 3.88 2.54

GTEx astrocytes Substantia
nigra

9.86 7.90 139 6.83 5.81

GTEx excitatory
neurons

Amygdala 32.96 16.16 152 12.44 8.67

GTEx excitatory
neurons

Anterior
cingulate
cortex
(BA24)

57.24 16.72 176 31.51 14.46

GTEx excitatory
neurons

Caudate
(basal
ganglia)

9.74 7.95 246 3.42 3.80

GTEx excitatory
neurons

Cerebellar
Hemisphere

48.77 7.33 215 24.63 5.63

GTEx excitatory
neurons

Cerebellum 45.39 7.06 241 22.15 5.24

GTEx excitatory
neurons

Cortex 63.12 13.75 255 33.46 12.88

GTEx excitatory
neurons

Frontal
Cortex
(BA9)

62.14 18.02 209 34.17 15.36

GTEx excitatory
neurons

Hippocampus 32.02 19.86 197 11.35 9.30

GTEx excitatory
neurons

Hypothalamus 6.40 6.06 202 2.12 2.45

GTEx excitatory
neurons

Nucleus
accumbens
(basal
ganglia)

15.33 8.12 246 6.31 3.97

GTEx excitatory
neurons

Putamen
(basal
ganglia)

7.67 6.95 205 2.45 2.67

GTEx excitatory
neurons

Spinal cord
(cervical c-1)

2.66 4.79 159 0.60 1.27

GTEx excitatory
neurons

Substantia
nigra

2.77 4.98 139 0.67 1.50

GTEx inhibitory
neurons

Amygdala 7.75 4.72 152 5.42 3.94
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(continued)
cohort celltype region Mean(%) SD(%) N Mean(cell,%) SD(cell,%)
GTEx inhibitory

neurons
Anterior
cingulate
cortex
(BA24)

12.52 6.00 176 13.14 7.48

GTEx inhibitory
neurons

Caudate
(basal
ganglia)

30.27 10.64 246 18.83 9.57

GTEx inhibitory
neurons

Cerebellar
Hemisphere

14.45 2.61 215 13.91 3.30

GTEx inhibitory
neurons

Cerebellum 13.99 2.62 241 13.05 3.21

GTEx inhibitory
neurons

Cortex 8.03 4.19 255 8.30 4.98

GTEx inhibitory
neurons

Frontal
Cortex
(BA9)

6.96 3.93 209 7.44 4.79

GTEx inhibitory
neurons

Hippocampus 5.31 5.14 197 3.52 4.04

GTEx inhibitory
neurons

Hypothalamus 37.29 13.37 202 22.06 10.71

GTEx inhibitory
neurons

Nucleus
accumbens
(basal
ganglia)

46.74 10.26 246 35.25 11.76

GTEx inhibitory
neurons

Putamen
(basal
ganglia)

30.46 10.77 205 17.31 8.24

GTEx inhibitory
neurons

Spinal cord
(cervical c-1)

2.80 4.28 159 1.16 2.03

GTEx inhibitory
neurons

Substantia
nigra

9.71 7.56 139 4.15 3.67

GTEx microglia Amygdala 6.50 6.05 152 14.98 10.67
GTEx microglia Anterior

cingulate
cortex
(BA24)

2.14 2.94 176 6.75 6.49

GTEx microglia Caudate
(basal
ganglia)

4.66 3.66 246 10.31 7.09

GTEx microglia Cerebellar
Hemisphere

0.98 1.42 215 3.47 4.01

GTEx microglia Cerebellum 0.40 0.53 241 1.40 1.79
GTEx microglia Cortex 1.69 1.79 255 5.75 4.88
GTEx microglia Frontal

Cortex
(BA9)

2.02 3.77 209 6.15 7.70

GTEx microglia Hippocampus 5.83 5.45 197 11.96 9.01
GTEx microglia Hypothalamus 11.02 7.03 202 22.74 11.80
GTEx microglia Nucleus

accumbens
(basal
ganglia)

3.77 3.25 246 10.19 7.48

GTEx microglia Putamen
(basal
ganglia)

3.91 2.78 205 8.18 5.34

GTEx microglia Spinal cord
(cervical c-1)

15.01 9.69 159 21.25 12.38

GTEx microglia Substantia
nigra

11.93 8.24 139 18.32 11.35

GTEx oligodendrocyte
progenitor
cells

Amygdala 6.39 3.68 152 5.51 2.80

GTEx oligodendrocyte
progenitor
cells

Anterior
cingulate
cortex
(BA24)

4.04 3.41 176 4.72 2.96

GTEx oligodendrocyte
progenitor
cells

Caudate
(basal
ganglia)

4.56 2.49 246 3.58 1.75

GTEx oligodendrocyte
progenitor
cells

Cerebellar
Hemisphere

0.38 0.36 215 0.49 0.43
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(continued)
cohort celltype region Mean(%) SD(%) N Mean(cell,%) SD(cell,%)
GTEx oligodendrocyte

progenitor
cells

Cerebellum 0.17 0.15 241 0.21 0.18

GTEx oligodendrocyte
progenitor
cells

Cortex 1.84 1.49 255 2.24 1.35

GTEx oligodendrocyte
progenitor
cells

Frontal
Cortex
(BA9)

2.64 2.02 209 3.20 1.76

GTEx oligodendrocyte
progenitor
cells

Hippocampus 3.33 2.32 197 2.57 1.79

GTEx oligodendrocyte
progenitor
cells

Hypothalamus 3.58 2.14 202 2.80 1.75

GTEx oligodendrocyte
progenitor
cells

Nucleus
accumbens
(basal
ganglia)

2.89 1.95 246 2.80 1.63

GTEx oligodendrocyte
progenitor
cells

Putamen
(basal
ganglia)

2.58 1.81 205 1.89 1.29

GTEx oligodendrocyte
progenitor
cells

Spinal cord
(cervical c-1)

2.75 1.78 159 1.43 0.99

GTEx oligodendrocyte
progenitor
cells

Substantia
nigra

3.31 2.05 139 1.85 1.19

GTEx oligodendrocytesAmygdala 14.87 9.74 152 24.93 13.10
GTEx oligodendrocytesAnterior

cingulate
cortex
(BA24)

4.81 7.34 176 10.59 11.24

GTEx oligodendrocytesCaudate
(basal
ganglia)

17.59 8.98 246 27.47 11.40

GTEx oligodendrocytesCerebellar
Hemisphere

0.78 0.99 215 2.02 2.40

GTEx oligodendrocytesCerebellum 1.06 1.20 241 2.70 2.89
GTEx oligodendrocytesCortex 7.81 8.11 255 18.27 13.66
GTEx oligodendrocytesFrontal

Cortex
(BA9)

7.14 8.54 209 15.86 12.69

GTEx oligodendrocytesHippocampus 34.14 19.26 197 48.45 18.05
GTEx oligodendrocytesHypothalamus 14.07 12.09 202 19.89 13.98
GTEx oligodendrocytesNucleus

accumbens
(basal
ganglia)

7.42 7.22 246 13.86 10.25

GTEx oligodendrocytesPutamen
(basal
ganglia)

28.20 11.01 205 41.06 11.86

GTEx oligodendrocytesSpinal cord
(cervical c-1)

63.55 14.76 159 65.02 14.46

GTEx oligodendrocytesSubstantia
nigra

49.49 14.50 139 54.92 13.97

GTEx pericytes /
endothelial
cells

Amygdala 6.63 6.87 152 9.75 7.08

GTEx pericytes /
endothelial
cells

Anterior
cingulate
cortex
(BA24)

7.32 6.64 176 15.68 8.42

GTEx pericytes /
endothelial
cells

Caudate
(basal
ganglia)

9.74 5.08 246 13.80 5.87

GTEx pericytes /
endothelial
cells

Cerebellar
Hemisphere

1.16 1.10 215 2.70 2.12

GTEx pericytes /
endothelial
cells

Cerebellum 1.36 1.15 241 3.06 2.31
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(continued)
cohort celltype region Mean(%) SD(%) N Mean(cell,%) SD(cell,%)
GTEx pericytes /

endothelial
cells

Cortex 8.27 5.85 255 18.25 8.41

GTEx pericytes /
endothelial
cells

Frontal
Cortex
(BA9)

8.10 6.06 209 17.29 7.35

GTEx pericytes /
endothelial
cells

Hippocampus 8.52 4.79 197 11.65 5.54

GTEx pericytes /
endothelial
cells

Hypothalamus 10.37 6.61 202 14.00 7.70

GTEx pericytes /
endothelial
cells

Nucleus
accumbens
(basal
ganglia)

6.47 5.96 246 11.00 7.87

GTEx pericytes /
endothelial
cells

Putamen
(basal
ganglia)

11.18 5.93 205 14.84 6.58

GTEx pericytes /
endothelial
cells

Spinal cord
(cervical c-1)

7.09 4.46 159 6.67 4.27

GTEx pericytes /
endothelial
cells

Substantia
nigra

12.92 6.56 139 13.26 6.71

Mayo astrocytes Temporal
Cortex

17.72 8.47 263 19.76 7.79

Mayo excitatory
neurons

Temporal
Cortex

43.70 17.76 263 17.51 10.44

Mayo inhibitory
neurons

Temporal
Cortex

3.76 3.06 263 3.01 2.97

Mayo microglia Temporal
Cortex

3.21 3.87 263 7.98 6.11

Mayo oligodendrocyte
progenitor
cells

Temporal
Cortex

2.22 1.31 263 2.04 1.10

Mayo oligodendrocytesTemporal
Cortex

20.74 13.51 263 35.74 16.45

Mayo pericytes /
endothelial
cells

Temporal
Cortex

8.64 5.17 263 13.96 6.24

ROSMAP astrocytes Dorsolateral
Prefrontal
Cortex

13.66 5.80 481 17.86 5.49

ROSMAP excitatory
neurons

Dorsolateral
Prefrontal
Cortex

55.13 11.92 481 24.67 9.56

ROSMAP inhibitory
neurons

Dorsolateral
Prefrontal
Cortex

7.00 2.43 481 5.98 2.85

ROSMAP microglia Dorsolateral
Prefrontal
Cortex

2.97 1.94 481 9.00 4.68

ROSMAP oligodendrocyte
progenitor
cells

Dorsolateral
Prefrontal
Cortex

1.60 0.95 481 1.71 0.85

ROSMAP oligodendrocytesDorsolateral
Prefrontal
Cortex

10.27 4.44 481 22.28 6.86

ROSMAP pericytes /
endothelial
cells

Dorsolateral
Prefrontal
Cortex

9.38 3.74 481 18.49 4.64

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.426000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.426000
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 2.

56 GWAS traits analyzed in this work

GWAS.traits Source N Ncase Ncontrol
Alzheimer Disease Jansen (2018) 455,258 71,880 383,378
Anger Watanabe (2018) NA NA 57,010
Annoyance Watanabe (2018) 126,198 NA NA
asthma Watanabe (2018) 385,822 44,301 341,521
Atopic dermatitis Paternoster (2011) 26,171 5,606 20,565
Attention-
deficit/hyperactivity
disorder

Demontis (2017) 53,293 19,099 34,194

Autism spectrum
disorder

Weiner (2017) 46,350 18,381 27,969

Automobile speeding
propensity

Karlsson Linner (2019) 404,291 NA NA

Basal metabolic rate Watanabe (2018) 379,821 NA NA
Bipolar and depression Watanabe (2018) 93,296 25,873 67,423
Bipolar disorder Stahl (2017) 74,194 20,129 54,065
Body fat percentage Watanabe (2018) 379,615 NA NA
Body mass index Yengo (2018) 700,000 NA NA
Cholesterol medication Watanabe (2018) 176,050 40,433 135,617
Chron disease Franke (2010) 21,389 6,333 15,056
Cognitive performance Lee (2018) 257,828 NA NA
Depressed affect Nagel (2018) 357,957 NA NA
Depression Watanabe (2018) 289,307 22,055 267,252
Diabetes Watanabe (2018) 385,420 18,483 366,937
Drinks per week Karlsson Linner (2019) 414,343 NA NA
Eczema and dermatitis Watanabe (2018) 9,381 279,476 289,307
Educational
attainment

Lee (2018) 766,345 NA NA

Ever smoker Karlsson Linner (2019) 518,633 NA NA
Extreme irritability Watanabe (2018) 32,229 90,662 122,891
Gallstones Watanabe (2018) 300,791 11,632 289,159
Gastritis and
duodenitis

Watanabe (2018) 300,791 14,477 286,314

Gastroesophageal
reflux disease

Watanabe (2018) 300,791 12,011 288,780

Hayfever / allergic
rhinitis

Watanabe (2018) 289,307 22,057 267,250

Hayfever / allergic
rhinitis / eczema

Watanabe (2018) 385,822 89,380 296,442

High blood pressure Watanabe (2018) 385,699 103,381 282,318
High cholesterol Watanabe (2018) 289,307 46,932 242,375
Hypothyroidism /
myxoedema

Watanabe (2018) 289,307 18,740 270,567

Inflammatory bowel
disease

Liu (2015) 96,486 9,846 86,640

Insomnia Jansen (2019) 386,533 109,402 277,131
Irritability Watanabe (2018) 369,232 104,545 264,687
Irritable argument Watanabe (2018) 22,783 103,513 126,296
Major depressive
disorder

Watanabe (2018) 244,890 10,402 234,488

Major depressive
disorder

Ripke (2013) 173,005 59,851 113,154

Number of sexual
partners

Karlsson Linner (2019) 370,711 NA NA

Obsessive compulsive
disorder

Stewart (2013) and
Mattheisen (2015)

9,725 2,688 7,037

Osteoarthritis (meta) Zengini (2018) 327,918 30,727 297,191
Osteoarthritis (UKB) Watanabe (2018) 289,307 31,545 257,762
Osteoarthritis of hip Watanabe (2018) 300,791 9,873 290,918
Osteoarthritis of knee Watanabe (2018) 300,791 12,508 288,283
Post-traumatic stress
disorder

Duncan (2017) 9,537 2,424 7,113

Rheumatoid arthritis Okaba (2014) 103,638 29,880 73,758
Risk tolerance Karlsson Linner (2019) 466,571 NA NA
Schizophrenia Ripke (2014) 87,491 33,426 54,065
Systemic lupus
erythematosus

Bentham (2015) 23,210 7,219 15,991
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The 1st PC of the four
risky behaviors

Karlsson Linner (2019) 315,894 NA NA

Traumatic depression Watanabe (2018) 71,568 52,198 19,370
Type 2 diabetes (meta) Mahajan (2018) 898,130 74,124 824,006
Type 2 diabetes (UKB) Watanabe (2018) 244,890 16,673 228,217
Type 2 diabetes BMI
adjusted

Mahajan (2018) 898,130 74,124 824,006

Ulcerative colitis Anderson (2011) 26,405 6,687 19,718
Worry Nagel (2018) 348,219 NA NA

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.426000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.426000
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 3.

Number of tissue-level eQTL and cell-type-specific deQTL SNPs and genes.
cell type #eQTLs #eQTLs

cell-type
only

#eQTLs
cell-type
only (%)

#genes #genes
cell-type
only

#genes
cell-type
only (%)

color

brain tissue 7,783 0 0 5,586 0 0 #DDDDDD
cell-type
combined

4,757 1,252 26 3,869 1,182 31 #FFCC00

inhibitory
neurons

1,966 410 21 1,727 391 23 #389D34

excitatory
neurons

1,259 239 19 1,071 230 21 #BDE29C

oligodendrocytes710 228 32 692 229 33 #E01F25
astrocytes 588 147 25 556 147 26 #A8CEE1
microglia 364 176 48 357 173 48 #F89C9B
pericytes /
endothelial
cells

319 78 24 307 78 25 #FD7C21

oligodendrocyte
progenitor
cells

24 11 46 23 11 48 #FBBC74
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