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Short description of Supporting Online Material 

In this Supporting Online Material (SOM), we provide more details on the underlying 
language models used to create protein embeddings and on how binding 
annotations were obtained. Also, we show a more detailed analysis of the results 
discussed in the main text. 

Of the 22,830 FunFams with EC annotations, 7% (1,526) are impure 
accounting for 16% of all sequences (Fig. S1). Comparing ProtBERT and PB-Tucker 
embeddings for those superfamilies showed that PB-Tucker seemed to be the better 
choice for our approach (Fig. S2). Using this method to cluster 13,011 FunFams with 
EC annotations, we observed different results for pure and impure FunFams (Table 
S1). Assessing the clustering performance for different EC levels did not show a 
clear trend (Fig. S4) indicating that the approach worked for functionally very 
different and more similar sequences. To further investigate the influence of certain 
parameters, we chose five superfamilies for five different criteria (Table S2). Testing 
different distance thresholds and neighborhood sizes for DBSCAN could not improve 
over the original choice of parameters (Table S3, Table S4, Fig. S5). Assessing the 
clustering on different levels of EC annotations for those five superfamilies showed 
that our approach was more influenced by the presence of moonlighting proteins or 
potentially missing annotations than by the level on which ECs were different (Fig. 
S6).  
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1. Materials & Methods 

Fig. S1: Fraction of FunFams with x EC annotations 

 

 
Since FunFams and EC annotations both provide a classification of proteins into functionally 
related classes, we expected FunFams to always only have one EC annotation. Surprisingly, 
some FunFams have multiple EC annotations. Panel A shows the fraction of FunFams with 
n EC annotations. 11% of FunFams have any EC annotation. Of those, 7% have multiple 
annotations. Panel B shows the relative size of FunFams with n EC annotations. The relative 
size is measured as the fraction of sequences that are in FunFams with n EC annotations. 
This number does not give any information about how many sequences have an EC 
annotation. 
 

1.1. Protein representation. 

ProtBERT-BFD [1] (in the following called ProtBERT) was used to create fixed-length 
vector representations (embeddings) for protein sequences. For ProtBERT, a stack 
of 30 attention layers, each having 16 attention heads with a hidden state size of 
1024 (total number of free parameters: 420M) was trained on BFD [2][3]. In contrast 
to BERT which uses a second loss (next-sentence prediction) to train a special token 
that summarizes sequences of variable length, ProtBERT was solely trained on the 
masked language modeling loss. 
 To create PB-Tucker embeddings, ProtBERT representations were projected 
in two steps from 1024-dimensions (d) first to 512-d and then further down to 128-d 
using a two-layer neural network with tanh non-linearity between the layers. The 
distance between two samples was defined as the Euclidean distance between 
those 128-d vectors and a soft margin loss was deployed to optimize distances 
between triplets in this new space. For optimization, the Adam optimizer with a 
learning rate of 0.001 and a batch size of 256 was used. For training, a non-
redundant version of CATH v4.3 [4] clustered at 100% sequence identity (PIDE) 
(122,727 proteins) was clustered further at 95% PIDE and 95% coverage resulting 
in 66,980 proteins. Profiles were created by iteratively searching the representatives 
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of this second clustering step against UniRef50 [5]. The consensus sequences of 
the resulting profiles were further clustered at 20% PIDE and 50% coverage using 
transitive clusters (connecting clusters if any members between two clusters fulfil the 
clustering criteria on PIDE and coverage) to detect remote homologs leaving 10,100 
proteins. A random subset of 100 proteins of the remaining cluster representatives 
from different homologous superfamilies according to CATH was used to determine 
early stopping. Training was performed using a subset of the 95% non-redundant 
set (66,980 proteins) so that any protein (i) was not part of any test set protein cluster 
and (ii) did not belong to the same homologous superfamily according to CATH as 
any protein in the test set resulting in a final set of 51,333 proteins. Profile creation 
and clustering was done using MMseqs2 [6]. 
 Comparing the distances between sequences within the same FunFam and 
those between different FunFams in the same superfamily, we observed larger 
relative differences for PB-Tucker (Fig. S2A) than for ProtBERT (Fig. S2B). The 
distribution of distances between sequences from different FunFams was narrower 
for most of the chosen superfamilies for PB-Tucker except for 1.10.630.10. This was 
also the superfamily with the smallest difference between within and between 
FunFam distances for both ProtBERT and PB-Tucker (Fig. S2). These observations 
suggest that PB-Tucker in fact better captures functional relationships within 
superfamilies and FunFams and is therefore a reasonable choice to use to further 
cluster FunFams. 
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Fig. S2: Average sequence distances for five superfamilies 

 

 

 
For each sequence in any FunFam of five exemplary superfamilies, we calculated the 
average distance of this sequence to all other sequences in this FunFam (“within a FunFam”, 
lighter green boxes) and to sequences in other FunFams in the same superfamily (“between 
FunFams”, darker green boxes) using A. PB-Tucker embeddings (128 dimensions) or B. 
ProtBERT embeddings (1024 dimensions). Grouping the resulting distances by superfamily 
and comparing the distributions showed that distances varied between superfamilies making 
it unreasonable to use the same distance cutoff for clustering for all superfamilies. The 
difference between within and between FunFam distances was in general larger for PB-
Tucker than for ProtBERT making it reasonable to use PB-Tucker for clustering FunFams. 
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1.2. Information on bound ligand.  

We extracted annotations of bound ligands from BioLip [7]. BioLip provides 
information on ligand binding based on structural information from PDB [8][9]. 
Therefore, it is possible to have multiple annotations for one sequence if there exist 
multiple structures for that sequence. To obtain annotations per sequence, we 
extracted binding information for all chains of structures matching a given sequence, 
which have been determined through X-ray crystallography [10] with a resolution of 

2.5Å and combined these annotations. It has been shown, that many ligands bound 
to enzymatic structures in PDB are not similar to the cognate ligand binding this 
enzyme under native conditions [11]. We considered only cognate ligands for our 
analysis. Since FunFams often only cover part of a sequence, we considered a 
sequence as bound to a ligand only if at least one of the corresponding binding 
residues was part of the sequence stretch covered in the FunFam alignment. 
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2. Additional results for EC analysis of clustering 

2.1. Difference in clustering for pure and impure FunFams. 

Pure FunFams were on average split into two clusters while impure FunFams were 
split into four clusters (Table S1). Especially if a FunFam is split into many clusters 

(e.g., 4; Fig. S3), this can be an indicator for functional impurity. EC annotations 
were not complete for most FunFams (on average only 16% of sequences in a 
FunFam have EC annotations). Therefore, there could exist more impure FunFams 
than captured through the EC purity. The number of clusters could provide a 
reasonable first step to identify impure FunFams that need further refinement but for 
which EC annotations are not available or incomplete. 

 

Table S1: Summary of clustering results for FunFams with EC annotations * 

 All Pure Impure 

Number of FunFams 13,011 11,738 (90%) 1,273 (10%) 

Number of clusters (Fold 
increase) 

26,464 (2.03; 
CI:[1.99;2.07]) 

21,546 (1.84; 
CI:[1.80;1.88]) 

4,918 (3.9; 
CI:[3.7;4.1]) 

Number (Fraction) of 
sequences classified as 
outliers 

74,706 (4.5%; 
CI:[4.4%;4.6%]) 

59,892 (4.6%; 
CI:[4.4%;4.8%]) 

16,906 (4.2%; 
CI:[3.9%;4.5%]) 

* Of the 13,011 FunFams with EC annotations considered in this analysis, 10% 
contained more than one EC annotation (impure FunFams). Applying DBSCAN 
resulted in 26,464 clusters and 74,706 (4.5%) sequences classified as outliers. 
On average, impure FunFams were split into more clusters than pure FunFams 
as indicated by the higher fold increase (3.9 compared to 1.8). The fold increase 
(number of clusters / number of FunFams) is given in brackets. CI indicates 
symmetric 95% confidence intervals. 
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Fig. S3: Number of clusters for pure and impure FunFams. 

 

 

 
A. Impure FunFams are on average split into more clusters than pure ones. 66% of impure 
FunFams were split into at least two clusters while on 34% of pure FunFams were split. B. 
The fraction of impure FunFams increases with a higher cluster number, e.g., of all FunFams 
that were split into at least four clusters, 27% were impure while only 10% of all FunFams 
are impure. Bars at zero clusters (leftmost bars) indicate FunFams for which all sequences 
were classified as outliers. 

 

2.2. No consistent trend for assessment on different levels of EC 
annotations. 

58% of all impure FunFams consisted of ECs which are identical on the first three 
and different on the fourth level (Fig. S4A), i.e., most of the FunFams were impure 
due to differences on the fourth level of EC annotations. For this level, it is also most 
difficult to distinguish sequences with different function. Two proteins with different 
first-level ECs are more likely evolutionarily unrelated, and therefore, less sequence-
similar than two proteins identical in the first three EC levels. 

 Although a meaningful assumption, we failed to observe a clear trend, i.e., 
splitting FunFams into more consistent sub-families appeared neither harder nor 
easier if differences in EC annotations were on lower levels. The percentage of 
impure clusters was lowest for “level 2” (EC annotations were different on the second 
level) (Fig. S4C). The percentage of FunFams completely pure after clustering and 
the average purity were highest for “level 2” while the values were similar for the 
other levels (Fig. S4D&E). Those differences for level 2 could be mainly due to the 
small number of FunFams (Fig. S4A, 8%) with EC impurity on this level. 
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Fig. S4: No consistent trend for assessment on different levels of EC 
annotations. 

 

 
 

We split the set of impure FunFams into four subsets. Each subset for level x consists only 
of FunFams for which the EC annotations are identical until level x-1 and different for level 
x. A. 58% of all impure FunFams are impure because of differences only at the fourth level 
of EC while still 23% of impure FunFams consist of sequences with EC annotations already 
different on the first level. B. The fold increase was similarly high for “level 1” and “level 2”, 
and lower for the other levels. Fold increase indicates the average number of clusters a 
FunFam was split into. C. The percentage of impure clusters was similarly high for “level 1” 
and “level 4”, lower for “level 3” and lowest for “level 2”. D. The percentage of completely 
pure FunFams after clustering was highest for “level 2” and lowest for “level 1”. E. The 
average purity increased for less specific EC levels (smaller numbers) for levels 2-4 while it 
was lowest for level 1.  
  



Littmann, et al. & Rost Clustering improves FunFams purity SOM 

Appendix p. 10 

3. More detailed assessment for five superfamilies 

To assess the effect of the choice of embeddings and clustering parameters, and to 
allow a more detailed assessment of the clustering performance for different levels 
of EC annotations, we picked five different superfamilies with different properties 
(Table S2): (i) high number of moonlighting proteins, i.e., proteins with multiple EC 
numbers, (ii) a lot of divergence on the third level of EC numbers, i.e., the impure 
FunFams in this family contain a lot of annotations that are different in the third level 
of the EC numbers, (iii) a lot of divergence on the fourth level of EC numbers, i.e. 
the impure FunFams in this family contain many annotations that are identical until 
the third level, but are different on the fourth level, (iv) clustering worked well, i.e., 
the average purity per FunFam was high, and (v) clustering did not work well, i.e., 
the average purity per FunFam was low (Table S2). 

 

Table S2: Five interesting superfamilies chosen for more detailed analysis. * 

Superfamily Property Number 
of 

FunFams 

Number of 
impure 

FunFams 

3.40.50.150 (Vaccinia Virus protein 
VP39) 

Number of 
moonlighting proteins 

302 28 

3.20.20.70 (Aldolase class I) Divergence in EC3 298 29 

3.40.47.10 (Thiolase/Chalcone 
synthase) 

Divergence in EC4 52 12 

3.50.50.60 (FAD/NAD(P)-binding 
domain) 

Good clustering 161 17 

1.10.630.10 (Cytochrome p450) Bad clustering 76 26 

* To allow a more detailed analysis, we picked five exemplary superfamilies 
following five different criteria: (i) high number of moonlighting proteins, i.e. 
proteins with multiple EC numbers, (ii) a lot of divergence on the third level of EC 
numbers, i.e., the impure FunFams in this family contain a lot of annotations that 
are different in the third level of the EC numbers, (iii) a lot of divergence on the 
fourth level of EC numbers, i.e. the impure FunFams in this family contain many 
annotations that are identical until the third level, but are different on the fourth 
level, (iv) clustering worked well, i.e. the average purity per FunFam was high, 
and (v) clustering did not work well, i.e. the average purity per FunFam was low. 

 

The fold increase, i.e., the number of clusters a FunFam is split into, was largest for 
superfamily 3.40.47.10 (with high divergence on the fourth level of EC annotations) 
and smallest for superfamily 1.10.630.10 (for which clustering worked badly) (Fig. 
S5A). The percentage of outliers was highest for 3.50.50.60 (for which clustering 
worked well) and lowest again for superfamily 1.10.630.10 (Fig. S5B). These 
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numbers already indicated that the embedding distances between sequences in 
FunFams of superfamily 1.10.630.10 did not allow a differentiation between different 
functionalities of those sequences. Maybe the embeddings mainly captured certain 
structural constraints between sequences in this superfamily instead of zooming into 
the functional relations. 

3.1. Importance of parameter choice. 

The distance threshold  of DBSCAN [12] defining whether two points are 
considered close to each other highly influences the clustering results. The variance 
observed between thresholds for different superfamilies indicated that it was 
reasonable to choose a threshold for each superfamily independently (Table S3). 

 

Table S3: Chosen distance cut-offs for clustering for five superfamilies. * 

 3.40.50.150 3.20.20.70 3.40.47.10 3.50.50.60 1.10.630.10 

1st quartile 0.103 0.144 0.108 0.124 0.161 

Median 0.176 0.238 0.203 0.202 0.209 

3rd quartile 0.254 0.345 0.299 0.306 0.250 

* The distance cutoff  was chosen individually for each superfamily. For each 
sequence in a FunFam, we calculated the average distance of this sequence to all 

other sequences in this FunFam. From the resulting distribution,  was chosen as 
the 1st quartile, median, or 3rd quartile. 

 

Using smaller distances resulted in more clusters and outliers leading to a purer 
clustering (Table S4). Especially for superfamily 1.10.630.10, for which the default 
clustering did not work well (Table S2), using the 1st quartile of sequence distances 

as  led to a much smaller number of impure clusters and a larger average purity 
than for the default clustering (Fig. S5). One major reason why the default clustering 
did not work well for superfamily 1.10.630.10 could be that the FunFams in this 
superfamily were mostly not split into any or only a small number of clusters (Fig. 
S5A; fold increase of 1.4, i.e., each FunFam was on average split into 1.5 clusters) 
and also only a low fraction of sequences was classified as outliers (Fig. S5B, 2% of 
sequences classified as outliers). 

In addition to n=5, we tested fixed neighborhood sizes of n[5;129;255] and 
variable neighborhood sizes dependent of the size of the FunFam n=x*|F| with 

|F|=number of sequences in a FunFam and x[0.01;0.1;0.2]. The individual 
performance differences between the five different superfamilies were not influenced 
by the neighboorhod size, i.e., for the superfamily where the default clustering 
performed well/bad, also the clustering with any other neighbourhood size, fixed or 
variable, performed well/bad (Fig. S5). 
 



Littmann, et al. & Rost Clustering improves FunFams purity SOM 

Appendix p. 12 

Table S4: Influence of chosen parameters on resulting clustering. * 

   Impure FunFams 

 # 
Clusters 

# 
Outliers 

% 
Clusters 
with ECs 

% 
Impure 
clusters 

% FunFams 
with only pure 

clusters 

Average 
purity 

Default 1,603 3,760 61% 
(81%) 

13% 
(34%) 

50% (41%) 59% (57%) 

ProtBERT 1,402 2,986 68% 
(86%) 

19% 
(41%) 

42% (37%) 51% (49%) 

=1st 
quartile 

2,261 8,221 53% 
(66%) 

4% 
(12%) 

73% (52%) 83% (79%) 

=3rd 
quartile 

1,144 1,544 72% 
(91%) 

30% 
(55%) 

29% (26%) 37% (35%) 

n=129 423 11,464 98% 
(68%) 

35% 
(26%) 

60% (43%) 60% (60%) 

n=255 325 6,960 94% 
(66%) 

38% 
(25%) 

57% (43%) 57% (57%) 

n=0.05*|F| 1,211 8,087 72% 
(76%) 

21% 
(33%) 

52% (41%) 58% (58%) 

n=0.1*|F| 1,034 11,644 84% 
(74%) 

27% 
(32%) 

54% (40%) 58% (58%) 

n=0.2*|F| 851 17,249 91% 
(69%) 

35% 
(32%) 

56% (38%) 57% (57%) 

*  We show average clustering results for various parameters for five 
superfamilies (1.10.630.10, 3.20.20.70, 3.40.47.10, 3.40.50.150, 3.50.50.60). n 
indicates the chosen neighborhood size for DBSCAN, i.e., the number of sequences 

a sequence has to be close to be considered a core point.  is the chosen distance 

cutoff to define whether a pair of sequences are close to each other.  was chosen 
individually for each superfamily. Default: Clustering with same parameters as 

remaining analysis (n=5, =median of average distance of all sequences to all other 
sequences in the same FunFam for one superfamily); ProtBERT: ProtBERT 
embeddings (1024 dimensions) were used to represent sequences instead of PB-

Tucker embeddings (128 dimensions, optimized to distinguish CATH classes); =1st 

quartile: n=5, =1st quartile of average sequence distances; =3rd quartile: n=5, 

=3rd quartile of average sequence distances; n=x (x [129,255]): n=x, =median 

of average sequence distance; n=x*|F| (x  [0.05,0.1,0.2]): the neighborhood size 
was chosen individually for the each FunFam with n=max(x*|F|, 5) and |F|=number 

of sequences in FunFam F, =median of average sequence distance. 
 

Fig. S5: Influence of chosen clustering parameters  
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We show the individual clustering results for various parameters for five superfamilies 
(1.10.630.10, 3.20.20.70, 3.40.47.10, 3.40.50.150, 3.50.50.60). n indicates the chosen 
neighborhood size for DBSCAN, i.e., the number of sequences a sequence has to be close 

to be considered a core point.  is the chosen distance cutoff to define whether a pair of 

sequences are close to each other.  was chosen individually for each superfamily. Default: 

Clustering with same parameters as remaining analysis (n=5, =median of average distance 

of all sequences to all other sequences in the same FunFam for one superfamily); 
ProtBERT: ProtBERT embeddings (1024 dimensions) were used to represent sequences 
instead of PB-Tucker embeddings (128 dimensions, optimized to distinguish CATH classes); 
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=1st quartile: n=5, =1st quartile of average sequence distances; =3rd quartile: n=5, =3rd 

quartile of average sequence distances; n=x (x[129,255]): n=x, =median of average 

sequence distance; n=x*|F| (x[0.05,0.1,0.2]): the neighborhood size was chosen 
individually for the each FunFam with n=max(x*|F|, 5) and |F|=number of sequences in 

FunFam F, =median of average sequence distance. A. The number of clusters as 

measured by the fold increase (i.e., increase over the number of FunFams) was especially 

high when using a small value for , e.g., here the 1st quartile of average sequence 
distances. There is no consistent relation between the number of clusters and the criterion 
for choosing a superfamily. B. The fraction of sequences classified as outliers exploded for 

larger values of n(129, 255) while it remained in a similar range for other parameter choices 
and independent of the criterion for choosing a superfamily. C. As expected, the fraction of 
impure clusters was very large for superfamily 1.10.630.10 which was chosen as example 
for “clustering did not work well”, and for superfamily 3.50.50.60 chosen as example for 
“clustering worked well”, the fraction of impure clusters was very low. D. The average purity 
of any of the five superfamilies was very similar for all choices of clustering parameters, 

except for =1st quartile where the average purity for superfamily 1.10.630.10 was much 
larger than for the other parameter sets. Therefore, if one is interested in having very pure 
clusters without being concerned about the large number of resulting clusters, using a 

smaller value for  can be a reasonable approach. 

3.2. No consistent influence of level of difference in EC annotations. 

Assessing how well our clustering approach worked depending on the level on which 
EC annotations were different (level x=ECs are identical until level x-1 and different 
on level x) did not reveal a consistent trend either for the full data set or the chosen 
five superfamilies. 

 For superfamily 3.40.47.10, we did not observe any impure FunFam for levels 
1-3 because this family was chosen as family with high divergence only on the fourth 
level of EC, i.e., all proteins are annotated to the same EC class until the third level 
but are annotated to many different classes on the fourth level (Table S2). Therefore, 
100% of all impure FunFams were impure due to differences in the EC annotations 
on the fourth level (Fig. S6). 

For superfamily 1.10.630.10 for which clustering did not work well, the 
percentage of impure clusters was always highest, and consequently, the average 
purity was always lowest compared to the other four superfamilies (Fig. S6B&C) 
except for level 2 because no FunFam of this superfamily was impure due to 
differences on the second EC level. However, while the clustering led to almost no 
increase in purity for level 4, it worked better for level 1 and 3 (Fig. S6B&C, dark 
green bar). The percentage of FunFams impure on level 4 was lower than for the 
other superfamilies except for 3.20.20.70 which was specifically chosen because of 
the high divergence on level 3 and higher (Fig. S6A). This indicated that the 
superfamily 1.10.630.10 was less well split into FunFams and the functional impurity 
present in these was caused by coarse-grained functional differences as reflected 
by EC numbers different on higher levels. 

 For superfamily 3.40.50.150 with many moonlighting proteins, clustering was 
perfect for levels 1-3 (Fig. S6B&C, dark blue bar). Errors in the clustering when 
evaluating the fourth level might be in general caused by the presence of those 



Littmann, et al. & Rost Clustering improves FunFams purity SOM 

Appendix p. 15 

moonlighting proteins and our rather conservative definition of purity: If one protein 
is annotated to two EC numbers and another protein in the same cluster is only 
annotated to one of those two, we consider this cluster impure. Since this 
superfamily contains many moonlighting proteins, this issue could highly influence 
the performance of the clustering approach. In fact, 88% of the moonlighting proteins 
in the impure FunFams are in FunFams with impurity on level 4 where clustering 
worked less well than for FunFams with impurity on level 1-3 with only a small 
fraction of moonlighting proteins. 

The average purity dropped for level 3 and 2 compared to level 1 for 
superfamily 3.50.50.60 (Fig. S6C, lighter blue bar). On average, clustering worked 
well for this superfamily and apparently these good results were mainly caused by 
the perfect clustering on level 4. Our assumption was that it should be easier to 
detect more coarse-grained functional inconsistencies (i.e., different annotations on 
the first or second EC level), however for the superfamily where the clustering 
worked well, the opposite was the case. 

The trend for superfamily 3.20.20.70 was the same as for the overall data set: 
The clustering worked best (i.e., perfectly) for levels 2 and 3, and it worked slightly 
worse for level 1 than for level 4 (Fig. S6B&C, orange bar). Investigating the impure 
FunFams on level 1 showed that the conservative definition of same EC annotation 
could explain the observed trend. Seven FunFams were impure on the first level. Of 
those, five were clustered perfectly into pure FunFams. The remaining two consisted 
of sequences where some of the sequences were annotated to EC number 5.3.1.1 
and some were annotated to EC numbers 5.3.1.1 and 4.2.3.3. Our clustering 
approach did not cluster these FunFams further.  
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Fig. S6: No consistent trend for assessment on different levels of EC 
annotations. 

 

 
 
We assess purity of FunFams and clusters for five superfamilies (1.10.630.10, 3.20.20.70, 
3.40.47.10, 3.40.50.150, 3.50.50.60) using different definitions of purity: A FunFam or 
cluster is considered “pure” on level x of EC annotations if the EC annotations of all 
sequences in that FunFam/cluster are identical at least until level x. On level 1, all 
annotations are considered identical that have the same first EC number, while on level 4, 
annotations are only considered identical if they are the same on all four levels of EC 
numbers. A. The fraction of impure FunFams per superfamily dropped for lower levels of EC 
annotations. For superfamily 3.40.47.10, we only observed impure FunFams for the fourth 
EC level because this family was particularly chosen that way (Table S2). Superfamily 
1.10.630.10 for which clustering did not work well always had the highest fraction of impure 
FunFams on all levels of EC annotations. B. The fraction of impure clusters dropped for 
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superfamily 1.10.630 while still remaining high, and clustering was perfect for superfamily 
3.40.50.150 for levels 1-3. For the other two superfamilies, the fraction of impure clusters 
rose. Since the fraction of impure clusters was only calculated for impure FunFams (for a 
pure FunFams, all resulting clusters are pure), there were no impure clusters for superfamily 
3.40.47.10 just because there were also no impure FunFams at levels 1-3. C. By definition, 
the opposite trends as observed for the fraction of impure clusters was true for the average 
purity. The drop in average purity for superfamilies 3.20.20.70 and 3.50.50.60 indicated that 
the FunFams which were not clustered correctly were mainly the FunFams containing EC 
annotations that were different even up to the first or second level. 
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