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Abstract 10 

Objective 11 

Development and progression of immune-mediated inflammatory diseases (IMIDs) involve 12 

intricate dysregulation of the disease associated genes (DAGs) and their expressing immune 13 

cells. Due to the complex molecular mechanism, identifying the top disease associated cells 14 

(DACs) in IMIDs has been challenging.  Here, we aim to identify the top DACs and DAGs to 15 

help understand the cellular mechanism involved in IMIDs and further explore therapeutic 16 

strategies. 17 

Method 18 

Using transcriptome profiles of 40 different immune cells, unsupervised machine learning, 19 

and disease-gene networks, we constructed the Disease-gene IMmune cell Expression 20 

(DIME) network, and identified top DACs and DAGs of 12 phenotypically different IMIDs. 21 

We compared the DIME networks of IMIDs to identify common pathways between them. 22 

We used the common pathways and publicly available drug-gene network to identify 23 

promising drug repurposing targets. 24 

Result 25 

We found CD4+Treg, CD4+Th1, and NK cells as top DACs in the inflammatory arthritis such 26 

as ankylosing spondylitis (AS), psoriatic arthritis, and rheumatoid arthritis (RA); neutrophils, 27 

granulocytes and BDCA1+CD14+ cells in systemic lupus erythematosus and systemic 28 

scleroderma; ILC2, CD4+Th1, CD4+Treg, and NK cells in the inflammatory bowel diseases 29 

(IBDs). We identified lymphoid cells (CD4+Th1, CD4+Treg, and NK) and their associated 30 

pathways to be important in HLA-B27 type diseases (psoriasis, AS, and IBDs) and in 31 
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primary-joint-inflammation-based inflammatory arthritis (AS and RA). Based on the 32 

common cellular mechanisms, we identified lifitegrast as potential drug repurposing 33 

candidate for Crohn’s disease, and other IMIDs. 34 

Conclusion 35 

Our method identified top DACs, DAGs, common pathways, and proposed potential drug 36 

repurposing targets between IMIDs. To extend our method to other diseases, we built the 37 

DIME tool. Thus paving way for future (pre-)clinical research. 38 

 39 

Keywords 40 

IMIDs; Immune cells; Disease associated cells; Disease associated genes; Drug repurposing; 41 

Machine learning 42 

  43 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2019.12.12.874321doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874321
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction 44 

The genetic and epigenetic heterogeneity has been known to play a major role in the 45 

development and progression of complex diseases. The past two decades has seen a major 46 

surge in studies that characterize genes and loci associated with diseases [1]. The use of high-47 

throughput omics technology and functional screenings have boosted our knowledge about 48 

genetic, epigenetic and metabolic factors underlying complex diseases [1]. As a result of 49 

these genetic and epigenetic screenings, we now know that the majority of complex diseases 50 

and genes/loci have a many-to-many relationship meaning that a complex disease is linked to 51 

many different genes and a gene/loci might be associated with many different diseases [2].  52 

Large high-throughput screening studies have typically used bulk tissue or whole blood to 53 

study disease associated genes (DAGs). However, the expression of each gene is known to 54 

vary between tissues and cell types [3,4]. Thus, bulk tissue- or blood-based studies on DAGs 55 

do not consider the role played by different cells and tissues in the disease biology. To 56 

improve the understanding and molecular basis of complex diseases, a large number of 57 

research groups and consortiums have started to functionally identify disease associated cells 58 

(DACs) or tissue types [3–7]. The Genotype-Tissue Expression (GTEx) is one such valuable 59 

project, which maps gene expression profiles of 54 different human tissue types and the 60 

corresponding expression quantitative trait loci (eQTLs) [5–7]. Furthermore, the growth of 61 

single cell technologies have advanced our understanding of DACs and have helped in 62 

identifying cell types associated with complex diseases including cancer [8], Alzheimer’s [9], 63 

rheumatoid arthritis [10], among others.  64 

The immune system is known to play a key role in the development and progression of 65 

immune-mediated as well as non-immune mediated chronic diseases. A large number of 66 

association and functional studies have shown that multiple DAGs are expressed in immune 67 

cells and perturbing these DAGs can modulate immune cell functions [11]. However, very 68 

few studies have explored the impact of DAGs on specific cell types and even fewer on 69 

immune cells, many of which focus on limited number of cell subsets [12–16]. Recently 70 

Schmiedel et al. studied the effect of genetic variants on the expression of genes in 13 71 

different immune cell types [17]. However, this study largely focused on the analysis of 72 

genetic variants and their impact on a total of 13 immune cell types: monocytes (classical and 73 

non-classical), NK cells, naïve B-cells and nine sub-populations of T-cells. 74 
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Immune-mediated inflammatory diseases (IMIDs) are complex in nature, with the 75 

involvement of several different types of immune cells. For example, in rheumatoid arthritis, 76 

the immune cells such as B-cells, T-cells, macrophages, mast cells, dendritic cells, and NK 77 

cells are known to play a major role in the pathogenesis of the disease [18]. Insights on the 78 

exact mechanism of action is crucial for developing successful therapies for the disease. This 79 

becomes particularly challenging for IMIDs due to the involvement of several cell types. The 80 

massive undertaking of GWAS for the IMIDs have enabled mapping of some of the 81 

molecular mechanisms of the IMIDs [19–22]. However, most of these have uncovered only 82 

the tip of the iceberg and further research is required to understand the etiology of these 83 

diseases with respect to the several different immune cells at play, and to identify any 84 

mechanistic overlap between the IMIDs. This approach of identifying the key immune cells 85 

at play and their mechanism in the IMIDs would set a robust rationale for exploring 86 

therapeutic strategies.  87 

In this study, we mapped the largest available and expert curated disease-gene network (from 88 

the DisGeNet curated from 16 different databases) [23] on the largest immunome data 89 

comprising gene expression profiles of 40 different immune cell types, curated by us. We 90 

further built a tool using an unsupervised machine learning algorithm , the disease-gene 91 

network, and the immunome to create the Disease-gene IMmune cell Expression (DIME) 92 

network. Hereby, the tool is referred to as the DIME; the analysis using this tool is referred to 93 

as the DIME analysis. Using DIME, we then quantified the effects of 3957 DAGs on the 94 

immunome, to identify DACs for 12 phenotypically different IMIDs. We used the DIME to: 95 

(1) study the underlying cell-specific mechanisms; (2) identify common DACs and their top 96 

weighted DAGs (hereby referred to as common cell-gene network) between different pairs of 97 

diseases; and (3) identify drug repurposing targets using the common cell-gene network. The 98 

DIME is available as a user-friendly R tool (https://bitbucket.org/systemsimmunology/dime), 99 

to identify the top genes and cells associated with the disease of interest for: (1) diseases from 100 

the DisGeNet, (2) diseases from the EBI genome wide association study (GWAS) catalogue, 101 

or (3) custom set of genes defined by the user. 102 

 103 

2. Methods 104 

2.1. Transcriptome data - Immunome 105 
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The transcriptome data consists of RNA-sequencing datasets of 40 different immune cell 106 

types curated using 316 samples from a total of 27 publicly available datasets (see 107 

Supplementary Table 1 for list of GEO datasets and samples used). The 40 different immune 108 

cells cover the entire hematopoietic stem cell differentiation tree comprising of 9 progenitors, 109 

19 lymphoid, and 12 myeloid cell types. The samples used here were manually curated 110 

considering only the unstimulated (except for macrophages, that were monocyte derived) 111 

immune cells that were sorted using Fluorescence-activated cell sorting (FACS) and were 112 

isolated from either blood, bone marrow or cord blood from healthy donors. The processed, 113 

batch corrected, and normalized data of the 40 immune cells is referred here as the 114 

immunome (see Supplementary methods for details).  115 

 116 

2.2. Disease-gene network from DisGeNet 117 

The disease-gene network from DisGeNet [23] was downloaded from the DisGeNet database 118 

(www.disgenet.org/downloads). All HLA associated genes was removed from the network, 119 

this was done to ensure that bias towards myeloid cells and B cells are removed, since the 120 

HLA genes are largely expressed by these cells. The resulting network was further filtered to 121 

include only those genes that were present in the immunome.  122 

 123 

2.3. IMID disease-gene network 124 

To study and identify the DACs of the IMIDs, the DAGs of 12 IMIDs were extracted from 125 

the above DisGeNet. The IMID gene network for the 12 diseases comprised of 3579 DAGs. 126 

The 12 diseases that broadly represent the IMIDs in this study include: ankylosing spondylitis 127 

(CUI: C0038013), arthritis (CUI: C0003864), Crohn’s disease (CUI: C0010346), diabetes 128 

mellitus - non-insulin-dependent (CUI: C0011860), systemic lupus erythematosus (CUI: 129 

C0024141), multiple sclerosis (CUI: C0026769), psoriasis (CUI: C0033860), psoriatic 130 

arthritis (CUI: C0003872), rheumatoid arthritis (CUI: C0003873), Sjogren's syndrome (CUI: 131 

C1527336), systemic scleroderma (CUI: C0036421), and ulcerative colitis (CUI: C0009324). 132 

CUI, used in DisGeNet, is the concept unique identifier for the disease term as defined by 133 

unified medical language system [25]. The disease term arthritis (CUI: C0003864) comprises 134 

DAGs that pan over several arthropathies such as spondyloarthropathy, osteoarthritis, gout, 135 

allergic arthritis, etc., that fall under the broad arthritis MeSH term.  136 

 137 

2.4. Identification of top DAC and DAG using machine learning 138 
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We used an unsupervised machine learning algorithm called non-negative matrix 139 

factorization (NMF) to map the disease-gene network to the immunome, and identify the top 140 

DACs and DAGs of the 12 IMIDs. The NMF algorithm clusters the input gene expression 141 

data into ‘k’ clusters, such that the DAGs of a cluster are expressed by the DACs of the same 142 

cluster, thus forming DAC-DAG pairs in each cluster [24]. We used the coefficients and 143 

weights identified by the NMF algorithm as the DAC and DAG scores respectively. The 144 

scores were scaled between 0 and 1, with 1 being the highest score. Those in the top 25 145 

percentile of the scores were regarded as the top DACs and DAGs respectively. We 146 

calculated the Frobenius norm for each cluster to weigh and rank the clusters, the rank 1 147 

cluster is referred to as the top cluster. The top cluster comprise the DAC-DAG pair that 148 

which maximally captures/represents the input gene expression matrix. Using the top DAC-149 

DAG pairs of all clusters, we constructed the Disease-gene IMmune cell Expression (DIME) 150 

network for the 12 IMIDs (see Supplementary methods for details). 151 

 152 

2.5. Common cell-gene network between diseases 153 

To identify common cell-gene network between two diseases, we looked at their overlapping 154 

DAC-DAG pairs in their corresponding DIME networks. These overlapping DAC-DAG pairs 155 

are referred to as the common cell-gene network between the two diseases. Jaccard index (JI) 156 

was used to measure the overlap between the two diseases with Fisher’s exact test (FET) used 157 

to obtain confidence p-value for the given overlap.  158 

 159 

2.6. Integrating drug-gene network 160 

The drug-gene target network was curated from (1) DGIdb with the filter set to contain 161 

CHEMBL interactions pertaining to the drugs approved by the food and drug administration 162 

(FDA) of USA [26] ; (2) all drug-gene of CLUE  database [27] and ; (3) all drug-gene of 163 

hPDI  [28]. The genes that had drugs associated to them are labelled in the common cell-gene 164 

networks to highlight druggability (Figure 5C-E).  165 

 166 

2.7. Statistical analysis 167 

We performed 1000 jackknife simulations to assess the consistency of the results from the 168 

DIME (Supplementary methods, and Supplementary figure 1-3). Pearson correlation 169 
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coefficient and p-value were computed to measure significance of the jackknife simulations 170 

in comparison to the original run (Supplementary figure 3). 171 

 172 

3. RESULTS 173 

 174 

3.1. Disease-gene network of the 12 IMIDs reveal several common DAGs 175 

In this study, we analyzed different types of IMIDs that include inflammatory arthropathies, 176 

spondyloarthropathies, rheumatic diseases, systemic IMIDs, and inflammatory bowel 177 

diseases (IBDs). The 12 different IMIDs include: ankylosing spondylitis (DAGs:298), 178 

arthritis (DAGs:567), Crohn’s disease (DAGs:786), diabetes mellitus - non-insulin-dependent 179 

(DAGs:1415), systemic lupus erythematosus (DAGs:963), multiple sclerosis (DAGs:961), 180 

psoriasis (DAGs:689), psoriatic arthritis (DAGs:177), rheumatoid arthritis (DAGs:1612), 181 

Sjogren's syndrome (DAGs:229), systemic scleroderma (DAGs:494), and ulcerative colitis 182 

(DAGs:796) (Figure 1 A-B). In total, 3957 DAGs were linked to the 12 IMIDs. Among 183 

which, several genes were found to be linked to several IMIDs, for example, 74 DAGs were 184 

linked to only Crohn’s disease (CD) and to ulcerative colitis (UC), both IBDs (Figure 1A). 185 

Calculating the Jaccard index and Fisher’s exact test (FET) on all the overlapping DAGs 186 

between all IMIDs revealed that CD and UC had the highest significant overlap (Figure 1C). 187 

Interestingly, genes associated with CD had significant overlap (FET p-value ≤ 0.05) with all 188 

diseases except psoriatic arthritis and diabetes mellitus non-insulin dependent (T2D). 189 

Rheumatoid arthritis (RA) had significant overlap of DAGs with all IMIDs except T2D. T2D 190 

did not have significant overlap of DAGs with any of the IMIDs. Arthritis, psoriasis, CD, and 191 

RA had significant overlap of DAGs between each other. We found 12 DAGs that were 192 

associated with all the 12 IMIDs (Figure 1A, E). These DAGs were related to processes 193 

typically associated with inflammation such as: cytokine signaling (GO:0001817; 194 

GO:0019221), regulation of inflammatory response (GO:0050727), and regulation of 195 

interleukin-6 (GO:0032675; GO:0032635). We further explored the expression of these 196 

DAGs in the immunome and found the expression of TNFAIP3 to be the highest in CD8+ T-197 

cells, ILC3 and CD4+ T-cells (Figure 1D, E). Likewise, IL1B was expressed by myeloid and 198 

progenitor cells; TNF was expressed by lymphoid and myeloid cells. Overall, certain myeloid 199 

cells and lymphoid cells, specifically expressed some of the 12 genes that were linked to all 200 

the 12 IMIDs. This intrigued us to identity the key immune cell types and genes that are 201 

important for the 12 IMIDs. Hence, we used the DIME on the 12 IMIDs to identify their top 202 
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DACs and DAGs. Briefly, DIME uses the immunome, input disease-gene network and an 203 

unsupervised machine learning algorithm (NMF) to identify the clusters of top DACs and 204 

DAGs, see methods. 205 

 206 

3.2. Top immune cells of inflammatory arthritis 207 

Inflammatory arthritis is characterized by joint inflammation due to autoimmunity. Joint 208 

inflammation is the primary clinical feature as observed in ankylosing spondylitis (AS) and 209 

RA. However, in other inflammatory arthritis such as the psoriatic arthritis, inflammation is 210 

present in both the skin and joints. Interestingly, AS and psoriatic arthritis are both 211 

seronegative spondyloarthropathies (negative for rheumatoid factor and auto nuclear 212 

antibodies) that are characterized by enthesitis and also have a predominant HLA-B27 213 

genotype [29,30]. We questioned if the inflammatory arthritis shared molecular mechanism, 214 

in addition to sharing clinical features. So, we performed DIME on the different types of 215 

inflammatory arthritis to identify the important DACs and DAGs, and compare the molecular 216 

mechanism shared between them. As a reference, we used the broader arthritis disease term 217 

that encompassed (including inflammatory arthritis) several different kinds of arthropathies, 218 

see methods for disease description. 219 

 220 

The DIME analysis of ankylosing spondylitis revealed lymphoid cells such as NK cells, 221 

ILC3, CD4+ T-cells (Th1, Treg, TEMRA) as the top DACs in the top cluster (Figure 2A). 222 

The top DAGs of the top cluster were associated with pathways such as interleukin signaling, 223 

antigen presentation, regulation of RUNX3, and BCR signaling (Figure 2E). The role of 224 

RUNX3 in NK cells, CD4+ and CD8+ T-cells has been reported to be important in AS [31]. In 225 

the second cluster, the top DACs included myeloid cells and the top DAGs were associated 226 

with pathways such as interleukin (IL-4, IL-10, IL-13) signaling, MAPK3 activation and 227 

MyD88 (Figure 2A, E). Thus, the key DACs of AS were found to be diverse as reported in 228 

the literature, however the top DACs according to DIME were NK cells, ILC3, CD4+ T-cells 229 

(Th1, Treg, TEMRA) [32]. 230 

 231 

The DIME analysis of psoriatic arthritis revealed lymphoid cells such as NK cells, ILC3 and 232 

myeloid cells like the macrophages and BDCA1+ DC as the top DACs in the top cluster 233 

(Figure 2B). Likewise, T-cells, NK cells and antigen presenting cells have been reported to 234 

play a role in the pathology of psoriatic arthritis [33].  The top DAGs of the top cluster were 235 
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associated with pathways such as interleukin (IL-4, IL-10, IL-13) signaling, activation of 236 

PI3K, and NF-KB. (Figure 2F). S100 calcium binding proteins like S100A8 and S100A9 are 237 

known to play a role in the regulation of inflammation in psoriatic arthritis [34]. In the second 238 

cluster, we found the top DAGs included the S100 calcium binding proteins, such as S100A9, 239 

and S100A8 that were highly expressed by the granulocytes, neutrophils, monocytes and 240 

dendritic cells (Figure 2B, F). 241 

 242 

The major immune cells involved in RA are T-cells, B-cells, and APCs [35]. While activation 243 

of CD4+ Th1 and impairment of CD4+ Tregs have been reported to be important for 244 

rheumatoid arthritis [36], the DIME analysis of RA revealed several lymphoid cells such as 245 

CD4+ Tregs, CD4+ Th1, NK cells, etc., as the top DACs in the top cluster (Figure 2C). The 246 

top DAGs of the top cluster were associated with pathways such as interleukin, TCR, FCERI, 247 

and BCR signaling (Figure 2G). In the second cluster, the top DACs included myeloid cells 248 

and the top DAGs were associated with pathways such as interleukin (IL-10, IL-13) 249 

signaling, neutrophil degranulation, and ECM organization (Figure 2C, G). Evidently, 250 

activation, recruitment and apoptosis of neutrophils is altered in RA and under the chronic 251 

inflammatory conditions they release protease-rich granules [37].  252 

 253 

The DIME analysis of the broader arthritis disease term, revealed macrophages as the top 254 

DAC in the top cluster (Figure 2D). Macrophages play a central role in arthropathies, where 255 

they release cytokines and activate several immune cells such as T-cells, monocytes, 256 

neutrophils, and synovial fibroblasts. In addition, they are also the most abundant cells at the 257 

site of inflammation [38]. The top DAGs of the top cluster were associated with pathways 258 

such as interleukin (IL-4, IL-13) signaling, extracellular matrix (ECM) related pathways, 259 

neutrophil degranulation and toll-like receptor (TLR) cascades (Figure 2H). In the second 260 

cluster, the top DACs comprise of neutrophils, granulocytes and the top DAGs were 261 

associated to pathways similar to the top cluster, and also included inflammasomes related 262 

pathways (Figure 2D, H).  263 

 264 

3.3. Top immune cells of systemic IMIDs 265 

We performed the DIME analysis on the systemic IMIDs such as systemic lupus 266 

erythematosus (SLE) and systemic scleroderma (SSc) (Figure 3). SLE and SSc are type I 267 

interferon-mediated systemic autoimmune diseases, that unlike RA, primarily affects not just 268 

the joints, but also the skin, kidney, heart, and other organs [39].In SLE, the continuous IFN 269 
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production by pDC and neutrophils leads to activation of monocytes, T-cells, and B-cells 270 

[40]. The DIME analysis of SLE revealed the myeloid cells (granulocytes, macrophages, 271 

BDCA1+ CD14+, monocytes) as the top DACs in the top cluster (Figure 3A). The top DAGs 272 

in the top cluster were associated with pathways such as interleukin signaling (IL-4, IL-13), 273 

neutrophil degranulation, cell surface interactions at the vascular wall and the TLR cascades 274 

(Figure 3C). Incidentally, the neutrophils in SLE undergo spontaneous NETosis (a form of 275 

suicidal cell death) and this process is dependent on TLR signaling [40]. Additionally, T-cells 276 

in SLE are found to have altered cytokine production with higher levels of IL6, IL7, and IL10 277 

secretions [40]. In the second cluster, we found the top DACs included CD4+ T-cells 278 

(TEMRA, TEM, TCM) and the top DACs were associated with pathways such as 279 

immunoregulatory interactions, Nef-associated factors (TNIP1, TNFAIP3), ZAP-70, VAV1 280 

pathway (Figure 3A, C). Nef-associated factors (TNIP1, TNFAIP3) is known to play a role in 281 

activation of T-cell via TCR signaling in SLE [41]. 282 

 283 

The DIME analysis of SSc revealed myeloid cells (neutrophils, granulocytes, BDCA1+ 284 

CD14+ cells) and lymphoid cells (NK cells and CD4+ Treg) as the top DACs in the top cluster 285 

(Figure 3B). The top DAGs in the top cluster were associated with pathways such as 286 

interleukin signaling (IL-4, IL-13), TGF beta signaling, NLR signaling, etc. (Figure 3D). In 287 

the second cluster, the top DACs included macrophages and the top DAGs were associated to 288 

pathways that included IL-10 signaling and degradation of ECM (Figure 3B, D). As 289 

described in the review by Caam et al., several studies have shown neutrophils, macrophages, 290 

NK cells, and Tregs to play a role in the profibrotic events in SSc by the production of 291 

profibrotic cytokines such as TGF beta, IL-4, IL-10, IL-13, etc., thus corroborating our 292 

findings [42]. 293 

 294 

3.4. Top immune cells in Inflammatory bowel diseases (IBDs) 295 

We then looked at IMIDs that involve chronic inflammation of the digestive system, these are 296 

categorized as IBDs. The two major forms of IBDs are CD and UC. CD is known to be 297 

driven by CD4+ Th1 cells, with a dominant Th1 cytokine profile leading to pro-inflammatory 298 

effect [43]. The DIME analysis of CD revealed lymphoid cells (CD4+ Treg, ILC2, CD4+ 299 

TEMRA, CD4+ Th1) as the top DACs in the top cluster (Figure 4A). The top DAGs of the 300 

top cluster were associated with pathways such as interleukin (IL-4, IL-10, IL-13) signaling, 301 

TLR (TLR-5, TLR-10) signaling, MyD88 and neutrophil degranulation (Figure 4C). In the 302 

second cluster, the top DACs included granulocytes, neutrophils, monocytes, macrophages, 303 
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etc., and the top DAGs were associated with pathways such as interleukin signaling, 304 

neutrophil degranulation and TLR cascades (Figure 4A, C). 305 

 306 

The T-cell profile of UC has been difficult to categorize due to discrepancies in its response 307 

among patients. However, there is evidence of Th2 cells, NK cells, macrophages, and 308 

neutrophils to be involved in the pathogenesis of UC [43]. The DIME analysis of UC 309 

revealed lymphoid cells (ILC2, NK, ILC3, CD4+ Th1, etc.) as the DACs in the top cluster 310 

(Figure 4B). The top DAGs of the top cluster were associated with pathways such as 311 

interleukin (IL-4, IL-13) signaling, TLR cascades, NLR signaling, neutrophil degranulation, 312 

etc. (Figure 4D). In the second cluster, the top DACs included granulocytes, BDCA1+ CD14+ 313 

cells, etc., and the top DAGs were associated with pathways such as interleukin signaling 314 

(IL-4, IL-10, IL-13), neutrophil degranulation and TLR cascades (Figure 4B, D).  315 

 316 

3.5. Statistically significance of DIME results 317 

To evaluate the consistency of results from DIME, we performed 1000 Jackknife simulations 318 

with random subsampling of DAC/DAG and re-identified the top DAC/DAG for all IMIDs 319 

(see Supplementary methods). The jackknife simulations revealed that the top DACs 320 

identified across all clusters in the simulations (Supplementary figure 1A) showed similar 321 

pattern when compared to top DACs identified in the original run (Supplementary figure 1C). 322 

For the top DACs of the top cluster, the pattern from the simulations (Supplementary figure 323 

1B) were comparable to the DAC score of the original run (Supplementary figure 1D). We 324 

used Pearson correlation to compare the pattern observed between the simulations and the 325 

original run, see Supplementary methods. The Pearson correlation between the pattern 326 

observed in simulated run (Supplementary figure 1B), and the DAC scores of the original run 327 

for the top cluster revealed that the top DACs in top cluster were significantly correlated (p-328 

value ≤ 0.05) for all the IMIDs except ulcerative colitis (Supplementary figure 3A). This 329 

shows that the top DACs of the top cluster identified by DIME are statistically significant for 330 

all IMIDs, except UC. 331 

Likewise, we evaluated the consistency of the top DAGs. In all simulations, the top 10 DAGs 332 

of top cluster of the original run were present as the top DAG in any of the clusters of the 333 

simulated run (Supplementary figure 2). The presence of the top 10 DAGs of top cluster of 334 

the original run as the top DAG in the top cluster of the simulations was also found to be 335 

high. The Pearson correlation between the pattern observed in the simulated run and the DAG 336 

scores of the original run for the top cluster were found to be significantly correlated for all 337 
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the IMIDs (Supplementary figure 3B, see Supplementary methods). This shows that the top 338 

DAGs of the top cluster identified by DIME are statistically significant for all IMIDs. 339 

 340 

3.6. Why are the top DACs of UC insignificant? 341 

In the case of UC, the top DACs was found to be statistically insignificant from our 1000 342 

jackknife simulations, the top DAGs however, were significant (Supplementary figure 1-3). 343 

We found from 1000 simulations that the lymphoid cells identified by the original run (Figure 344 

4B) were indeed present in the simulations, and in addition, the myeloid cells were also part 345 

of the top DACs of the top cluster in the simulations (Supplementary figure 1B). 346 

Furthermore, we found that the top DAGs of the top cluster included genes associated to 347 

neutrophil degranulation pathways and other myeloid cell related pathways (Figure 4B, D), 348 

thus, owing to the non-convergence of the NMF algorithm in accurately predicting the top 349 

DACs of the top cluster in UC. The top DACs of the top cluster of UC was found to be 350 

ambiguous as has been reported in the literature [43]. From our simulations, we propose the 351 

inclusion of the myeloid cells in the top DACs of the top cluster in addition to the lymphoid 352 

cells previously identified (Figure 4B). 353 

 354 

3.7. Common mechanisms in IMIDs 355 

The DIME analysis revealed that several top DAGs along with their corresponding DACs 356 

were present in many IMIDs. For example, in many IMIDs, the gene FOS was present as top 357 

DAG in the cluster typically containing myeloid cells (granulocytes, neutrophils and dendritic 358 

cells) as the top DACs. We found several genes like FOS, that were present as the top DAG 359 

in the same top DAC cluster between different pairs of diseases. We refer to these top DACs 360 

and DAGs that are present between the two diseases as the common cell-gene network, 361 

represented schematically in Figure 5A, see methods. Using, the common cell-gene network, 362 

we suggest that these diseases may have similar mechanism of action. Such common 363 

mechanisms can be exploited to gain mechanistic insights between diseases and to identify 364 

drug repurposing targets. Hence, we integrated the drug-gene networks (see methods) to 365 

identify and reinforce drug repurposing targets based on the common mechanisms (cell-gene 366 

networks) identified from the DIME analysis, Figure 5A.  367 

 368 

To identify the common mechanisms across the 12 IMIDs, we identified the common cell-369 

gene networks between all disease comparisons (Figure 5B). Jaccard index and FET was used 370 

to measure the extent and significance of the overlap in the common cell-gene networks 371 
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between the different pairs of diseases, respectively, see methods. In comparison to the 372 

analysis that looked at all DAGs, which showed several diseases to be statistically significant 373 

in the overlap (Figure 1C), the common cell-gene network overlap was restricted to fewer 374 

diseases (Figure 5B). 375 

 376 

The comparative analysis revealed that CD had statistically significant common cell-gene 377 

networks with several diseases such as AS, psoriasis, RA, and UC (Figure 5B). Among 378 

which, the common cell-gene network of CD and UC had the highest Jaccard index among 379 

all the IMIDs, both being IBDs with aggressive T-cell response [43]. The common cell-gene 380 

network of CD and UC revealed that the top DACs included the lymphoid cells such as CD4+ 381 

T-cell, CD4+ Th1, CD4+ Treg, ILC1, ILC2, ILC3 and NK cells in one cluster (Figure 5C). 382 

CD4+ Th1 and NK cells are known to be implicated in both CD and UC [43]. The top DAGs 383 

such as CXCR4, IL10RA, IL7R, ETS1, TNFAIP3, PTPRC, SELL, etc., were highly 384 

expressed by cells of the lymphoid cluster. These DAGs were enriched in pathways 385 

associated with interleukin signaling (IL-4 and IL-13), NLR signaling, etc (Supplementary 386 

figure 4A). The other clusters comprised of myeloid cells such as the granulocytes, dendritic 387 

cells, monocytes and macrophages, among which dendritic cells have been crucial for 388 

regulating the T-cell responses in IBDs. The top DAGs such as IL6R, CXCL8, ITGAX, 389 

S100A9, FOS, etc., were highly expressed by the cells of the myeloid cluster. These DAGs 390 

were enriched in pathways associated with interleukin signaling (IL-10), TLR signaling, 391 

ECM degradation, etc (Supplementary figure 4A).  392 

 393 

We next explored the common cell-gene network of the two distinct IMIDs that belonged to 394 

different pathophysiology, namely CD and RA. The common cell-gene network of CD and 395 

RA revealed that the top DACs comprised of the lymphoid cells that included all CD4+ T-396 

cells and NK cells in one cluster (Figure 5D). The top DAGs such as CD69, PTPRC, 397 

CXCR4, etc., were highly expressed by the cells of this cluster. These DAGs were enriched 398 

for pathways associated with interleukin, TLR, MyD88 signaling, etc. (Supplementary figure 399 

4B). The other clusters comprised of myeloid cells such as the granulocytes, dendritic cells, 400 

monocytes and macrophages. The top DAGs such as CTSS, ITGB2, ITGAX, MCL1, FOS, 401 

etc., were highly expressed by the cells of this cluster. These DAGs were enriched for 402 

pathways associated with interleukin (IL-4, IL-13) signaling, neutrophil degranulation, etc. 403 

(Supplementary figure 4B).  404 

 405 
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In addition to the common cell-gene networks of CD, we also found statistically significant 406 

common cell-gene network between the two inflammatory arthropathies that has joint pain as 407 

the primary feature, namely AS and RA. The common cell-gene network of AS and RA 408 

revealed that the top DACs comprised of the lymphoid cells that included all the T-cells, and 409 

NK cells in one cluster (Figure 5E). The top DAGs such as ITGAL, ETS1, IL2RG, 410 

TNFAIP3, etc., were highly expressed by the cells of this cluster. These DAGs were enriched 411 

for pathways associated with interleukin (IL-1) signaling, FCERI mediated NF−kB 412 

activation, TCR signaling, etc. The other clusters comprised of myeloid cells such as the 413 

granulocytes, dendritic cells, monocytes and macrophages. The top DAGs such as 414 

TNFRSF1B, STAT6, TYK2, were highly expressed by the cells of this cluster. These DAGs 415 

were enriched for pathways associated with interleukin (IL-4, IL-10, IL-13) signaling 416 

(Supplementary figure 4C). 417 

 418 

Thus, using the common cell-gene networks we were able to uncover the common 419 

mechanisms in accordance to the top DACs and DAGs (Figure 5). This revealed several 420 

pathways that are common between the different IMIDs (Supplementary figure 4). Our next 421 

question was to see if these common mechanisms comprised of any drug targets (genes that 422 

are druggable or have drugs that target them). The idea was to identify targets for drug 423 

repurposing based on the drug targets in the common cell-gene networks, this novel method 424 

of computational drug repurposing is a combination of target-based and mechanism-based 425 

drug repurposing strategies [44]. To perform this, we then used the common cell-gene 426 

networks identified here and the drug-gene networks from literature to explore the common 427 

DAGs that were also drug targets (Figure 5C-E, DAGs highlighted by green border), see 428 

methods. We found several DAGs such as IL1B, IL6R, ITGAL, PTGS2, TYK2, NFKB1, 429 

NLRP3, PRKCQ, PTGER4, PTPN2, RELA, SH2B3, SMAD3, TLR2, TLR4, and TREM1, 430 

that were drug targets and present in all the common cell-gene networks shown in Figure 5C-431 

E. Interestingly, ITGAL was found to be the only DAG that was a drug target and present as 432 

the top DAG of the top cluster (lymphoid cell cluster) in the DIME networks of CD, UC, AS 433 

and RA. Using the drugs associated to these drug targets specifically for these diseases (CD, 434 

UC, AS, and RA) in therapy would require extensive experimental validation and clinical 435 

trials. Therefore, we explored (in the next section) the possibility of using some of these drug 436 

targets for repurposing based on existing studies. Thus, reinforcing and strengthening these 437 

targets and also the validity of our approach in identifying them.  438 

 439 
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3.8 Common cell-gene networks from DIME reveals drug targets for repurposing 440 

To explore and validate the drug targets for repurposing, we focused on the top DAGs of the 441 

statistically significant (FET p-value � 0.05, Figure 5B) common cell-gene networks of all 442 

IMIDs. To identify drug targets that were targets of FDA approved drugs, we used the drug-443 

gene network of CHEMBL, see methods. We found several drug targets (Table 1) such as 444 

IL1B, IL6R, ITGAL, and TYK2 to be present in all the statistically significant common cell-445 

gene networks. Anti-IL1 therapy is used for psoriasis and RA [45–47]. Preliminary studies 446 

indicate that anti-IL1 therapy has shown promising clinical response for treating AS, CD, and 447 

UC [48,49]. Anti-IL6 therapy (tocilizumab) shows positive clinical response in small group 448 

of  patients in AS [50], CD [51] and in RA [52]. However, anti-IL6 therapy was found to 449 

have  side effects in smaller studies on psoriasis and UC [53,54]. Integrin based therapies 450 

(such as natalizumab and vedolizumab that targets ITGB2) are already in use for CD [55]. 451 

Exploring other integrin based therapies (such as Lifitegrast that targets ITGAL and also 452 

ITGB2) for CD may be beneficial since both ITGAL and ITGB2 are top DAGs and are also 453 

implicated in CD  [56,57]. Lifitegrast is a promising drug repurposing candidate for CD and 454 

also perhaps for UC, AS, and RA, since its target gene ITGAL, was the only top DAG of the 455 

top cluster (lymphoid cell cluster) that was also a drug target in the DIME networks of these 456 

diseases (Figure 2, 4, 5C-E). Thereby, targeting the same mechanism implicated in these 457 

diseases. 458 

Tofacitinib, a TYK2 and JAK2 inhibitor developed for RA is now making way to treatment 459 

options in other diseases such as AS, CD, UC and psoriasis [58–61]. Corticosteroids (drug 460 

target: NR3C1) and the aminosalicylates (drug target: PTGS2 and ALOX5)  are current line 461 

of drugs used in treatment of several IMIDs [62]. Plerixafor (drug target : CXCR4) is a drug 462 

currently used in cancer (lymphoma and multiple myeloma), after stem cell transplantation to 463 

initiate migration of stem cells in the bloodstream [63]. This drug is now in clinical trials 464 

(NCT01413100) to be evaluated for use after autologous transplant in patients with SSc. Such 465 

trials may potentially be extended to other IMIDs like psoriasis, CD, RA, and UC, that are 466 

driven by CXCR4 mediated dysregulation of immune system. 467 

 468 

4. Discussion 469 

Despite decades of experimental data, the knowledge on key cell types that are involved in 470 

pathogenesis of the disease still remains limited. To address this gap, we used the immunome 471 

comprising 40 immune cells, the disease-gene network and computational methods to 472 
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identify the important DACs and DAGs of the disease. The integration of these parts resulted 473 

in the novel mechanisms being captured by our method, using which we built a tool called 474 

the DIME.  Here, we highlight the important DACs, DAGs, and common mechanisms 475 

captured using DIME for 12 phenotypically different IMIDs. Using DIME, the top DACs 476 

were found to be CD4+ Treg, CD4+ Th1, and NK in the inflammatory arthritis (AS, PsA, and 477 

RA); neutrophils, granulocytes and BDCA1+CD14+ cells in SLE and SSc; ILC2, NK, CD4+ 478 

Th1, and CD4+ Treg in the IBDs.  479 

Lymphoid cells such as CD4+ Th1, CD4+ Treg and NK cells were found to be the key players 480 

in inflammatory arthritis (AS, PsA and RA) and IBD (CD and UC). These diseases have been 481 

reported to have an intricate cross play of the above lymphoid cells, where the NK cells 482 

influence the differentiation of CD4+ Th cells into CD4+ Th1 and CD4+ Tregs; CD4+ Th1 483 

plays a key role in initiation of inflammation by cytokine production; the CD4+ Tregs are 484 

crucial for immune response modulation [64]. Interestingly, the top DAGs of these diseases 485 

show pathways associated to signaling of IL-4 and IL-13 that are crucial in this cross play, 486 

thus corroborating the results from DIME. 487 

Although, our analysis excluded HLA genes to avoid myeloid and B cell bias, the IMIDs 488 

associated with the HLA-B27, such as psoriasis, AS, and IBDs were found to have 489 

statistically significant common-cell gene networks. However, PsA (also associated with 490 

HLA-B27) is not included here, since it did not have statistically significant common-cell 491 

gene network with any of the IMIDs (Figure 5B). Additionally, AS and RA, the two 492 

inflammatory arthritis with joint inflammation as the primary feature, also had statistically 493 

significant common-cell gene network. Thus, showing that the diseases with these shared 494 

clinical features also had common mechanisms as identified by DIME. The common 495 

mechanisms from these networks revealed several lymphoid and myeloid cells, and their 496 

expressing DAGs. The lymphoid cells such as CD4+ Th1, CD4+ Treg, and NK was 497 

predominant in all the statistically significant common-cell gene networks, showing that these 498 

diseases were indeed driven largely by the aggressive T-cell response [31–33,43]. Pathways 499 

such as interleukin (IL-4 and IL-13), TLR, TCR signaling, etc., was found to be enriched in 500 

the top DAGs of the common cell-gene networks of these IMIDs. Thus, the common cell-501 

gene network revealed several common mechanisms between the diseases in accordance to 502 

the top DACs, DAGs, and their associated pathways.  503 

We used the information of the common mechanism from the common cell-gene network and 504 

the drug-gene networks to propose potential drug targets for repurposing. This novel 505 

computational drug repurposing strategy, a combination of target-based (literature drug-gene 506 
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network) and mechanism-based (inferred from DIME) revealed several potential drug targets 507 

such as IL1B, IL6R, ITGAL, PTGS2, TYK2, NFKB1, NLRP3, PRKCQ, PTGER4, PTPN2, 508 

RELA, SH2B3, SMAD3, TLR2, TLR4, and TREM1. Further, we used these mechanism-509 

based drug targets from DIME and the FDA approved drug-gene network to propose several 510 

drug targets and their drugs that could expedite the drug repurposing process (Table 1). Thus, 511 

we were able to capture drugs targets and their drugs that are currently being targeted or 512 

being explored for use in therapy for the IMIDs. We also found a few novel targets such as 513 

the drug lifitegrast (used for dry eyes) for CD, UC, AS and RA as an alternative to other 514 

integrin-based therapies already in use for CD. Lifitegrast is particularly interesting because it 515 

targets ITGAL, which was found to be important in the lymphoid cell cluster of CD, UC, AS 516 

and RA. Thus, effectively targeting the same mechanism. Perhaps the effect of lifitegrast on 517 

down-regulating lymphoid cell mediated inflammation [65] could be used in these diseases. 518 

Although, Lifitegrast is currently available as eye drops and used to treat only eye 519 

complications, different formulations of this drug can be explored to treat CD, UC, AS and 520 

RA. So far, to our knowledge, the use of drug lifitegrast in the axis of ITGAL, for the 521 

treatment of CD, UC, AS and RA has not been explored. Thus, using DIME, we were able to 522 

propose a novel drug repurposing strategy from the analysis of the 12 IMIDs. 523 

 524 

5. Conclusions 525 

Thus, DIME was helpful in identifying: 1. top DACs, DAGs of the IMIDs, 2. Common 526 

mechanisms between the IMIDs, and 3. drug targets for repurposing. To enable DIME 527 

analysis for other diseases from the DisGeNet, the GWAS network and also for user defined 528 

set of genes, we built the DIME tool as a user-friendly shinyapp. We believe that this tool 529 

will aid scientist to increase the understanding of disease pathology and facilitate drug 530 

development by better determining drug targets, thereby mitigating risk of failure in late 531 

clinical development. 532 

 533 
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Figure legends 767 

Figure 1. DAGs of IMIDs: A. UpSet plot showing the intersection of DAGs of all 768 

comparisons of IMIDs. Comparisons shown only for those disease that have at least 1 769 

intersecting DAG between them. B. Barplot showing number of DAGs in each IMID. C. 770 

Heatmap depicting Jaccard index and Fisher exact test (FET) p-value calculated for each 771 

IMID comparison. Fisher exact test (FET) p-value denoted by * ( *** ≤ 0.001, ** ≤ 0.01, and 772 

* ≤ 0.05). D. Gene expression of TNFAIP3. E. Heatmap depicting gene expression of the 12 773 

genes common to all 12 IMIDs. Gene expression values are measured in log2(cpm+1), cpm 774 

denotes counts per million. 775 

Figure 2. DIME analysis of inflammatory arthritis: DIME heatmaps and pathway enrichment 776 

analysis for the top 25 percentile DAG identified by DIME for ankylosing spondylitis (A, E), 777 

psoriatic arthritis (B, F), rheumatoid arthritis (C, G) and arthritis (D, H) respectively. The top 778 

10 DAGs based on the DAG score are labelled in the DIME heatmap. 779 

Figure 3. DIME analysis of systemic diseases: DIME heatmaps and pathway enrichment 780 

analysis for the top 25 percentile DAG identified by DIME for SLE (A, C), and SSc (B, D) 781 

respectively. 782 

Figure 4. DIME analysis of IBDs: DIME heatmaps and pathway enrichment analysis for the 783 

top 25 percentile DAG identified by DIME for Crohn’s disease (A, C), and ulcerative colitis 784 

(B, D) respectively. 785 

Figure 5. Common mechanisms between IMIDs. A. Steps involved in DIME based drug 786 

repurposing using the common cell-gene network. B. Jaccard index and FET calculated for 787 

the common cell-gene between two diseases for all disease comparisons. Fisher exact test 788 

(FET) p-value denoted by * ( *** ≤ 0.001, ** ≤ 0.01, and * ≤ 0.05). Common cell-gene 789 

network of C. Crohn’s disease and ulcerative colitis. D. Crohn’s disease and rheumatoid 790 

arthritis. E. ankylosing spondylitis and rheumatoid arthritis. The cells are shown in blue. 791 

Color of the DAG is based on the mean gene expression of the DAG in the corresponding 792 

DACs. DAGs that are drug targets have a green border. 793 
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Table 1: The top DAGs (from Figure 5E-F) that are drug targets along with their FDA 796 

approved drugs. 797 

 798 

Drug 
targets 
(DAGs) 

Diseases Drugs 

IL1B Ankylosing spondylitis, Crohn 
disease, Psoriasis, Rheumatoid 
arthritis, Ulcerative colitis 

canakinumab, rilonacept, anakinra 

IL6R Ankylosing spondylitis, Crohn 
disease, Psoriasis, Rheumatoid 
arthritis, Ulcerative colitis 

tocilizumab 

ITGAL Ankylosing spondylitis, Crohn 
disease, Psoriasis, Rheumatoid 
arthritis, Ulcerative colitis 

lifitegrast 

TYK2 Ankylosing spondylitis, Crohn 
disease, Psoriasis, Rheumatoid 
arthritis, Ulcerative colitis 

tofacitinib_citrate 

PSMB9 Ankylosing spondylitis, Crohn 
disease, Psoriasis, Rheumatoid 
arthritis 

bortezomib, carfilzomib, ixazomib_citrate 

DNMT3A Ankylosing spondylitis, Crohn 
disease, Psoriasis, Ulcerative 
colitis 

azacitidine, decitabine 

HDAC7 Ankylosing spondylitis, Crohn 
disease, Psoriasis, Ulcerative 
colitis 

belinostat, panobinostat_lactate, romidepsin 

JAK2 Ankylosing spondylitis, Crohn 
disease, Psoriasis, Ulcerative 
colitis 

baricitinib, ruxolitinib_phosphate, tofacitinib_citrate 

PTGS2 Ankylosing spondylitis, Crohn 
disease, Rheumatoid arthritis, 
Ulcerative colitis 

acetaminophen, aminosalicylate_potassium, 
aminosalicylate_sodium, aspirin, balsalazide_disodium, 
bismuth_subsalicylate, bromfenac_sodium, carprofen, 
diclofenac, diclofenac_epolamine, diclofenac_potassium, 
diclofenac_sodium, diflunisal, etodolac, etoricoxib, 
fenoprofen_calcium, flurbiprofen, flurbiprofen_sodium, 
ibuprofen, ibuprofen_lysine, ibuprofen_sodium, 
indomethacin, indomethacin_sodium, ketoprofen, 
ketorolac_tromethamine, meclofenamate_sodium, 
meloxicam, mesalamine, nabumetone, naproxen, 
naproxen_etemesil, naproxen_sodium, nepafenac, 
olsalazine_sodium, oxaprozin, oxaprozin_potassium, 
piroxicam, sulfasalazine, sulindac, tolmetin_sodium 

BCL2 Crohn disease, Psoriasis, 
Rheumatoid arthritis, Ulcerative 
colitis 

venetoclax 

CXCR4 Crohn disease, Psoriasis, 
Rheumatoid arthritis, Ulcerative 
colitis 

plerixafor 

IL4R Crohn disease, Psoriasis, 
Rheumatoid arthritis, Ulcerative 
colitis 

dupilumab 

IL17RA Crohn disease, Psoriasis, 
Rheumatoid arthritis 

brodalumab 

ITGB2 Crohn disease, Psoriasis, 
Rheumatoid arthritis 

lifitegrast 
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PSMD7 Crohn disease, Psoriasis, 
Rheumatoid arthritis 

bortezomib, carfilzomib, ixazomib_citrate 

CD86 Crohn disease, Rheumatoid 
arthritis, Ulcerative colitis 

abatacept, belatacept 

CSF2RA Crohn disease, Rheumatoid 
arthritis, Ulcerative colitis 

sargramostim 

NR3C1 Crohn disease, Rheumatoid 
arthritis, Ulcerative colitis 

alclometasone_dipropionate, amcinonide, 
beclomethasone_dipropionate, betamethasone, 
betamethasone_acetate, betamethasone_benzoate, 
betamethasone_dipropionate, 
betamethasone_sodium_phosphate, betamethasone_valerate, 
budesonide, ciclesonide, clobetasol_propionate, 
clocortolone_pivalate, cortisone_acetate, deflazacort, 
desonide, desoximetasone, dexamethasone, 
dexamethasone_acetate, dexamethasone_sodium_phosphate, 
diflorasone_diacetate, difluprednate, flumethasone_pivalate, 
flunisolide, fluocinonide, fluorometholone, 
fluorometholone_acetate, fluprednisolone, flurandrenolide, 
fluticasone_furoate, fluticasone_propionate, halcinonide, 
hydrocortamate_hydrochloride, hydrocortisone, 
hydrocortisone_acetate, hydrocortisone_butyrate, 
hydrocortisone_cypionate, hydrocortisone_probutate, 
hydrocortisone_sodium_phosphate, 
hydrocortisone_sodium_succinate, hydrocortisone_valerate, 
loteprednol_etabonate, medrysone, meprednisone, 
methylprednisolone, methylprednisolone_acetate, 
methylprednisolone_sodium_succinate, mifepristone, 
mometasone_furoate, paramethasone_acetate, prednicarbate, 
prednisolone, prednisolone_acetate, 
prednisolone_sodium_phosphate, prednisolone_tebutate, 
prednisone, rimexolone, triamcinolone, 
triamcinolone_acetonide, triamcinolone_diacetate, 
triamcinolone_hexacetonide 

P4HB Crohn disease, Rheumatoid 
arthritis, Ulcerative colitis 

lomitapide_mesylate 

IL2RB Ankylosing spondylitis, 
Rheumatoid arthritis 

basiliximab, daclizumab 

IL2RG Ankylosing spondylitis, 
Rheumatoid arthritis 

basiliximab, daclizumab 

PSMB8 Ankylosing spondylitis, 
Rheumatoid arthritis 

bortezomib, carfilzomib, ixazomib_citrate 

ALOX5 Crohn disease, Rheumatoid 
arthritis 

balsalazide_disodium, meclofenamate_sodium, mesalamine, 
olsalazine_sodium, sulfasalazine, zileuton 
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Supplementary Table 1: GEO datasets and samples used to construct the immunome. 800 
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