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BoxCar and library-free data-independent acquisition 
substantially improve the depth, range, and completeness of 
label-free quantitative proteomics in Arabidopsis  
Devang Mehta1, Sabine Scandola1 and R. Glen Uhrig1 # 

 

Abstract 1 

The last decade has seen significant advances in the application of 2 
quantitative mass spectrometry-based proteomics technologies to tackle 3 
important questions in plant biology. The current standard for quantitative 4 
proteomics in plants is the use of data-dependent acquisition (DDA) 5 
analysis with and without the use of chemical labels. However, major 6 
limitations of the DDA approach are the preferential measurement higher 7 
abundant proteins, and the presence of missing values for proteins 8 
measured across replicate and independent samples. Here, we 9 
systematically compare and benchmark a state-of-the-art DDA label-free 10 
quantitative proteomics workflow for plants against a recently developed 11 
direct data-independent acquisition (directDIA) method. Our study 12 
demonstrates several advantages of directDIA including a 33% increase in 13 
the number of quantified proteins and the elimination of bias against the 14 
reproducible quantification of low-abundant proteins—a particularly 15 
important finding given the large dynamic range of plant proteomes. We 16 
next compared directDIA with a novel approach combining MS1-level 17 
BoxCar acquisition with MS2-level library-free DIA analysis (BoxCarDIA). 18 
Our BoxCarDIA method resulted in an additional 8% increase in the number 19 
of proteins quantified over directDIA, with further gains in quantitative 20 
completeness. Cumulatively, the methods benchmarked here achieve a 41% 21 
increase in protein quantification without any changes in instrumentation, 22 
offline fractionation, or increases in mass-spectrometer run time. We also 23 
applied directDIA to perform a quantitative proteomic comparison of dark 24 
and light grown Arabidopsis cell cultures, providing a critical resource for 25 
future plant interactome studies using this well-established biochemistry 26 
platform. Our results establish BoxCarDIA and directDIA as the new 27 
methods of choice in quantitative proteomics using Orbitrap-type mass-28 
spectrometers.  29 

Introduction 30 

The last decade has seen significant advances in the application of 31 
quantitative mass spectrometry-based proteomics technologies to tackle 32 
important questions in plant biology. This has included the use of both 33 
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label-based and label-free quantitative liquid-chromatography mass 34 
spectrometry (LC-MS) strategies in model1,2 and non-model plants3. While 35 
chemical labelling-based workflows (e.g. iTRAQ and TMT) are generally 36 
considered to possess high quantitative accuracy, they nonetheless suffer 37 
from ratio distortion and sample interference issues4,5, while being less 38 
cost-effective and offering less throughput than label-free approaches. 39 
Consequently, label free quantification (LFQ) has been widely used in 40 
comparative quantitative experiments profiling the native6 and post-41 
translationally modified (PTM-ome)7,8 proteomes of plants. However, LFQ 42 
shotgun proteomics studies in plants have so far, almost universally, used 43 
data-dependent acquisition (DDA) for tandem MS (MS/MS) analysis.  44 

In a typical DDA workflow, elution groups of digested peptide ions 45 
(precursor ions) are first analysed at the MS1 level using a high-resolution 46 
mass analyser (such as modern Orbitrap devices). Subsequently, selected 47 
precursor ions are isolated and fragmented, generating MS2 spectra that 48 
deduce the sequence of the precursor peptide. For each MS1 scan usually 49 
around 10-12 MS2 scans are performed after which the instrument cycles to 50 
the next MS1 scan and the cycle repeats. While this “TopN” approach enables 51 
identification of precursors spanning the entire mass range, the 52 
fragmentation of semi-stochastically selected precursor ions (generally, 53 
more intense ions) limits the reproducibility of individual DDA runs, results 54 
in missing values between replicate runs, and biases quantitation toward 55 
more abundant peptides9. This is particularly disadvantageous for label-56 
free workflows and samples with a high protein dynamic range, such as 57 
human plasma and photosynthetic tissue.  58 

In order to address these limitations, several data-independent acquisition 59 
(DIA) workflows have been pioneered, famously exemplified by Sequential 60 
Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)10,11. In DIA 61 
workflows, specific, often overlapping, m/z windows spanning a defined 62 
mass range are used to sub-select groups of precursors for fragmentation 63 
and MS2 analysis. As a result, complete fragmentation of all precursors in 64 
that window follows MS1 scans resulting in a more reproducible and 65 
complete analysis. A major disadvantage of DIA workflows, however, is that 66 
each MS2 scan contains multiplexed spectra from several precursor ions 67 
making accurate identification of peptides difficult. Traditionally, this has 68 
been addressed through the use of global or project-specific spectral-69 
libraries obtained from a fractionated, high-resolution DDA survey of all 70 
samples—adding to experimental labour and instrumentation analysis 71 
time. More recently, alternative approaches have been developed that avoid 72 
the use of spectral libraries and instead use “pseudo-spectra” derived from 73 
DIA runs that are then searched in a spectrum-centric approach analogous 74 
to conventional DDA searches12–14. Improvements in such library-free DIA 75 
approaches have included the incorporation of high precision indexed 76 
Retention Time (iRT) prediction15 and the use of deep-learning 77 
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approaches16–18. DirectDIA (an implementation of a library-free DIA 78 
method; Biognosys AG) and a hybrid (directDIA in combination with 79 
library-based DIA) approach has been recently used to quantify more than 80 
10,000 proteins in human tissue19 and reproducibly identify >10,000 81 
phosphosites across hundreds of human retinal pigment epithelial-1 cell 82 
line samples20.  83 

While DIA addresses the stochasticity of precursor selection for 84 
fragmentation, it does not solve the problem of incomplete MS1 analysis due 85 
to the limited charge capacity of C-traps that lie upstream of Orbitraps. In 86 
effect this means that modern Orbitrap mass-spectrometers only analyse 87 
<1% of available ions at the MS1 level21. In 2018, Meier et al., described a novel 88 
acquisition scheme called BoxCar where multiple overlapping sets of narrow 89 
m/z segments are scanned at the MS1 level followed by conventional DDA-90 
type MS2 analysis21. It is thus reasonable to speculate that combining the 91 
power of BoxCar to produce higher-resolution MS1 data with DIA-type MS2 92 
analysis (BoxCarDIA) may provide greater quantitative depth and range for 93 
shotgun proteomics.  94 

DirectDIA combines the advantages of DIA for reproducible quantification 95 
of proteins in complex mixtures with high dynamic range, with the ease of 96 
use of earlier DDA methodologies. BoxCarDIA may improve MS1 resolution 97 
and dynamic range, while addressing the limitations of DDA-type precursor 98 
fragmentation. Hence, a systematic comparison of these different 99 
technologies for LFQ proteomics is essential to define best practice in plant 100 
proteomics. In order to execute this analysis, we compared the proteomes of 101 
light- and dark-grown Arabidopsis suspension cells generated with DDA, 102 
directDIA and BoxCarDIA acquisition schemes. Arabidopsis suspension cells 103 
are a long-established platform for plant biochemistry and have recently 104 
seen a resurgence in popularity due to their utility in facilitating protein 105 
interactomic experimentation using technologies such as tandem affinity 106 
purification-mass spectrometry22–26, nucleic acid crosslinking27, and 107 
proximity labelling (e.g. TurboID)28. Despite this, no existing resource 108 
profiling the basal differences in proteomes of Arabidopsis cells grown in 109 
light or dark exists—a fundamental requirement to determine the choice of 110 
growth conditions to maximize the utility of protein interactomic 111 
experiments and targeted proteomic assays in this system.  112 

Results & Discussion 113 

We performed total protein extraction under denaturing conditions from 114 
Arabidopsis (cv. Ler) suspension cells grown for five days in either constant 115 
light or dark. Trypsin digestion of the extracted proteome was performed 116 
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using an automated sample preparation protocol, with 1ug of digested 117 
peptide subsequently analysed using an Orbitrap Fusion Lumos mass 118 
spectrometer operated in either DDA, DIA, or BoxCarDIA acquisition modes 119 
over 120-minute gradients. Two separate experiments were performed 120 
using independent digests of the extracted Arabidopsis proteins. The first  to 121 
compare DDA and directDIA, and the second to compare directDIA with 122 
BoxCarDIA. Eight injections (4 light & 4 dark) per analysis (a total of 32 123 
injections) were carried out. DDA data processing was performed using 124 
MaxQuant, while DIA data processing was performed using Spectronaut v14 125 
(Biognosys AG.). For DIA analysis, both hybrid (library+directDIA) and 126 
directDIA analysis was performed. The hybrid analysis was performed by 127 
first creating a spectral library from DDA raw files using the Pulsar search 128 
engine implemented in Spectronaut, followed by a peptide-centric DIA 129 
analysis with DIA raw output files. DirectDIA was performed directly on raw 130 

Figure 1: Experimental workflow and summary results.  
Total protein was isolated from light and dark grown Arabidopsis cells under denaturing conditions for use in two 
experiments. In the first experiment, peptides were digested with trypsin, desalted and subjected to LC-MS/MS using 
two different acquisition modes. Ion maps showing a single MS1 scan and subsequent MS2 scans are presented to 
illustrate differences in acquisition schemes. Raw data was analyzed using MaxQuant & Perseus for data-dependent 
acquisition (DDA) analysis and using Spectronaut for data-independent acquisition (DIA) analysis using spectral 
libraries created from both acquisitions, and for directDIA analysis without the use of spectral libraries. A second 
experiment involved analyzing independent digests of the same protein extracts followed by the same general 
analysis pipeline, in order to directly compare directDIA and library-free BoxCarDIA acquisition modes. Counts of FDR-
filtered (0.01) peptide spectrum matches (PSMs)/precursors, peptides, and protein groups for each analysis type are 
shown. Percentage values for increases in protein group quantifications are shown alongside each analysis. 
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DIA files as implemented in Spectronaut.  The entire workflow is depicted in 131 
Figure 1. Both hybrid DIA and directDIA analysis substantially outperformed 132 
DDA analysis with an average of 65,351; 57,503; and 42,489 peptide-133 
spectrum matches (precursors) quantified across all 8 samples for each 134 
analysis, respectively. Hybrid DIA and directDIA also displayed similar gains 135 
over DDA in terms of quantified peptides and protein groups (Figure 1). 136 
While hybrid DIA analysis performed marginally better than directDIA, 137 
further analysis was performed with the results of only direct DIA and DDA 138 
analyses in order to compare methods that use an equivalent number of MS 139 
raw input files, comparable instrumentation time and relatively comparable 140 
data analysis workflows. We also found substantial improvements in 141 
quantifying precursors, peptides, and protein groups using BoxCarDIA as 142 
compared to directDIA. Overall, our results suggest that library-free 143 
BoxCarDIA can increase quantitative depth by as much as 40% over 144 
conventional DDA methods with no increase in analysis time or change in 145 
instrumentation.  146 

Next, we undertook a series of data analyses to compare the completeness, 147 
quality, and distribution of protein group-level quantification of the DDA 148 
and directDIA analyses. In order to compare quantification results across 149 
the different analysis types, raw intensity values for each sample were log2 150 
transformed, median-normalized (per sample), and then averaged for each 151 
condition to produce a normalized protein abundance value. For DDA 152 
analysis, the number of proteins quantified was determined by first filtering 153 
for proteins with valid quantification values in at least 3 of 4 replicates in 154 
either condition (light or dark) and then imputing missing values using 155 
MaxQuant with standard parameters29,30. For directDIA and BoxCarDIA 156 
analyses, quantified proteins were defined as those passing standard Q-157 
value filtering in Spectronaut. In total, DDA analysis resulted in the 158 
quantification of 4,837 proteins (both conditions) and directDIA analysis 159 
quantified 6,526 proteins (light) and 6,454 proteins (dark) (Supplementary 160 
Tables 1-3). Upon comparing the quantified proteins between both 161 
methods, we found that 4,599 proteins were quantified by both techniques, 162 
1,934 were quantified only by directDIA and 235 proteins were exclusively 163 
DDA-quantified, for light-grown cells (Figure 2a). A correlation plot of 164 
normalized quantification values for the 4,599 common proteins showed a 165 
moderate correlation between DDA and directDIA quantification 166 
(Spearman’s R = 0.773) (Figure 2a). Examining the frequency distribution of 167 
proteins quantified in light-grown cells, by both methods, revealed that the 168 
DDA results were substantially skewed towards higher abundant proteins 169 
compared to directDIA (Figure 2b). In order to investigate the overlap of 170 
quantified proteins between directDIA and DDA at extreme protein 171 
abundances, we sub-selected the 2%, 5%, 95% and 98% percentile of the 172 
combined quantification distribution and constructed UpSet plots31 for these 173 
datasets. This analysis revealed that directDIA quantifies hundreds of more 174 
proteins at the lower extremes but is only marginally less effective than DDA 175 
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at the upper extremes of the protein abundance distribution (Figure 2c). 176 
These results were similarly replicated for dark-grown cells, suggesting 177 
that this is a universal feature of the two acquisition methods, irrespective 178 
of sample treatment or type (Figure 2 d-f). In order to assess if this 179 
difference in quantification ability is specific to plant cells (that have a high 180 
dynamic range of protein levels), we further analysed a commercial HeLa 181 
cell digest standard using the same mass spectrometry and chromatography 182 
settings, with quadruplicate injections per analysis type. Analysing the HeLa 183 
quantification results (Supplementary Tables 4 & 5) showed a similarly 184 
uniform quantification across a wide range by directDIA and a slightly 185 
better, but still skewed, performance by DDA compared to Arabidopsis cells 186 
(Figure S1 a & b). Comparing the quantification values for HeLa proteins 187 
acquired by directDIA and DDA showed a stronger correlation than for 188 
Arabidopsis (Spearman’s R=0.886). Indeed, correlations between 189 
quantification values for lower abundant proteins (defined here as proteins 190 
below the median quant value), were much lower than for the overall dataset 191 
in both species, and yet slightly stronger in the case of HeLa proteins (Figure 192 
S1 c-e).  193 

Figure 2: Comparison of protein quantification results using DDA and direct DIA analysis for (a.-c.) light grown 
and (d.-f.) dark grown Arabidopsis cells. 
(a.) & (d.) Venn diagram of protein groups quantified with direct DIA and DDA and scatter plot of protein groups 
quantified by both methods. rs: Spearman’s correlation coefficient. (b.) & (e.) Frequency distribution of normalized 
protein abundances for DDA and direct DIA analysis and corresponding violin plots with median and quartile lines 
marked. (c.) & (f.) Upset plots depicting intersections in protein groups quantified by DDA and direct DIA at either 
extremes of the abundance distribution. 
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We next performed similar comparative analyses for an independent 194 
experiment comparing directDIA and BoxCarDIA approaches (Figure 3). In 195 
this experiment, BoxCarDIA resulted in the quantification of 5,806 (light) 196 
and 5,791 (dark) proteins compared to 5,377 (light) and 5,354 (dark) using 197 
directDIA (Supplementary Tables 6 & 7). The relative abundance of proteins 198 
quantified in both analyses correlated to a large degree (Spearman’s r ~ 199 
0.92; Figure 3 a & d), much more than the correlation between directDIA and 200 
DDA analyses (Figure 2 a & d). The frequency distributions of normalised 201 
abundances of proteins quantified by both directDIA and BoxCarDIA showed 202 
that BoxCarDIA is better able to quantify both high- and low-abundant 203 
proteins, for both light and dark grown cells (Figure 3 b & e). This is clearly 204 
evident upon UpSet plot visualization of the overlap between the two 205 
techniques at the extremes of the protein abundance distributions (Figure 3 206 
c & f).  207 

In order to deduce the underlying factors limiting the ability of DDA to 208 
quantify low abundant proteins, especially in Arabidopsis cells, we next 209 
investigated quantification distributions for both DDA and directDIA 210 
derived data after various data-filtering steps (Figure S2; Supplementary 211 
Tables 8-17). We found that DDA was indeed able to identify a similar 212 
number of proteins as directDIA for both Arabidopsis cells and HeLa digests. 213 

Figure 3: Comparison of protein quantification results using directDIA and BoxCarDIA analysis for (a.-c.) light 
grown and (d.-f.) dark grown Arabidopsis cells. 
(a.) & (d.) Venn diagram of protein groups quantified with BoxCarDIA and directDIA, and scatter plot of protein groups 
quantified by both methods. rs: Spearman’s correlation coefficient. (b.) & (e.) Frequency distribution of normalized 
protein abundances for directDIA and BoxCarDIA analysis and corresponding violin plots with median and quartile 
lines marked. (c.) & (f.) Upset plots depicting intersections in protein groups quantified by directDIA and BoxCarDIA 
at either extreme of the abundance distribution. 
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Predictably these numbers dropped dramatically upon filtering proteins for 214 
only those with valid quantification values across 3 of 4 replicates, with only 215 
mild gains realized due to imputation of missing values. In contrast, even 216 
upon filtering for valid values across 4 of 4 replicates, directDIA resulted in 217 
the quantification of more than 5,400 proteins compared to 3,600 complete 218 
quantifications for DDA. Strikingly, quantification distributions remained 219 
unchanged regardless of various types of data-filtering for directDIA but 220 
were greatly skewed towards high abundance upon filtering for valid values 221 
in 3 of 4 replicates in DDA outputs (Figure S2). This suggests that the poor 222 
quantification of low abundant proteins is related to the presence of missing 223 
values in DDA analysis.  224 

This hypothesis was reinforced when we distributed the protein 225 
quantification data for directDIA and DDA based on the number of replicates 226 
with valid quantification values for each protein (Figure 4). Here we found 227 
that the overwhelming majority (>95%) of proteins quantified by directDIA 228 
had valid values in at least 3 of 4 biological replicates for Arabidopsis cells 229 
grown in the light or dark (Figure 4 a & b). Unsurprisingly, in the HeLa 230 
digest, more than 98% of directDIA quantified proteins were accurately 231 
quantified in 4 of 4 technical injections. In contrast, only 68% and 74% of 232 
proteins were accurately quantified by DDA in 4 of 4 replicates of light and 233 
dark grown Arabidopsis cells, respectively. In fact, the distribution of 234 
protein quantification was bimodal, with as many as 17% of proteins 235 
accurately quantified in only 1 of 4 replicates by DDA in light-grown cells 236 
(10.9% in dark-grown cells). Nearly a quarter of proteins were accurately 237 
quantified by DDA in only 1 of 4 technical injections of the same HeLa cell 238 
digest, suggesting an inherent disadvantage in reproducibility across 239 
replicate runs. In contrast, no proteins were quantified in only 1 of 4 240 
technical injections of the same HeLa digest when using directDIA and 241 
99.4% were quantified in 4 of 4 technical replicates. When these 242 
distributions were further plotted against the normalized protein 243 
quantification values, it became clear that proteins found in a lower number 244 
of replicates trended lower in abundance in DDA, while this trend did not 245 
hold true for directDIA (Figure 4 d-i). In the case of directDIA, a greater 246 
number of quantified proteins were found in 1 of 4 or 2 of 4 biological 247 
replicates in Arabidopsis cells compared the technical replicates of HeLa 248 
digests. This suggests that the inconsistent quantification of some low 249 
abundant proteins using directDIA is a reflection of real biological variance 250 
rather than a methodological artefact. This is contrary to DDA where similar 251 
proportions of low abundant proteins were inconsistently identified across 252 
biological replicates of Arabidopsis cells and technical replicates of HeLa 253 
digests. Overall, this further reinforces that DDA acquisition results in 254 
inconsistent quantification between injections, and that this may in fact 255 
obscure real biological variance between samples, especially with regards to 256 
lower abundant proteins.  257 
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In order to assess whether BoxCarDIA could achieve further gains in 258 
quantitative completeness, we performed 4 technical replicate injections of 259 
HeLa digests using each, BoxCarDIA and directDIA acquisition. Similar to 260 
our previous analysis, the vast majority of proteins quantified by directDIA 261 
were found in all 4 replicates (Figure 5a; Supplementary Tables 18 & 19). The 262 
relationship between quantitative completeness and relative abundance is 263 
also maintained as in the case of our prior analysis (Figure 5b). However, 264 
BoxCarDIA showed remarkable improvements in data completeness even 265 
compared to directDIA with all but one protein quantified in all four 266 
replicates (Figure 5 a & c). This result shows that the gains in quantitative 267 
depth and range provided by better sampling of the ion beam at the MS1 level 268 

Figure 4: The DDA missing value problem explains the gap in quantification of low abundant proteins compared to 
direct DIA. (a.-c.) Histograms of direct DIA or DDA protein group identifications across replicate samples for light-grown, 
dark-grown Arabidopsis cells, and HeLa cell digestion standards, respectively. (d.-i.) Normalized abundances of proteins 
binned by the number of replicates containing each protein for direct DIA and DDA. Bars represent median and 
interquartile range. 
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in BoxCarDIA also translate to a complete data matrix, entirely eliminating 269 
the long-standing missing-value problem in label-free quantitation.   270 

Having systematically investigated the advantages and limitations of 271 
BoxCarDIA, directDIA and DDA acquisition for LFQ proteomics, we next 272 
performed a differential abundance analysis comparing the proteomes of 273 
light- and dark-grown cell cultures quantified in our initial directDIA and 274 
DDA experiment. We found 2,089 proteins changing significantly in their 275 
abundance (Absolute Log2FC > 0.58; q-value <0.05) in our directDIA 276 
analysis and 1,116 proteins changing significantly (Absolute Log2FC > 0.58; 277 
q-value <0.05) in DDA analysis. Of these, 710 proteins were found to change 278 
significantly in both analyses (Figure 6a). The Log2 Fold-Change values of 279 
these 710 proteins were found to correlate to a high degree between the two 280 
analyses (Spearman’s R=0.9003), with proteins that were up-regulated in 281 
light- vs. dark-grown cells in directDIA analysis also up-regulated in DDA, 282 
and vice-versa (Figure 6b). This complete dataset of 2,495 proteins 283 
changing significantly in abundance in light- vs dark-grown Arabidopsis 284 
cells is a valuable resource for future biochemical studies aiming to use these 285 
cell culture systems for protein interactomics experiments and other 286 
targeted proteomics analyses (Supplementary Table 20). We also created a 287 
functional association network of these proteins by probing previously 288 
characterized databases and experiments compiled by StringDB32. This 289 
network validates our analysis, showing that clusters of proteins involved in 290 
photosynthesis, carbon-fixation, starch metabolism and amino-acid 291 
metabolism have increased abundance in light- vs. dark-grown cells, as 292 
expected (Figure 6c). Interestingly, clusters representing RNA splicing, ER-293 
Golgi transport, ribosome biogenesis, and nuclear translation are all 294 
downregulated, while chloroplast translation is upregulated, in light- vs. 295 
dark-grown cells (Figure 6c).  296 

Figure 5: BoxCarDIA can quantify proteins consistently between independent technical replicate injections. 
(a.) Histograms of BoxCarDIA or directDIA protein group identifications across replicate injections of HeLa cell digestion 
standards. (b & c.) Normalized abundances of proteins binned by the number of replicates containing each protein for 
directDIA and BoxCarDIA. Bars represent median and interquartile range. 
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Discussion 297 

Until recently, DDA proteomics (using both label-based and label-free 298 
approaches) was clearly the method of choice for functional genomics 299 
studies in plants, due to the disadvantages of conventional DIA analysis, 300 
such as the requirement for project-specific spectral libraries. Here, we 301 
conclusively demonstrate that the newly developed directDIA proteomics 302 
approach is a vastly superior technique for plant proteomics as compared to 303 
currently used DDA methodologies. We also demonstrate that our novel 304 
library-free BoxCarDIA method substantially improves upon gains provided 305 
by directDIA. The advantages offered by directDIA and BoxCarDIA include a 306 

Figure 6: Differential protein abundance analysis for light- and dark-grown Arabidopsis cells. 
(a.) Venn diagram of protein groups with significantly changing protein abundances (q<0.01; Abs Log2FC>1.5) as 
measured by direct DIA and DDA. (b.) Scatter plot of significant changes in protein abundance changes based on DDA 
and direct DIA analysis with selected proteins labeled. (c.) Association network of significantly changing proteins 
detected with either direct DIA or DDA analysis. Network was constructed based on StringDB database and 
experiment datasets with a probability cut-off of 0.8. Only nodes with >3 edges are depicted. Clusters were manually 
annotated based on GO-terms and KEGG/Reactome pathway membership. Node sizes and color are scaled based on 
the average Log2FC  (Light/Dark) from DDA and DIA analysis. 
PSBC: PHOTOSYSTEM II REACTION CENTER PROTEIN C; LHCA4: LIGHT-HARVESTING CHLOROPHYLL-PROTEIN COMPLEX I SUBUNIT 
A4; HY5: ELONGATED HYPOCOTYL 5; BCS1: CYTOCHROME BC1 SYNTHESIS 
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greater number of protein identifications, more dynamic range, and more 307 
robust protein quantification than DDA, with no change in instrumentation 308 
or increase in instrument analysis time. Our DDA results, even using an 309 
advanced Tribrid Orbitrap-linear ion trap device, show that DDA acquisition 310 
is particularly inconsistent in its quantification of low-abundant proteins 311 
across samples. Similar results have been reported when comparing the 312 
abilities of directDIA and DDA to profile the phosphoproteome (a protein 313 
fraction with high dynamic range) of human tissue and cells 20. Our finding 314 
that more than 20% of identified proteins in a DDA experiment are found in 315 
only 1 of 4 replicate injections of the same digest, and that these poorly 316 
quantified proteins tend to reside in the lower quartile of protein abundance, 317 
suggests an inherent drawback in DDA that likely plagues previous studies 318 
using this approach, in both label-free and label-based incarnations. 319 
Further, the greater proportion of missing values in light- vs. dark-grown 320 
cells with both DDA and DIA analysis suggests that the effect of ion 321 
suppression is greater in photosynthetically active tissue (Figure 4 a & b). 322 

The directDIA and BoxCarDIA acquisition methods are compatible with a 323 
wide range of modern mass spectrometers, including older Orbitrap (e.g., 324 
QExactive Orbitrap mass spectrometers; ThermoScientific) and Triple TOF 325 
devices (Sciex). The various data analyses undertaken in our plant 326 
proteomic study provide a useful template for benchmarking these future 327 
quantitative mass-spectrometry proteomics technologies from an end-328 
user perspective. While our results demonstrate that segmented MS1 329 
analysis through the use of BoxCar windows results in a variety of gains, 330 
there are likely further improvements in BoxCarDIA that may be realised 331 
through the use of better signal processing methods in order to reduce cycle 332 
times33,34.    333 

In the meantime, our results argue persuasively for the widespread adoption 334 
of library-free BoxCarDIA or directDIA for quantitative LFQ proteomics in 335 
plants. It should be noted that while we utilized proprietary software for 336 
directDIA analysis (Spectronaut v.14, Biognosys AG), multiple free open-337 
source alternatives exist12,13,17,18 and proprietary software are often available 338 
to scientists via professional mass-spectrometry facilities. The 339 
demonstrated benefits in reproducibility and dynamic range of BoxCarDIA 340 
could be especially powerful for plant biology studies such as the proteomic 341 
analysis of multiple treatments (e.g., plant nutrition or herbicide studies), 342 
genotypes (e.g. breeding and selection trials), or timepoints (e.g. 343 
chronobiology studies).  344 

Methods 345 

Arabidopsis cell culture 346 

Heterotrophic Arabidopsis thaliana, cv. Ler suspension cells were obtained 347 
from the Arabidopsis Biological Resource Center (ABRC) and maintained in 348 
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standard Murashige-Skoog media basal salt mixture (M524; PhytoTech 349 
Laboratories) at 21 °C as previously described35 under constant light (100 350 
µmol m-2s-1) or constant dark. For the generation of experimental samples, 351 
10 mL aliquots of each cell suspension (7 days old) were used to inoculate 8 352 
separate 500 mL flasks that each contained 100 mL of fresh media. 353 
Experimental samples were grown for an additional 5 days prior to 354 
harvesting. Cells were harvested by vacuum filtration and stored at –80 oC. 355 

Sample Preparation 356 

Quick-frozen cells were ground to a fine powder under liquid N2 using a 357 
mortar and pestle. Ground samples were aliquoted into 400 mg fractions. 358 
Aliquoted samples were then extracted at a 1:2 (w/v) ratio with a solution of 359 
50 mM HEPES-KOH pH 8.0, 50 mM NaCl, and 4% (w/v) SDS. Samples were 360 
then vortexed and placed in a 95oC table-top shaking incubator (Eppendorf) 361 
at 1100 RPM for 15 mins, followed by an additional 15 mins shaking at room 362 
temperature. All samples were then spun at 20,000 x g for 5 min to clarify 363 
extractions, with the supernatant retained in fresh 1.5 mL Eppendorf tubes. 364 
Sample protein concentrations were measured by bicinchoninic acid (BCA) 365 
assay (23225; ThermoScientific). Samples were then reduced with 10 mM 366 
dithiothreitol (DTT) at 95oC for 5 mins, cooled, then alkylated with 30 mM 367 
iodoacetamide (IA) for 30 min in the dark without shaking at room 368 
temperature. Subsequently, 10 mM DTT was added to each sample, followed 369 
by a quick vortex, and incubation for 10 min at room temperature without 370 
shaking.   371 

Total proteome peptide pools were generated using a KingFisher Duo 372 
(ThermoScientific) automated sample preparation device as outlined by 373 
Leutert et al. (2019)36 without deviation. Sample digestion was performed 374 
using sequencing grade trypsin (V5113; Promega), with generated peptide 375 
pools quantified by Nanodrop, acidified with formic acid to a final 376 
concentration of 5% (v/v) and then dried by vacuum centrifugation. 377 
Peptides were then dissolved in 3% ACN/0.1% TFA, desalted using ZipTip 378 
C18 pipette tips (ZTC18S960; Millipore) as previously described7, then dried 379 
and dissolved in 3.0% ACN/0.1% FA prior to MS analysis. 380 

HeLa proteome analysis was carried out using a HeLa Protein Digest 381 
Standard (88329; Pierce). Four replicate injections of this digest per analysis 382 
type were carried out with the same methods as for Arabidopsis cell samples.  383 

Nanoflow LC-MS/MS analysis 384 

Peptide samples were analyzed using a Fusion Lumos Tribrid Orbitrap mass 385 
spectrometer (ThermoScientific) in data dependent acquisition (DDA) and 386 
data independent acquisition (DIA) modes. Dissolved peptides (1 µg) were 387 
injected using an Easy-nLC 1200 system (LC140; ThermoScientific) and 388 
separated on a 50 cm Easy-Spray PepMap C18 Column (ES803A; 389 
ThermoScientific). The column was equilibrated with 100% solvent A (0.1% 390 
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formic acid (FA) in water). Common MS settings between DDA and DIA runs 391 
included a spray voltage of 2.2 kV, funnel RF level of 40 and heated capillary 392 
at 300oC. All data were acquired in profile mode using positive polarity with 393 
peptide match off and isotope exclusion selected. All gradients were run at 394 
300 nL/min with analytical column temperature set to 50oC.  395 

DDA acquisition: Peptides were eluted with a solvent B gradient (0.1% (v/v) 396 
FA in 80% (v/v) ACN): 4% - 41% B (0 – 120 min); 41% - 98% B (120-125 397 
min). DDA acquisition was performed using the Universal Method 398 
(ThermoScientific). Full scan MS1 spectra (350 - 2000 m/z) were acquired 399 
with a resolution of 120,000 at 200m/z with a normalized AGC Target of 400 
125% and a maximum injection time of 50 ms. DDA MS2 were acquired in the 401 
linear ion trap using quadrupole isolation in a window of 2.5 m/z. Selected 402 
ions were HCD fragmented with 35% fragmentation energy, with the ion 403 
trap run in rapid scan mode with an AGC target of 200% and a maximum 404 
injection time of 100 ms. Precursor ions with a charge state of +2 - +7 and a 405 
signal intensity of at least 5.0e3 were selected for fragmentation. All 406 
precursor signals selected for MS/MS were dynamically excluded for 30s.  407 

DIA acquisition: Peptides were eluted using a segmented solvent B gradient 408 
of 0.1% (v/v) FA in 80% (v/v) ACN from 4% - 41% B (0 - 107 min). DIA 409 
acquisition was performed as per Bekker-Jensen et al. (2020)20 and 410 
Biognosys AG. Full scan MS1 spectra (350 - 1400 m/z) were acquired with a 411 
resolution of 120,000 at 200 m/z with a normalized AGC Target of 250% and 412 
a maximum injection time of 45 ms. ACG target value for fragment spectra 413 
was set to 2000%. Twenty-eight 38.5 m/z windows were used with an 414 
overlap of 1 m/z (Supplementary Table 21). Resolution was set to 30,000 415 
using a dynamic maximum injection time and a minimum number of 416 
desired points across each peak set to 6.  417 

BoxCar DIA acquisition was performed using the same gradient settings as 418 
DIA acquisition outlined above. MS1 analysis was performed by using two 419 
multiplexed targeted SIM scans of 10 BoxCar windows each. Detection was 420 
performed at 120,000 and normalized AGC targets of 100% per BoxCar 421 
isolation window. Isolation windows used are described in Supplementary 422 
Table 22. Windows were designed using the custom boxcarmaker R script 423 
that divides the MS1 spectra list into 20 m/z bins, each with an equal number 424 
of precursors, using the equal_freq function in the funModeling package 425 
(http://pablo14.github.io/funModeling/).  426 

MS2 acquisition was performed according to the settings described above for 427 
DIA acquisition.  428 

Raw data processing 429 

DDA files were processed using MaxQuant software version 1.6.1429,30. 430 
MS/MS spectra were searched with the Andromeda search engine against a 431 
custom made decoyed (reversed) version of the Arabidopsis protein 432 
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database from Araport 1137  concatenated with a collection of 261 known 433 
mass spectrometry contaminants. Trypsin specificity was set to two missed 434 
cleavage and a protein and PSM false discovery rate of 1%; respectively. 435 
Minimal peptide length was set to seven and match between runs option 436 
enabled. Fixed modifications included carbamidomethylation of cysteine 437 
residues, while variable modifications included methionine oxidation. 438 

DIA files were processed with the Spectronaut directDIA experimental 439 
analysis workflow using default settings without N-acetyl variable 440 
modification enabled. Trypsin specificity was set to two missed cleavages 441 
and a protein and PSM false discovery rate of 1%; respectively. Data filtering 442 
was set to Q-value and global normalization. For comparing BoxCarDIA and 443 
directDIA, the Spectronaut directDIA workflow was used with factory 444 
settings.  445 

For hybrid (library- and library-free) DIA analysis, DDA raw files were first 446 
searched with the Pulsar search engine implemented in Spectronaut 14 to 447 
produce a search archive. Next, the DIA files were searched along with this 448 
search archive to generate a spectral library. The spectral library was then 449 
used for normal DIA analysis in Spectronaut 14. Default settings (without N-450 
acetyl variable modification) were used in all steps. Final optimized 451 
Excalibur method files for DDA, directDIA and BoxCarDIA are provided as 452 
Supplemental Information. 453 

Data analysis 454 

Downstream data analysis for DDA samples was performed using Perseus 455 
version 1.6.14.038. Reverse hits and contaminants were removed, the data 456 
log2-transformed, followed by a data sub-selection criterion of n=3 of 4 457 
replicates in at least one sample. Missing values were replaced using the 458 
normal distribution imputation method with default settings to generate a 459 
list of reliably quantified proteins. Subsequently, significantly changing 460 
differentially abundant proteins were determined and corrected for multiple 461 
comparisons (Bonferroni-corrected p-value < 0.05; q-value). 462 

DirectDIA and BoxCarDIA data analysis was performed on Spectronaut v.14 463 
using default settings.  464 

Statistical analysis and plotting were performed using GraphPad Prism 8. 465 
Network analysis was performed on Cytoscape v.3.8.0 using the StringDB 466 
plugin.  467 

Data availability 468 

Raw data have been deposited to the ProteomeExchange Consortium 469 
(http://proteomecentral.proteomexchange.org) via the PRIDE partner 470 
repository with the dataset identifier PXD022448. Source data used to 471 
produce all graphs is provided in the Supplemental Materials.  R scripts and 472 
input data used can be downloaded from:   473 
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https://github.com/UhrigLab/BoxCarMaker under a GNU Affero General 474 
Public License 3.0.  475 
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Supplementary Figures 

 

Figure S1: Comparison of protein quantification results using DDA and directDIA analysis.  
(a.) Frequency distribution of normalized protein abundances for DDA and directDIA analysis and corresponding violin 
plots with median and quartile lines marked for HeLa digests. (b.) Upset plots depicting intersections in protein groups 
quantified by DDA and direct DIA at either extreme of the abundance distribution for HeLa digests. (c.-e.) Scatter plots 
of protein groups quantified by DDA and direct DIA for light-grown Arabidopsis cells, dark-grown Arabidopsis cells, and 
HeLa digests. Insets show correlations for protein groups with abundances less than the median.  
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Figure S2: Protein abundance 
distributions by analysis type and data 
filtering settings.  
Violin plots showing normalized protein 
abundance for proteins quantified by direct 
DIA (default setting), identified by DDA, 
quantified by DIA (filtered for protein 
groups present in at least 3 samples in any 
one condition), quantified by DDA (filtered 
for protein groups present in at least 3 
samples in any one condition with missing 
values imputed), quantified by DDA (filtered 
for protein groups present in at least 3 
samples in any one condition with missing 
values left blank), quantified by DIA 
(counting only protein groups found in all 
samples), and quantified by DIA (counting 
only protein groups found in all samples), 
respectively for (a.) light grown Arabidopsis 
cells (b.) dark grown Arabidopsis cells and 
(c.) HeLa cell digestion standards. (n= 
number of protein groups). 
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