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2. Abstract  

Covariance between grey-matter measurements can reflect structural or functional brain 

networks though it has also been shown to be influenced by confounding factors (e.g. age, head 

size, scanner), which could lead to lower mapping precision (increased size of associated 

clusters) and create distal false positives associations in mass-univariate vertex-wise analyses. 

We evaluated this concern by performing state-of-the-art mass-univariate analyses (general 

linear model, GLM) on traits simulated from real vertex-wise grey matter data (including 

cortical and subcortical thickness and surface area). We contrasted the results with those from 

linear mixed models (LMMs), which have been shown to overcome similar issues in omics 

association studies. We showed that when performed on a large sample (N=8,662, UK 

Biobank), GLMs yielded large spatial clusters of significant vertices and greatly inflated false 

positive rate (Family Wise Error Rate: FWER=1, cluster false discovery rate: FDR>0.6). We 

showed that LMMs resulted in more parsimonious results: smaller clusters and reduced false 

positive rate (yet FWER>5% after Bonferroni correction) but at a cost of increased 

computation. In practice, the parsimony of LMMs results from controlling for the joint effect 

of all vertices, which prevents local and distal redundant associations from reaching 

significance. Next, we performed mass-univariate association analyses on five real UKB traits 

(age, sex, BMI, fluid intelligence and smoking status) and LMM yielded fewer and more 

localised associations. We identified 19 significant clusters displaying small associations with 

age, sex and BMI, which suggest a complex architecture of at least dozens of associated areas 

with those phenotypes.   

 

3. Keywords  

structural brain MRI, vertex-wise processing, linear mixed model, association, brain mapping 
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4. Introduction 

Brain MRI scans can generate hundreds of thousands of vertex/voxel-wise measurements per 

individual, which can be linked to other measured traits/diseases using mass univariate 

vertex/voxel-wise association analyses. Results of association analyses (and subsequent 

follow-up analyses) can shed light on the brain networks or cell composition relevant for the 

trait/disease and may be leveraged for brain-feature based phenotype prediction. However, 

brain measurements may exhibit a pattern of correlation, owing to factors (e.g. head size, 

MRI scanner/artefact (Chen et al., 2020) or demographics (Montembeault et al., 2012)) 

which can generate confounded brain-trait associations. Induced local correlations with a true 

brain-biomarker can generate a smear of association (i.e. a cluster of associated vertices) 

which may limit the precise localisation of the directly associated regions. On the other hand, 

long-range vertex correlations caused or inflated by factors irrelevant to the trait of interest, 

may be more prejudicial, as they can yield distal false positives (Figure 1).  

Two approaches can be used to limit the inflation of false positives described above. 

One is to control for the confounders in the association testing, although it requires 

knowledge and measurement of the factors influencing (or more generally associated with) 

the covariance between brain measurements. Note that these factors can overlap with 

traditional confounders of neuroimaging studies (e.g. head size, age, sex, head motion), and 

additional confounders are being identified as sample sizes increase (Alfaro-Almagro et al., 

2020). Another correction strategy is to control for the other vertices in the association 

testing, in order to remove the signal that could be attributed to another brain vertex or 

region. The difficulty of such approach is that typically, the number of vertex/voxel-wise 

measurements (p) far exceeds the number of participants (N) in the study. The p>>N 

paradigm implies that the marginal joint associations with all p vertices cannot be estimated 

in a single general linear model (GLM).  
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Statistically, the challenge of mass univariate vertex-wise analyses resembles that of 

genome-wide association studies (GWAS) or methylation-wide associations studies 

(MWAS), which aim to identify genomic regions associated with a phenotype in the presence 

of correlated features (i.e., genetic variants or DNA methylation probes). Several studies have 

demonstrated that feature correlation (i.e., Linkage Disequilibrium (LD) or population 

structure in genetics) can result in inflated false positive rate (Cardon & Palmer, 2003; 

Marchini, Cardon, Phillips, & Donnelly, 2004; Zhang et al., 2019), even more so when the 

sample size increases (Marchini et al., 2004). This led GLMs to be replaced by linear mixed 

models (LMMs) (Price, Zaitlen, Reich, & Patterson, 2010; Yang, Zaitlen, Goddard, Visscher, 

& Price, 2014; Zhang et al., 2019) which co-varies out all features by fitting them as random 

effects. LMMs have been shown to better control the inflation of false positive associations 

arising from LD or correlation between probes and to minimise the occurrence of false 

positives in both GWAS and MWAS (Nabais et al., 2020; Yang et al., 2014; Zhang et al., 

2019).  

Here, we sought to evaluate whether the inflation of false positives observed with 

omics dataset is also present in neuroimaging data. In the first part of the analysis, we 

performed extensive phenotype simulations from real grey-matter data in order to quantify 

false positive rate as well as statistical power, mapping precision and resulting prediction 

accuracy achieved from mass-univariate analyses results. We compared the performances of 

the current state-of-the-art GLMs to that of LMMs inspired by omics association studies. In a 

second part, we sought to characterise the brain regions associated with real phenotypes (age, 

sex, BMI, fluid IQ, and smoking status) and to confirm the results obtained on simulated 

traits. Our analyses relied on thousands of MRI images collected by the UK Biobank (UKB), 

one of the largest brain imaging initiative (Miller et al., 2016).  
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5. Material and methods 

5.1. Models of mass-univariate vertex wise analyses 

First, we considered five GLMs that differ in term of covariates used when estimating the 

association (𝑏") between the trait and the ith (standardised) vertex-wise measurement (𝐗𝒊). 

They can be written under the form: 

𝐲 = 𝐙𝐜 + 𝐗𝒊𝑏" + 𝛆		    (1) 

with 𝐲 the vector of phenotype for the N individuals, 𝒁 a matrix of size Nxq of q covariates 

and 𝒄	a vector of the q fixed effects.  

The five GLMs are differentiated as follows: 1) GLM with no covariates (“no 

covariates”), 2) GLM including the most commonly used covariates in similar analyses: age, 

sex and intra-cranial volume (ICV) (“age, sex, ICV corrected”), 3) & 4) GLMs including 5 

and 10 principal components (PCs), respectively (“5 global PCs”, “10 global PCs”), 5) GLM 

including 10 PCs specific to the measurement type (cortical thickness, cortical surface, 

subcortical thickness or subcortical surface area), referred to as “10 modality specific PCs”. 

Grey-matter PCs capture the main axes of covariations between vertices, and we expect that 

by controlling for them we may be able to remove unmeasured or unknown factors 

contributing to long-range correlation between vertices (which might include demographics, 

MRI machine, head motion, software update, processing option etc.). Note that PCs from 

genetic data are commonly used in GWAS in order to limit the false positive rate of GLMs 

analyses (Price et al., 2006) but are rarely used in neuroimaging analyses. The difficulties of 

PC correction are to determine the optimal number of PCs and ensuring PCs do not remove 

signal of interest. In practice, GLMs without covariates are also very rare, but worth 

considering in order to appreciate the effect of including covariates.  

Finally, we considered two LMMs that can be seen as extensions of the previous 

approaches in that they further control for all vertex-wise measurements. The first LMM 
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model (“LMM global BRM”), analogous to the MOA (MLM-based Omic Association) 

model (Zhang et al., 2019), can be written as: 

𝐘 = 𝐗𝒊b" + 𝐗𝛃 + 𝛆		    (2) 

Here, 𝑿 is the Nxp matrix of all standardised vertex-wise measurements, 𝛃 is the px1vector of 

joint vertex-trait associations. 𝛃 is a vector of random effects, allowing for p>N, with 

𝛃~𝒩 0, 𝐈σ𝛃: , and 𝛆 is the error term assumed to follow 𝛆~𝒩 0, 𝐈σ𝛆: . σ𝛃: and σ𝛆: are the 

variances of the random effects 𝛃 and 𝛆. The variance-covariance matrix for 𝐘 is 𝑣𝑎𝑟 𝐘 =

𝐕 = 𝐗𝐗′σ𝛃:	+ 𝐈σ𝛆: = 𝑩 pσ𝛃: +	𝐈σ𝛆: . Here, we recognise 𝐁 = 𝐗𝐗D p as the brain relatedness 

matrix and pσ𝛃: the morphometricity (phenotypic variance captured by the total association 

with all vertices) (Couvy-Duchesne et al., 2019). Covariates 𝐙𝐜 may be included in the model 

but we did not include covariates, in order to evaluate the sole effect of controlling for the 

random effect (and recognising that covariate variance can be captured by the BRM). 

The second LMM (“LMM multi. BRM”) includes 4 random effects (𝛃𝟏, 𝛃𝟐, 𝛃𝟑, 𝛃𝟒), each 

corresponding to a type of vertices (cortical thickness, cortical surface area, subcortical 

thickness and subcortical surface area).  

   𝐘 = 𝐗𝒊𝑏" + 𝑿𝟏𝛃𝟏 + 𝑿𝟐𝛃𝟐 + 𝑿𝟑𝛃𝟑 + 𝑿𝟒𝛃𝟒 + 𝛆		    (3) 

This more general LMM allows the distribution of effect sizes to differ based on vertex 

type, rather than enforcing a single distribution over all types of measurements (Couvy-

Duchesne et al., 2019). Note that each random effect takes up a single degree of freedom 

meaning that LMMs and GLMs have a comparable (large) numbers of degrees of freedom 

given the same sample size. 

 

5.2.Statistical testing and multiple comparison 
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We performed a χ2 test of the association between a vertex (𝐗𝒊) and the phenotype using that, 

for large sample size N: JK
LM(JK)

:
~	χN: under the null hypothesis of no association. In each 

model (GLM or LMM), we accounted for multiple testing over the vertices using Bonferroni 

correction, thus setting a brain-wide significance threshold of 0.05/p=0.05/652,283=7.6e-8. 

We chose the straightforward Bonferroni correction over random field theory (RFT)(Nichols 

& Hayasaka, 2003) as RFT requires stationarity and a smooth mesh of vertex-wise residuals 

which is unlikely to be the case here (we did not apply kernel smoothing on the data as it 

reduced the estimated morphometricity of the UKB phenotypes (Couvy-Duchesne et al., 

2019)). In addition, RFT is not currently implemented to be performed using residuals of 

LMMs or across several surfaces and type of measurements. Bonferroni correction is 

expected to be conservative under the null hypothesis (no association) because the 

correlations between vertices means that the effective number is tests lower than the number 

of tests conducted and used for the Bonferroni correction. 

 

5.3. UKB participants recruitment  

The UKB participants were unselected volunteers from the United Kingdom (Sudlow 

et al., 2015). Exclusion criteria were limited to the presence of metal implant or any recent 

surgery and health conditions problematic for MRI imaging (e.g. hearing, breathing problems 

or extreme claustrophobia) (Miller et al., 2016).  

 

5.4. T1 weighted and T2 FLAIR image collection 

MRI images were mostly collected in Cheadle (for 96% of the sample) and Newcastle 

using a 3T Siemens Skyra machine (software platform VD13) and a 32-channel head coil 

(Miller et al., 2016). The T1 weighted (T1w) images were acquired over 4:54 minutes, voxel 

size 1.0x1.0x1.0mm, matrix of 208x256x256mm, using a 3D MPRAGE sequence, sagittal 
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orientation of slice acquisition, R=2 (in plane acceleration factor), TI/TR=880/2000ms 

(Miller et al., 2016). The T2 FLAIR acquisition lasted 5:52 minutes, voxel size 1.05x1.0x1.0 

mm, matrix of 192x256x256 voxels, 3D SPACE sequence, sagittal orientation, R=2, partial 

Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical (Miller et al., 2016).  

	

5.5. Image processing  

We processed the T1w and T2 FLAIR images together to enhance the tissue 

segmentation in FreeSurfer 6.0 (Fischl, 2012), which should result in a more precise skull 

stripping and pial surfaces definition. When the T2 FLAIR was not acquired or not usable, 

we processed the T1w image alone, though a recent report showed this results in systematic 

differences in cortical thickness (Lindroth et al., 2019). This may represent a source of noise 

in the data, albeit it was limited in term of number of individuals (see quality control). We 

extracted vertex-wise data mapping cortical surface area and thickness, using the maximal 

resolution allowed by the FreeSurfer software (fsaverage - unsmoothed). We previously 

showed that this cortical processing maximised the morphometricity for a wide range of 

phenotypes (Couvy-Duchesne et al., 2019). In other words, this cortical processing 

maximised the information retained by the processed MRI images. In addition, we applied 

the ENIGMA-shape processing (Boris A. Gutman, Madsen, Toga, & Thompson, 2013; B. A. 

Gutman, Wang, Rajagopalan, Toga, & Thompson, 2012) to extract radial thickness and log 

Jacobian determinant (analogous to a surface area (Roshchupkin et al., 2016)) of the 

hippocampus, putamen, amygdala, thalamus, caudate, pallidum and accumbens. In short, 

segmented subcortical volume from FreeSurfer are projected onto atlases in order to measure 

their vertex-wise radial thickness and surface area (Boris A. Gutman et al., 2013; B. A. 

Gutman et al., 2012). Overall, the imaging data used in the analyses comprised 652,283 
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vertex measurements per individual: 299,009 for cortical thickness, another 299,034 for 

cortical surface area, 27,120 for subcortical thickness and 27,120 for subcortical surface area.  

In a post-hoc analysis, we also utilised smoothed cortical data (FWHM=20mm), in 

order to evaluate the robustness of our results to variation in the MRI processing.  

 

5.6. Sample description – simulation and discovery sample 

 We considered the first 10,103 participants of the UK Biobank (UKB) imaging wave. 

None of the participants withdrew consent after the data were collected. We excluded 231 

participants due to T1 images labelled unusable by the UKB or because the FreeSurfer 

processing failed or did not complete within 48 hours. Our final sample comprised 9,890 

adults with complete cortical and subcortical data, aged 62.5 on average (SD=7.5, range 

44.6–79.6) with slightly more (52.4%) female participants. To note, 341 participants did not 

have an exploitable T2 image.  

We performed a stringent quality control (QC) of the vertex-wise data in order to 

exclude participants who may bias the LMM estimates, though there may be a more optimal 

QC threshold that could maximise the sample size in future studies. Thus, we excluded 1,228 

subjects (12.4% of the sample) whose brains were the most similar or dissimilar to that of 

other individuals (+-5SD from the mean of the brain-relatedness matrix off-diagonal values). 

Excluding participants with extremely similar brains may seem counterintuitive, though in 

our experience they tend to be individuals with comparable failed processing (e.g. spike-like 

cortical parcellation in FreeSurfer)(Couvy-Duchesne et al., 2020). Note that this QC step led 

to exclude 80.6% of the participants processed using T1w only (vs. 9.9% of the individuals 

processed using T1w+T2w, p-value<10-16), which confirmed our QC could identify 

individuals or groups of individuals with outlying brain measurements (Lindroth et al., 2019). 

In addition, QCed out participants had lower cortical thickness and more extreme ICV, 
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cortical thickness, surface area and subcortical volumes (positive associations with the 

quadratic terms; p<1e-16). Finally, our QC excluded slightly more males than females (14.6% 

vs. 10.4%, p-value=4.6e-10) and marginally older participants (63.0 vs. 62.5 years of age, p-

value=0.018). Note that we previously showed that in the Human Connectome Project 

sample, our QC strategy identified a handful of individuals with processing flagged using the 

ENIGMA visual QC protocol (Couvy-Duchesne et al., 2019).  

 

5.7. Independent samples for prediction and replication  

Our first independent sample included an additional 4,942 participants of the UKB with a 

T1w image (downloaded in May 2018, most participants also had an exploitable T2w). The 

final sample (N=4,160 after processing and QC) was on average 63.1 years old (SD=7.46, 

range 46.1-80.3) with 52.1% of females.  

In addition, we used the OASIS3 (Open Access Series of Imaging Studies) sample 

(LaMontagne et al., 2019) to evaluate the generalizability of the prediction. The OASIS3 

dataset gathers several longitudinal MRI studies conducted in the Washington University 

Knight Alzheimer Disease Research Center over the past 15 years. Our final sample included 

1,006 unique participants after processing based on T1w images and QC. When several visits 

were available for a participant, we selected the one with the most phenotypic information. 

Participants were 71.1 years old on average (SD=9.18, range 42.6-95.7) and mostly female 

(55.5%). Almost a quarter of the participants (23.6%) had a diagnosis of Alzheimer’s disease 

at the time of imaging.   

 

5.8. Mass-univariate analyses on simulated phenotypes 

5.8.1. Simulation of phenotypic traits from real grey-matter data 
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We simulated phenotypic traits from the UKB processed (standardised) grey-matter data. To 

do so, we randomly selected a set of associated vertices and drew their relative effects from a 

normal distribution. We then calculated the simulated phenotypes as a linear combination of 

the individuals’ vertex values and noise (see (Zhang et al., 2019)for formulas). We 

considered three scenarios that differ in term of number of associated vertices and total 

association with the phenotype. This global association between grey-matter measurements 

and a trait has been coined morphometricity (Couvy-Duchesne et al., 2019; Sabuncu et al., 

2016) and may be expressed as the proportion of the trait variance (R2) captured by the 

vertex-wise measurement. Our scenarios were: i) 10 associated vertices accounting for a 

phenotype morphometricity of R2=0.20 (i.e. 20% of the trait variance); ii) 100 associated 

vertices with R2=0.50; iii) 1000 vertices with R2=40%. For each scenario, we simulated 100 

phenotypes.  

In follow-up analyses, we simulated phenotypes using the same parameters as above, 

this time restricting the associated vertices to a single type of measurement. This allowed 

evaluation of the specificity of each type of measurement, which could possess a unique 

correlation pattern. In addition, this ensures our phenotypes were not associated with cortical 

vertices only, which represent 90% of the vertex-wise measurements.  

To evaluate the effect of smoothing on our results, we simulated phenotypes from 

smoothed brain maps (see 5.5). For the ease of computation, we restricted the analysis of 

smoothed data to the case of 10 associated vertices (R2=0.2).  We kept the same associated 

vertices (and weights) as in the previous simulation from unsmoothed data. Finally, we 

randomly simulated 100 “null” traits, in order to evaluate the calibration of the models under 

the null hypothesis of no association. All simulations were generated using the OSCA 

software (Zhang et al., 2019).  
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5.8.2. Inflation of test statistics 

First, we compared the empirical distribution of chi2 statistics to the expected distribution, 

which is assumed to follow a χ:(1) for non-associated (null) vertices. We considered the 

ratio of empirical over expected median chi2, known as the inflation factor (λ), which is 

expected to be equal to one across non-associated vertices. We also used the nominal false 

positive rate (FPR) defined as the proportion of null vertices with p-values<0.05 (expected to 

be 0.05). Correlation between associated and null vertices (e.g. due to confounding factors) 

 typically result in an inflation of test statistics, which may cause null vertices to reach 

significance in mass-univariate analyses. 

 

5.8.3. Power and precision 

We quantified the statistical power of the mass-univariate models using the true positive rate 

(TPR) defined as the proportion or truly associated vertices reaching significance (after 

Bonferroni correction). In addition, we quantified the mapping precision of mass-univariate 

analyses by reporting the median size of the true positive (TP) clusters. We defined TP 

clusters as sets of significant contiguous vertices of the mesh that contain a true positive 

vertex. 

   

5.8.4. False positives 

We reported the Family-Wise Error Rate (FWER) defined as the proportion of replicates with 

at least one false positive vertex (null vertex significant after Bonferroni correction). In the 

presence of strong correlation between neighbouring vertices, it is statistically difficult to 

separate a true positive vertex from the flanking ones, thus we can expect a FWER greater 

than 5%. Thus, we also reported the cluster FWER defined as the proportion of replicates 

with at least one false positive cluster. Finally, we reported the proportion of false positive 
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clusters out of all significant clusters (cluster FDR). We labelled false positive clusters, the 

groups of significantly associated, contiguous vertices that did not contain a true positive 

association. 

In follow up analyses, we simulated associations on a single type of vertex-wise 

measurements, in order to evaluate the probability of false positive (FWER) arising on the 

same type of measurements, other types of measurements as well as contra-lateral regions.  

 

5.8.5. Prediction from significant vertices 

We evaluated the prediction accuracy achieved from the brain regions reaching significance, 

in the different mass-univariate models. We used prediction as a meta-criterion to compare 

the model performances, as it is dependent on power, true and false positives, and association 

effect sizes. We selected the most significant vertex in each cluster and constructed a linear 

predictor using association weights (𝑏", see (1) and (2)) estimated from the different mass-

univariate analyses. Because some significant clusters might contain several independent 

signals, we also built predictors that included all significant vertices. We evaluated the 

prediction of in the independent UKB and OASIS3 samples. 

 

5.9. Mass-univariate analyses of UK Biobank phenotypes  

Next, we performed mass-univariate vertex-wise analyses on five UKB phenotypes that 

showed significant replicated morphometricity (Couvy-Duchesne et al., 2019): age, sex, 

BMI, smoking status and fluid intelligence. We used the raw fluid intelligence score provided 

by the UKB, a non-standard test which has demonstrated some reliability in a test-retest 

analysis (Fawns-Ritchie & Deary, 2020).  

For each UKB phenotype and model, we reported the number of significant vertices, 

number of significant clusters as well as their sizes. We defined significance using a 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.22.427735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427735
http://creativecommons.org/licenses/by-nc/4.0/


Bonferroni significance threshold of 0.05/(652283*5)=1.5e-8, which accounts for the total 

number of tests performed. For those phenotypes, the true pattern of association is unknown 

which prevents evaluation of the false positive rate (or power) of the different approaches. 

However, false positives or redundant associations should not improve prediction accuracy, 

which we therefore evaluated for each GLM or LMM model in the UKB replication sample, 

as well as in the OASIS3 dataset. We used linear predictors as in section 2.8.5. 

 
6. Results 
 
6.1.  Analyses on phenotypes simulated under H0 (not associated) 

We found that all GLM and LMM models behaved well under the null hypothesis, as 

indicated by no inflation of test statistic, FPR, or of false positive rate (FWER). As expected 

under a stringent Bonferroni correction, all approaches were conservative as indicated by 

FWER<3% (SFigure 1). 

 

6.2. Analyses on phenotypes simulated under H1 (associated)  

6.2.1. Inflation of test statistics 

First, we quantified whether we could observe an inflation of test statistics on the vertices not 

associated with the simulated phenotypes. As expected in presence of correlation between 

truly associated and null vertices, we observed a global inflation of (median) test statistics 

when using GLMs (Figure 2, STable 1). This was confirmed by an FPR greater than 5% for 

all GLM models (STable 1) even though controlling for covariates or PCs, reduced the 

inflation of test-statistics compared to the “no covariates” GLM. In comparison, LMMs 

appropriately controlled the inflation of test statistics on null vertices (λ<1 and FDR<5%; 

Figure 2, STable 1).  

 

6.2.2. Statistical power 
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First, we confirmed that the statistical power was dependent on the scenarios which 

corresponded to different effect sizes for the vertices. For example, we had about 70% power 

to detect associated vertices in the case of a simple trait (10 associated vertices each 

accounting for 2% of the phenotypic variance on average). On the other hand, statistical 

power was lower than 5% for the most complex phenotypes (e.g. scenario 3, 1000 vertices 

each accounting for 0.04% of the variance) (Figure 2, STable 1).  

Across all scenarios, LMMs exhibited a slightly reduced power compared to the 

GLMs (Figure 2, STable1). We investigated this result using phenotypes simulated from a 

single type of measurement. We found power of LMMs to be especially reduced on 

subcortical thickness and surface area (SFigure 2), and especially when using the LMM with 

multiple random effects, which may better control for confounders specific to each vertex 

type. 

 

6.2.3. False positives 

We found that every single simulation yielded at least 1 false positive vertex after Bonferroni 

correction (FWER=1, Figure 2). We noted that the FWER of 0.97 (SE=0.02) found for 

LMMs in the scenario of “1000 associated vertices”, came from three simulations returning 

no significant associations. When evaluating the results at a cluster level, we found that using 

GLMs almost always resulted in one or more false positive cluster (Figure 2, STable 1), 

leading to cluster FWER>85%. Cluster FWER was reduced to 49-72% by using LMMs 

(Figure 2, STable 1). Despite this improvement, no model ensured a cluster-FWER below 

5%. LMMs also minimised the proportion of false positive clusters (cluster FDR), compared 

to the GLM approaches. At the extreme, more than 70% of the significant clusters were false 

positives using GLMs without covariate. This reduced to about 60% when controlling for 

age, sex and ICV and further reduced to less than 17% using LMMs (Figure 2, STable1). 
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 Next, we simulated phenotypes associated with a single type of measurement and 

reported the FWER for each type of measurement in SFigure 3-6. This allowed evaluation of 

whether false positives could appear as a result of associations with vertices from other types 

of measurements. We found that using GLMs resulted in contamination of signal between all 

the different types of measurements, as indicated by FWER>5% (SFigure 3-6). In 

comparison, LMMs always minimised the probability of false positives appearing on non-

associated types of measurement. In particular, LMMs ensured that associations on the cortex 

did not inflate the false positive rate on subcortical structures, and vice versa (FWER<5%, 

SFigure 3-6). 

 

6.2.4. Mapping precision 

Here, mapping precision is defined as the size of true positive clusters. LMMs led to a 

more precise localisation of the associations by minimising the size of true positive clusters 

(whether we looked a clusters median or maximal size, Figure 3, STable1). The median size 

of true positive clusters was reduced by a factor greater than ten on subcortical 

measurements, and by a factor greater than two on cortical thickness when using LMMs 

(STable 1). To note, positive clusters on cortical surface area were particularly small (median 

cluster size of one vertex), independent of the mass-univariate model used, Figure 3, STable 

1). However, LMMs still offered a greater precision than the GLMs when considering the 

maximal cluster size (STable 1).  

 

6.2.5. Prediction accuracy from significant vertices 

As a way of aggregating the previous metrics of performance, we compared prediction 

accuracy achieved from significant vertices, using the UKB replication sample. Across all 

models and scenarios, selecting the top vertex per significant cluster maximised prediction 
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accuracy, compared to including all significant vertices. This was expected, as significant 

vertices from the same cluster tag likely redundant information, leading to overweight the 

prediction signal coming from large clusters.   

In simulation scenarios 1 and 2, we found that including more covariates in the GLMs 

resulted in greater prediction accuracy despite that predictors included fewer vertices (Figure 

3, STable 1). In addition, LMMs yielded marginally better prediction accuracy than the best 

GLM using even fewer vertices (Figure 3, STable 1), consistent with observation from 

previous studies (Nabais et al., 2020; Zhang et al., 2019). For the third simulation scenario, 

the prediction accuracy was comparable and limited for all models (Figure 3, STable 1). 

 

6.2.6. Analyses using smoothed cortical surfaces 

We repeated the analysis using smoothed cortical meshes of surface and thickness 

(FWHM=20mm), which is more commonly used in the literature than unsmoothed meshes. 

We sought to investigate how robust our results were to such variation of MRI processing.  

 Overall, smoothing did not change the results of the model comparison. LMMs 

resulted again in a reduced false positive rate (lower cluster FWER and cluster FDR) as well 

as reduced power (seemingly more important than in the unsmoothed case). LMMs 

maximised mapping precision and prediction accuracy, despite relying on fewer significant 

clusters (SFigure 7).  Of note, performing analyses on smoothed data decreased the mapping 

precision for the cortex, leading to true positive clusters roughly ten times larger on cortical 

meshes (Figure 2, SFigure 7). 

 Data smoothing resulted in a large inflation of test statistic and FPR (for GLMs, 

Figure 2, SFigure 7), which is to be expected as smoothing increases the amount of 

correlation between vertices. We noticed that smoothing led to an increase of cluster FWER 

for the GLM with 10 PCs, while it decreased cluster FWER for the LMMs (despite the 
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associated vertices and effect sizes remaining the same). This result warrants a more fined-

grained evaluation of the associations. We can only hypothesise that the 20mm (FWHM) 

smoothing can induce medium-range correlations (hence medium range false positives in 

GLMs) while it also increases local correlation which may aggregate false positive clusters in 

LMMs. 

 

6.3. Morphometricity of the UK Biobank phenotypes 

As a proof of concept, we confirmed that the morphometricity of our simulated traits was 

consistent with that defined in our simulations, whether we fitted a single random-effect 

component or one random-effect component per modality (SFigure 8). For the five UKB 

phenotypes, we also found consistent morphometricity using both LMM models (Table 1), 

suggesting associations across all types of vertex measurements.  

 BMI and fluid intelligence exhibited large and moderate morphometricity (R2=0.51 

(SE=0.031) and R2=0.17 (SE=0.034)) but only a limited association with age, sex or the first 

10 principal components from vertex-wise data (adjusted R2 with ten PCs: R2=0.032 for fluid 

intelligence, R2=0.033 for BMI), which resembles the case of our simulations. Age and sex 

displayed high morphometricity (R2=0.83 (SE=0.026) and R2=1 (SE=0.024)) and large 

associations with the first ten PCs (adjusted R2=0.41 for age, R2=0.43 for sex). Smoking 

status is a discrete variable (non-smoker, former smoker, still smoking) with a 

morphometricity of R2=0.12 (SE=0.029), and adjusted R2=9.2e-3 with first 10 PCs. Note that 

the morphometricity estimates may be slightly larger than the ones reported previously 

(Couvy-Duchesne et al., 2019) where we had regressed out age, sex and head size.  

 

6.4. Analysis of UK Biobank phenotypes 
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Using GLM without covariates resulted in many vertices and clusters reaching significance 

(Figure 4, STable 2). Unsurprisingly, correcting for covariates which account for a large 

fraction of the phenotypic variance (see adjusted R2 with covariates and PCs, STable 2), 

drastically reduced the number of associations in the GLMs. For example, correcting for ten 

PCs in mass-univariate analyses of age and sex reduced the number of associated vertices by 

a factor 8-13, compared to the GLM without covariates (Figure 4, STable 2). For smoking 

status, the number of significant vertices and clusters also dropped despite a negligible 

association with PCs (Figure 4, STable 2). Similarly, for fluid intelligence, correcting for the 

top 10 PCs did not remove much of the trait variance over controlling for age sex and ICV 

(adjusted R2=0.030 with age, sex, ICV, adjusted R2=0.034 when further controlling for PCs) 

though it greatly reduced the number of associations, likely because fitting PCs, to some 

extent, controls for correlations between vertices. 

 We found that across all phenotypes, LMMs resulted in a more parsimonious pattern 

of associations (Figure 4, STable 2). Thus, with a single random effect LMM, we identified 

5 clusters associated with BMI, 8 with age and 6 with sex (STable 2). Using an LMM with 

multiple random-effect components resulted in a single significant cluster for sex reaching 

significance. Finally, the more covariates (incl. PCs) we corrected for, the smaller the size of 

the associated clusters, suggesting they do remove confounding effects. LMMs resulted in 

even sparser associations, consistent with the increased precision observed in simulations. 

using LMMs (Figure 4, STable 2).  

 Next, we compared the prediction accuracy achieved from the vertices reaching 

significance using each model (Figure 4, STable 2). Predicting our traits of interest allows 

evaluating of how power, false and true positive of the different models may counterbalance 

each other. In addition, prediction into independent samples may serve as an external 

validation of the findings obtained in the different mass-univariate approaches. For BMI, we 
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found that prediction accuracy from GLMs was greater in the UKB replication sample than in 

the OASIS3 sample, which suggests that GLMs based predictors capture information that is 

sample specific (e.g., the same confounders are more likely to be shared in the sample cohort 

than across different cohorts). In contrast, the prediction accuracy from LMM was 

comparable on the UKB and OASIS3 samples, pointing towards a better generalisability of 

such predictor. This also indicates that the higher prediction accuracy in the UKB replication 

sample for GLM is likely to be driven by the same confounding factor shared between UKB 

data sets. The comparable performance of GLM and LMM seen on OASIS3 for BMI aligns 

with our simulations.  

 For age and sex prediction, prediction accuracy of LMMs was sometimes inferior to 

that achieved from GLMs, in particular those from the simplest models (“no Covariates” and 

“age, sex, ICV”). However, prediction from LMM generalised well (comparable accuracy in 

in UKB and OASIS3), while the GLMs often displayed heterogeneous performances across 

the test samples (in particular for the GLMs with PCs, which may suffer from PCs being 

different between samples).  

Regarding fluid IQ and smoking status, no LMM predictor was available, and the 

different GLMs resulted in comparable prediction accuracy, albeit limited in both the UKB 

and OASIS3 sample.  

 

 
6.5. Description of associated regions from LMM  

We summarised the significant associations found using LMM (single modality) in STable 3 

(SFigure9-11 for Manhattan plots, SFigure 12-16 for brain plots). The significant 

associations were in the range of R2=0.5-1%. Most associations were observed with 

subcortical volumes though the top cluster for sex was spatially located at the border of the 

lateral-orbitofrontal and medial orbitofrontal gyri (based on the Desikan atlas(Desikan et al., 
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2006)). Out of the 85 vertices associated with age, sex and BMI, 68 replicated in an 

independent UKB sample (p<0.05/85, Table 2). In particular, 4/11 associations replicated for 

BMI, 43/47 with age and with 21/27 sex.   

 

7. Discussion 

Using simulations, we evaluated the statistical power, false positive rate and precision of 

GLMs and LMMs for vertex-wise grey-matter association studies. In particular, we evaluated 

the different models in the context of big-data neuroimaging (large sample size but even 

greater number of correlated brain vertices) (Smith & Nichols, 2018). We consistently found 

that using GLMs resulted in a large number of false positive associations and clusters, 

whether we used smoothed or not-smoothed grey-matter surfaces. Thus, across all scenarios 

tested, more than 60% of the significant clusters were false positives using a standard GLM 

that controlled for age, sex and ICV. In comparison, false discovery rate was below 17% 

using LMMs, though still greater than the 5% expectation (STable 1, Figure 2, SFigure 7). 

In addition, we showed that unlike GLMs, LMMs could appropriately separate cortical from 

subcortical associations, even though signal contamination between thickness and surface 

still occurred (SFigure 2-5). 

Our results suggest that previously reported results from mass univariate vertex-wise 

analyses obtained using standard GLM approaches could contain many redundant 

associations, some of which are likely to be false positives induced by confounding factors 

that cause correlation between vertices (e.g. (Cox et al., 2019; Navas-Sanchez et al., 2016; 

Ritchie et al., 2018; Tamnes et al., 2017), see also Figure 1b). Note that albeit redundant in 

term of association and prediction, some of the brain regions identified using GLM may 

correspond to indirect manifestations of the trait/disease of interest, which may be relevant to 

understand the dynamics of grey-matter structure. Importantly, the type 1 error (greater than 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.22.427735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427735
http://creativecommons.org/licenses/by-nc/4.0/


5%) we observed in simulations also warns against taking for granted results from LMMs. 

The increased false positive rate for GLMs has been well documented in omics association 

analyses studies (e.g. GWAS (Price et al., 2006; Price et al., 2010) or MWAS (Nabais et al., 

2020; Zhang et al., 2019)) and has been attributed to proximal and distal correlations between 

features, caused by factors independent of the trait of interest (e.g. genetic ancestry in 

genetics, (Price et al., 2006), cell composition of the biological sample and smoking status in 

DNA methylation (Jaffe & Irizarry, 2014; Zhang et al., 2019)). On the other hand, LMMs can 

reduce the probability of generating false positives, by fitting all other vertices as random 

effects which accounts for the complex correlation structure between vertices within and 

between individuals. In brain imaging, more work is needed to identify the factors that 

contribute to local and distal correlations between vertices, hence inducing a correlation 

between true associations and “null” vertices, beyond the usual covariates or confounders 

used in neuroimaging (e.g. MRI scanner/artefact (Chen et al., 2020) or demographics 

(Montembeault et al., 2012)). 

 LMMs exhibited a lower statistical power (in particular for true associations located 

on the subcortical nuclei (SFigure 2). However, this result must be interpreted with caution 

as it may be due, in part, to the more stringent control of false positives, which means that 

overall fewer vertices reach significance (Figure 2, STable 2). Yet, some of the power 

reduction may arise from the double fitting of the feature as fixed and random effect 

(Listgarten et al., 2012; Yang et al., 2014). A workaround (Yang et al., 2014) is to exclude 

the candidate vertex (and vertices strongly correlated) from the BRM calculation (Listgarten 

et al., 2012), though this requires computation of the BRM p times (complexity is O(pN3), 

with N the sample size and p the number of vertices), which becomes impractical for large 

sample sizes (Listgarten et al., 2012; Yang et al., 2014). In comparison, the current LMM 

implementation makes our analysis scalable to samples sizes of tens of thousands 
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(computational complexity of O(pN2+N3+pN)) (Zhang et al., 2019). It should be noted that 

Restricted Maximum Likelihood (REML) estimation approach used in LMMs requires 

substantially more computational resources than the GLMs and thus requires the use of high 

performance clusters.   

Beyond power and false positive rate, we observed from simulations that LMMs 

could pinpoint the grey-matter association with greater precision (smaller clusters of true 

positives, Figure 3). Lastly, we found that prediction achieved from clusters reaching 

significance in LMMs was on par with that from the best GLMs (Figure 3), despite fewer 

vertices included in the predictor. This suggests the higher specificity of LMMs. Overall, our 

simulations indicate that LMM with a single random effect currently offers a good trade-off 

between power and false positive rate. However, it still fails to ensure a cluster FWER below 

5% (also reported on MWAS (Zhang et al., 2019)), despite a stringent Bonferroni correction 

to account for multiple testing.  

Next, we applied the mass-univariate vertex-wise models to five real phenotypes of 

the UKB: age, sex, BMI, smoking status and fluid IQ. As in the simulations, the LMMs 

identified fewer vertices and clusters than the GLMs (Figure 4, STable 2). The LMM with 

multiple random-effect components was the most stringent (a single cluster of association), 

consistent with simulations which showed it had the lowest FWER and statistical power. In 

contrast, the LMM with a single random-effect component identified several cortical and 

subcortical associations with BMI, age and sex (STable 3). Most (12/19) of the top vertices 

(in each cluster) replicated in the UKB left out sample (STable 3), even though we cannot 

rule out that the same confounders might act similarly on the two UKB data sets. Overall, 

replication may be warranted to conclude about an association in future studies, considering 

the inflation of false positives (even when using LMMs, Figure 2). The top associated 

vertices with age, sex and BMI each captured less than 1% of the phenotypic variance, 
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suggesting that many more small associations are likely to account for the full 

morphometricity of the phenotypes (STable 2). Our results echo the warning against the risk 

of small associations being confounded (e.g. by artefacts) in big-data neuroimaging (Smith & 

Nichols, 2018), which was confirmed by a recent exploratory study of putative MRI 

confounders in the UKB (Alfaro-Almagro et al., 2020). Note that LMMs can reduce false 

positive associations caused by correlations across and within the different types of 

measurements (Figure 2, 3). Finally, unlike in our simulations (Figure 3), LMMs resulted in 

lower prediction accuracy than GLMs in the UKB left out sample (Figure 4). Nonetheless, 

prediction from LMMs generalised better in another independent sample (Figure 4), the 

OASIS3 dataset (LaMontagne et al., 2019). This suggests that LMMs result in a more robust 

estimator of the association between trait and vertices.  

In the past years, many studies have been published on the association between grey-

matter structure and our phenotypes of interest (see STable 4-8 for a selective review of 

publications). Our simulation and empirical results suggest that some of these studies could 

report a substantial number of false positive or redundant associations. Nevertheless, due to 

the limitations outlined below, it is unclear which of these studies suffer from this issue and 

to which extent. 

Firstly, it has been shown in the omics literature, that power of LMM may be reduced 

for phenotypes strongly associated with the covariation between features (Lloyd-Jones et al., 

2017; Yang et al., 2014). This is likely the case for age and sex as indicated by their strong 

association with the PCs calculated from vertex-wise data (STable 2). This may be an 

important limitation for phenotypes associated with a cascade of changes in grey-matter, for 

which LMM would be over conservative.    

 LMM assumes a normal distribution of random effects, which may not be realistic for 

all phenotypes studied. It is equivalent to assuming highly regionalised, specialised brain 
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regions, each displaying a small association with the phenotype. Several models have been 

proposed to relax this hypothesis, for example, to include large/outlying associations as fixed 

effects (stepwise LMM(Segura et al., 2012)), break down the feature list into sets of small 

and large associations (data driven approach: MOMENT(Zhang et al., 2019)), or consider 

more complex distributions using Bayesian LMMs (Bayesian alphabet (Lloyd-Jones et al., 

2017; Moser et al., 2015)). They remain to be evaluated in the context of vertex-wise 

analyses. More simulations are warranted, to study other trait architectures, different trait 

distributions (e.g. skewed, discrete) or to evaluate more sophisticated models. Our framework 

of simulation may be easily adapted for such investigations, and offers the advantage of 

estimation of statistical power as well as false positive rate, which are not often reported at 

the same time (Eklund, Nichols, & Knutsson, 2016; Noble, Scheinost, & Constable, 2020).  

The nature of the grey-matter regions identified in our GLM analyses of real 

phenotypes (for which the truth is unknown) can be a matter of debate, which depends on the 

(also unknown) nature of the correlation between vertices. Two key scenarios can explain the 

correlation but the data currently available to us does not allow to differentiate between them. 

First, the correlation could be solely due to confounders (e.g. Figure 1b), in which case the 

distal associations are false positives. Second, the correlation between vertices could reflect 

dynamic brain pathways relevant to the trait of interest. In this case, one could describe the 

GLM associations not found using LMM as redundant rather than false positives. Since we 

cannot differentiate between these two important causes of between-vertex correlation, we 

chose to label LMM models as parsimonious, until we understand better the effect of 

confounders on the vertices correlation structure as well as the longitudinal changes in grey-

matter and their relationship with the phenotypes.   

 Finally, three additional limitations are worthy of note as they may limit the 

interpretation of mass-univariate vertex-wise analyses (compared to GWAS results). First, 
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grey-matter associations may be both causes or consequences of the phenotype studied, 

unlike GWAS findings, which can impact how to consider redundant associations. At one 

end of the spectrum are phenotypes such as age for which the direction of the causality is 

obvious (nothing causes chronological age). When describing which parts of the brain are 

affected by aging, one may be interested in reporting all associations, including all indirect 

and redundant. Though, there is no guarantee that those brain regions correctly map the brain 

pathway of ageing as they might also reach significance due to confusion factors. On the 

other hand, for many other phenotypes, the direction of causality is unclear (e.g. smoking, 

BMI…) and one may prefer a more parsimonious and robust brain mapping. Second, grey-

matter vertices are semi-arbitrary features which may be defined and measured in different 

ways (e.g. different cortical meshes in FreeSurfer). For instance, the resolution of the cortical 

tessellation is arbitrary and thus so is the number of local vertices which are found to be 

significant. Our analyses cannot rule out that results might be dependent on a particular 

processing or vertex definition that we did not consider in our analyses (e.g. volume 

processing from SPM, coarser surface mesh). Furthermore, we did not consider all possible 

covariates in GLM analysis, focussing on the more commonly used in previous analyses (age, 

sex, ICV, STable 4-8). More work is needed to evaluate the extended set(s) of covariates 

which have been recently proposed, from a large-scale study of the UKB data (Alfaro-

Almagro et al., 2020). Thirdly, mass-univariate results may depend on the study sample used, 

which raises the question of generalisability into to samples from different age or ethnic 

groups or with different MRI qualities for instance.  

In summary, we found that results obtained using the current state-of-the-art models 

(GLMs) used in MRI-trait association analyses likely suffer from a large inflation of false 

positive or redundant associations, due to the unaccounted correlation between vertices. In 

contrast, LMMs allow to control for all vertices fitted as a random effect, which result in a 
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more parsimonious, robust and conservative characterisation of the localised associations 

between a phenotype and grey-matter structure. However, LMM results should still be 

interpreted with caution as our simulations show that the false positive rate remains higher 

than the standard type 1 error of 5%, even after Bonferroni correction.  

 

8. URLs 
Summary-level results: http://cnsgenomics.com/data.html; 

Code available upon publication at https://github.com/baptisteCD;  

OSCA: http://cnsgenomics.com/software/osca/; 

ENIGMA protocols: http://enigma.ini.usc.edu/protocols/imaging-protocols/ 
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11. Figure and legends 

 
 

Figure 1: Illustration of the traditional confounding paradigm a) and of the 
confounding that may arise in association studies performed across correlated brain 
features b).   
One sided arrows represent a causal effect, while two-sided arrows represent a correlation. 
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Figure 2: Performance of GLMs and LMMs for mass-univariates vertex-wise analyses: 
test inflation, statistical power and false positive rate.  
The columns correspond to the different scenarios considered when simulating traits. We 
simulated 100 phenotypic traits for each scenario. Bars represent +- SE across the 100 
replicates. Clusters are composed of groups of contiguous vertices each significantly 
associated with the phenotype (after Bonferroni correction). We labelled them false positive 
if they did not include a true positive association. 
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Figure 3: Precision and prediction accuracy from significant vertices between the 
different models of mass-univariate analyses  
The columns correspond to the different scenarios considered when simulating the traits. We 
simulated 100 phenotypic traits for each scenario. Bars represent +- SE across the 100 
replicates. Clusters are composed of groups of contiguous vertices each significantly 
associated with the phenotype (after Bonferroni correction). We labelled them true positive if 
they included a true positive association. Precision refers to the median size of true positive 
clusters.  
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Figure 4: Number of significant clusters and prediction accuracy for real UKB 
phenotypes 
Bars represent the 95% confidence intervals of the prediction accuracy (correlations). Dots 
indicate prediction accuracy in the UKB replication sample, while stars correspond to the 
prediction achieved in the OASIS3 sample. The dashed lines correspond to the estimated 
morphometricity, which corresponds to the theoretical maximum prediction accuracy 
achievable from a linear predictor. 
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