Supplementary Information for: A parsimonious model for mass-univariate vertex-wise analyses

Baptiste Couvy-Duchesne, Futao Zhang, Kathryn E. Kemper, Julia Sidorenko, Naomi R. Wray, Peter M. Visscher, Olivier Colliot, Jian Yang

Correspondence: BCD (b.couvyduchesne@uq.edu.au), JY (jian.yang@uq.edu.au) or PMV (peter.visscher@uq.edu.au).

This PDF file includes:

Figs. S1 to S16
Tables S1 to S7

SFigure 1: Summary of mass-univariate analyses on null phenotypes (not associated)
A hundred phenotypes were simulated at random and analysed using each model.

SFigure 2: Statistical power for simulated phenotypes associated with a single type of modality
The phenotypes were simulated from a single type of measurement (indicated in parenthesis on the Y-axis label). The statistical power is measured using the true positive rate, or proportion of true associations significant after Bonferroni correction.

SFigure 3: Probability of a false positive vertex arising from associations on cortical thickness
The phenotypes were simulated from cortical thickness only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 4: Probability of a false positive vertex arising from associations on cortical surface area
The phenotypes were simulated from cortical surface area only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 5: Probability of a false positive vertex arising from associations on subcortical thickness
The phenotypes were simulated from subcortical thickness only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 6: Probability of a false positive vertex arising from associations on subcortical surface area
The phenotypes were simulated from subcortical surface area only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 7: Results of mass-univariate analyses using smoothed meshes of cortical vertices.
For the ease of computation, we only considered a simple simulation scenario of 10 associated vertices (morphometricity of 20\%). Phenotypes were again simulated from the cortical and subcortical meshes, using the same seed vertices and weights as in previous simulations on unsmoothed data.

SFigure 8: Morphometricity estimates of our simulated traits from our two LMM models The grey lines represent the expected values.

SFigure 9: Manhattan plot of mass-univariate vertex-wise analysis of body mass index
The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.

SFigure 10: Manhattan plot of mass-univariate vertex-wise analysis of age
The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.

SFigure 11: Manhattan plot of LMM mass-univariate vertex-wise analysis of sex
The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.
a)

b)

c)

d)

e)

SFigure 12: Results of vertex-wise analysis for age at MRI using the different models
The brain plots present the significant vertices (in color), for (from left to right) cortical thickness, cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM " 5 global PCs", d) GLM " 10 global PCs, e) LMM "global BRM".
a)

8

b)

c)

d)

e)

SFigure 13: Results of vertex-wise analysis for BMI using the different models
The brain plots present the significant vertices (in color), for (from left to right) cortical thickness, cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM " 5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM".
a)

b)

c)

d)

e)

SFigure 14: Results of vertex-wise analysis for sex using the different models
The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM " 5 global PCs", d) GLM " 10 global PCs, e) LMM "global BRM".
a)

b)

c)

d)

e)

SFigure 15: Results of vertex-wise analysis for fluid IQ using the different models
The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM " 5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM" (no significant association after multiple testing correction).
a)

b)

c)

d)

e)

SFigure 16: Results of vertex-wise analysis for smoking status using the different models
The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM " 5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM" (no significant association after multiple testing correction).

Metric	Num assoc. vertices	No covariates	Age, Sex, ICV reg.	5 global PCs	$\begin{aligned} & 10 \text { global } \\ & \text { PCs } \end{aligned}$	10 modality spe. PCs		
Lambda (inflation factor)	10	2.64 (1.58)	1.63 (0.64)	1.15 (0.07)	1.12 (0.05)	1.1 (0.04)	0.94 (0.02)	0.95 (0.02)
	100	6.45 (4.27)	3.01 (1.62)	1.46 (0.09)	1.37 (0.07)	1.31 (0.05)	0.91 (0.01)	0.91 (0.01)
	1000	4.42 (3.49)	2.53 (1.08)	1.48 (0.09)	1.37 (0.05)	1.32 (0.04)	0.96 (0.01)	0.97 (0.01)
FPR (Nominal false positive rate)	10	0.2 (0.11)	0.13 (0.06)	0.07 (0.01)	0.07 (0.01)	0.07 (0.01)	$0.05(<0.01)$	$0.05(<0.01)$
	100	0.39 (0.16)	0.24 (0.1)	0.12 (0.01)	0.1 (0.01)	0.1 (0.01)	$0.04(<0.01)$	$0.04(<0.01)$
	1000	0.3 (0.14)	0.21 (0.08)	0.12 (0.01)	0.1 (0.01)	0.09 (0.01)	0.05 (<0.01)	0.05 (<0.01)
True positive (TP) rate	10	0.72 (0.12)	0.72 (0.12)	0.71 (0.13)	0.71 (0.13)	0.7 (0.13)	0.7 (0.13)	0.69 (0.13)
	100	0.45 (0.05)	0.43 (0.04)	0.42 (0.04)	0.41 (0.04)	0.41 (0.04)	0.38 (0.04)	0.37 (0.03)
	1000	0.05 (0.04)	0.03 (0.02)	0.02 (<0.01)	0.01 (<0.01)	$0.01(<0.01)$	$0.01(<0.01)$	$0.01(<0.01)$
Median size of TP cluster on cortical surface area	10	11 (45)	7 (32)	3 (12)	2 (9)	1 (2)	1 (1)	1 (0)
	100	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
	1000	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
Max. size of TP cluster on cortical surface area	10	63 (183)	29 (79)	18 (49)	12 (37)	7 (22)	3 (8)	2 (3)
	100	163 (601)	7 (17)	3 (7)	3 (5)	2 (2)	1 (1)	1 (0)
	1000	205 (1283)	1 (2)	3 (19)	1 (0)	1 (0)	1 (0)	1 (0)
Median size of TP cluster on cortical thickness	10	152 (162)	149 (168)	124 (126)	112 (77)	107 (67)	79 (45)	77 (44)
	100	81 (63)	85 (172)	50 (12)	48 (13)	45 (13)	24 (8)	24 (7)
	1000	30 (22)	26 (16)	13 (7)	13 (8)	13 (7)	7 (5)	6 (5)
Max. size of TP cluster on cortical thickness	10	384 (502)	332 (304)	254 (178)	231 (142)	218 (130)	143 (65)	139 (62)
	100	1972 (8124)	1240 (5624)	226 (123)	214 (107)	196 (84)	86 (20)	85 (20)
	1000	225 (325)	196 (266)	73 (94)	50 (35)	44 (33)	11 (7)	10 (8)
Median size of TP cluster subcortical surface	10	795 (726)	447 (488)	236 (259)	164 (152)	104 (88)	93 (80)	49 (31)
	100	855 (769)	335 (434)	127 (132)	102 (99)	57 (39)	32 (22)	25 (17)
	1000	455 (551)	140 (205)	46 (57)	41 (49)	21 (17)	6 (2)	2 (NA)
Max. size of TP cluster sub- cortical surface	10	804 (732)	450 (486)	239 (257)	166 (151)	106 (87)	94 (79)	50 (31)
	100	1183 (889)	568 (608)	186 (210)	150 (131)	77 (57)	41 (30)	29 (18)
	1000	813 (846)	241 (370)	53 (63)	52 (55)	23 (18)	6 (2)	3 (NA)
Median size of TP cluster on subcortical thickness	10	747 (717)	384 (479)	206 (258)	193 (236)	82 (84)	64 (62)	32 (21)
	100	417 (495)	222 (249)	90 (101)	75 (81)	37 (36)	20 (19)	15 (11)
	1000	200 (220)	116 (270)	39 (44)	30 (30)	18 (30)	7 (10)	2 (2)
Max. size TP cluster on subcortical thickness	10	759 (713)	406 (481)	212 (257)	200 (234)	85 (83)	66 (63)	32 (21)
	100	668 (776)	385 (494)	148 (191)	116 (131)	51 (48)	26 (28)	17 (12)
	1000	554 (673)	188 (313)	50 (61)	39 (43)	21 (31)	7 (10)	2 (2)
FWER	10	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
	100	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
	1000	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.97 (0.17)	0.97 (0.17)
Cluster FWER	10	0.99 (0.01)	0.97 (0.02)	0.98 (0.01)	0.96 (0.02)	0.85 (0.04)	0.63 (0.05)	0.49 (0.05)
	100	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.97 (0.02)	0.72 (0.05)	0.72 (0.05)
	1000	1 (0)	1 (0)	1 (0)	0.99 (0.01)	1 (0)	0.7 (0.05)	0.58 (0.05)
Cluster FDR	10	0.75 (0.24)	0.64 (0.24)	0.48 (0.25)	0.41 (0.24)	0.32 (0.22)	0.16 (0.17)	0.12 (0.15)
	100	0.78 (0.18)	0.62 (0.17)	0.33 (0.16)	0.24 (0.13)	0.17 (0.1)	0.04 (0.03)	0.03 (0.03)
	1000	0.73 (0.13)	0.65 (0.13)	0.45 (0.16)	0.34 (0.13)	0.32 (0.13)	0.13 (0.11)	0.13 (0.15)
Number of significant clusters	10	96 (125)	33 (25)	20 (17)	15 (8)	12 (5)	9 (2)	13 (19)
	100	227 (204)	135 (86)	66 (21)	55 (12)	49 (8)	39 (4)	39 (7)
	1000	142 (155)	92 (77)	30 (17)	21 (7)	18 (5)	8 (3)	7 (3)
Prediction (r) from top vertex per cluster	10	0.29 (0.09)	0.35 (0.07)	0.38 (0.06)	0.4 (0.05)	0.42 (0.03)	0.43 (0.02)	0.43 (0.02)
	100	0.32 (0.09)	0.4 (0.08)	0.54 (0.08)	0.58 (0.06)	0.61 (0.04)	0.64 (0.02)	0.63 (0.02)
	1000	0.18 (0.04)	0.2 (0.05)	0.18 (0.05)	0.18 (0.05)	0.18 (0.04)	0.15 (0.04)	0.14 (0.04)
Number of significant vertices	10	4636 (7293)	1452 (1767)	747 (552)	616 (352)	492 (230)	325 (118)	261 (110)
	100	10596 (15205)	6840 (12859)	1967 (881)	1666 (595)	1309 (325)	565 (100)	510 (114)
	1000	5813 (13178)	2179 (2755)	345 (315)	209 (148)	150 (83)	23 (15)	20 (15)
Prediction (r) from significant vertices	10	0.22 (0.06)	0.24 (0.05)	0.25 (0.05)	0.26 (0.06)	0.26 (0.05)	0.28 (0.06)	0.28 (0.06)
	100	0.23 (0.06)	0.27 (0.06)	0.34 (0.07)	0.36 (0.06)	0.38 (0.05)	0.4 (0.04)	0.4 (0.04)
	1000	0.15 (0.05)	0.16 (0.06)	0.12 (0.05)	0.12 (0.05)	0.12 (0.04)	0.12 (0.04)	0.11 (0.03)

STable 1: metrics of performance (SE) of mass-univariate models on simulated traits
The values are calculated over 100 simulated phenotypic traits.

STable 2: Summary of mass-univariate vertex-wise analyses for the UKB phenotypes considered

		BMI	Fluid Intelligence	Age	Sex	Smoking status
	Adj. R^{2} with age, sex \& ICV	0.011	0.030	0.012	0.31	0.0086
	$\begin{aligned} & \text { Adj. } R^{2} \text { with first } 10 \\ & P C S \end{aligned}$	0.033	0.032	0.41	0.43	0.0092
Uncorrecte d GLM	N assoc. vertices N assoc. clusters Max cluster size Prediction (UKB) Prediction (OASIS3)	10,947 232 862 $0.35[0.33,0.38]$ $0.19[0.13,0.25]$	24,776 640 2,030 $0.17[0.14,0.2]$ $0.2[0.14,0.26]$	136,278 970 22,358 $0.6[0.58,0.62]$ $0.7[0.67,0.73]$	355,130 714 130,651 $0.68[0.66,0.7]$ $0.65[0.61,0.69]$	707 34 116 $0.12[0.09,0.15$ $0.03[-0.03,0.0$
$\begin{aligned} & \text { Age, sex, } \\ & \text { ICV GLM } \end{aligned}$	N assoc. vertices N assoc. clusters Max cluster size Prediction (UKB) Prediction (OASIS3)	10,240 237 494 $0.35[0.32,0.38]$ $0.14[0.08,0.21]$	195 15 112 $0.18[0.15,0.21]$ $0.21[0.15,0.27]$	$\begin{aligned} & 129,700 \\ & 1269 \\ & 19,450 \\ & 0.52[0.5,0.54] \\ & 0.64[0.6,0.68] \\ & \hline \end{aligned}$	321,154 1154 2,955 $0.73[0.72,0.75]$ $0.71[0.68,0.74]$	88 6 37 $0.09[0.06,0.12$ $0.03[-0.03,0.1$
$\begin{aligned} & 5 \text { global } \\ & \text { PCs GLM } \end{aligned}$	N assoc. vertices N assoc. clusters Max cluster size Prediction (UKB) Prediction (OASIS3)	10,407 201 680 $0.35[0.33,0.38]$ $0.24[0.18,0.3]$	24 5 10 $0.16[0.13,0.19]$ $0.17[0.11,0.23]$	28,166 385 1,875 $0.44[0.42,0.47]$ $0.28[0.22,0.34]$	$\begin{aligned} & \hline 31,640 \\ & 499 \\ & 1,618 \\ & 0.62[0.6,0.64] \\ & 0.5[0.45,0.55] \\ & \hline \end{aligned}$	39 4 25 $0.11[0.08,0.14$ $0.01[-0.05,0.0$
10 global PCs GLM	N assoc. vertices N assoc. clusters Max cluster size Prediction (UKB) Prediction (OASIS3)	8,548 174 518 $0.34[0.31,0.37]$ $0.17[0.1,0.23]$	30 5 9 $0.16[0.13,0.19]$ $0.17[0.11,0.23]$	16,746 297 894 $0.44[0.41,0.46]$ $0.17[0.11,0.23]$ 13,267	$\begin{aligned} & \hline 26,894 \\ & 492 \\ & 1782 \\ & 0.58[0.56,0.6] \\ & 0.58[0.54,0.62] \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 91 \\ & 6 \\ & 43 \\ & 0.08[0.05,0.11 \\ & -0.02[-0.08,0.4 \end{aligned}$
10 moda. Spe. PCs GLM	N assoc. vertices N assoc. clusters Max cluster size Prediction (UKB) Prediction (OASIS3)	4,227 161 346 $0.34[0.32,0.37]$ $0.08[0.02,0.15]$	75 4 37 $0.17[0.13,0.2]$ $0.16[0.1,0.22]$	13,367 404 616 $0.68[0.66,0.69]$ $0.57[0.53,0.61]$	18,869 515 1437 $0.69[0.67,0.71]$ $0.59[0.55,0.63]$	$\begin{aligned} & 17 \\ & 3 \\ & 6 \\ & 0.13[0.1,0.16] \\ & 0.06[0,0.12] \\ & \hline \end{aligned}$
Single random effect LMM	N assoc. vertices N assoc. clusters Max cluster size Morphometricity (SE) Prediction (UKB) Prediction (OASIS3)	$\begin{aligned} & 11 \\ & 5 \\ & 5 \\ & 0.16[0.13,0.19] \\ & 0.13[0.07,0.2] \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & -\operatorname{Inf} \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 0 \\ & \hline \end{aligned}$	47 8 15 $0.4[0.38,0.43]$ $0.37[0.32,0.43]$ 0 0	$\begin{aligned} & \hline 27 \\ & 6 \\ & 11 \\ & 0.48[0.45,0.5] \\ & 0.47[0.42,0.52] \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & -\operatorname{Inf} \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 0 \end{aligned}$
Multiple random effect LMM	N assoc. vertices N assoc. clusters Max cluster size Morphometricity (SE) Prediction (UKB) Prediction (OASIS3)	$\begin{aligned} & \hline 0 \\ & - \text { Inf } \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 10947 \\ & 232 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & - \text { Inf } \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 24776 \\ & 640 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & - \text { Inf } \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 136278 \\ & 970 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \\ & 0.13[0.1,0.16] \\ & 0.12[0.06,0.18] \\ & 355130 \\ & 714 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & - \text { Inf } \\ & \text { NA [NA,NA] } \\ & \text { NA [NA,NA] } \\ & 707 \\ & 34 \\ & \hline \end{aligned}$

In the "age, sex and ICV adjusted" GLM, we dropped the corresponding covariate when studying age and sex. All adjusted R^{2} are significant (pvalue<1e-16) considering the large sample size. Significance corresponded to a Bonferroni significance threshold of $1.5 e-8$, which accounts for the number of vertices and traits analyses.

	Top vertex					Discovery					Replication	
		hemi	modality	region	X;Y;Z coordinates	beta	se	pvalue	r	Cluster size	beta	pvalue
BMI	LogJacs_10_738	Left	Subcort. surface	Thalamus-Proper	148.5; 110.9; 105.1	0.363	0.063	$9.7 \mathrm{E}-09$	0.082	2	0.029	7.3e-01
	LogJacs_26_484	Left	Subcort. surface	Accumbens-area	136.3; 109.1; 144.7	0.408	0.072	$1.5 \mathrm{E}-8$	0.092	1	0.139	1.3e-01
	thick_12_879	Left	Subcort. thickness	Putamen	152.4; 111.8; 125.4	0.316	0.055	$1.2 \mathrm{E}-8$	0.072	1	0.22	3.6e-03
	thick_26_291	Left	Subcort. thickness	Accumbens-area	132.3; 114; 141.6	0.38	0.063	$1.4 \mathrm{E}-09$	0.086	5	0.359	3.2e-05 *
	thick_54_1331	Right	Subcort. thickness	Amygdala	106.2; 131.8; 141.1	0.447	0.075	2.7E-09	0.101	2	0.229	$1.8 \mathrm{e}-02$
Age	LogJacs_49_1110	Right	Subcort. surface	Thalamus-Proper	108.9; 105.4; 108.6	-0.552	0.097	$1.3 \mathrm{E}-8$	-0.074	2	-0.388	$2.4 \mathrm{e}-03$
	LogJacs_50_2347	Right	Subcort. surface	Caudate	119.8; 100.6; 151.3	0.64	0.11	$1.3 \mathrm{E}-8$	0.086	1	0.388	1.2e-02
	thick_10_2231	Left	Subcort. thickness	Thalamus-Proper	139.5; 109.8; 125.6	-0.623	0.094	$3.7 \mathrm{E}-11$	-0.084	5	-0.658	5.6e-07 *
	thick_10_732	Left	Subcort. thickness	Thalamus-Proper	130.3; 107.4; 104.7	0.581	0.091	$1.9 \mathrm{E}-10$	0.078	15	0.793	2.9e-10 *
	thick_49_954	Right	Subcort. thickness	Thalamus-Proper	126; 107; 107.3	0.618	0.088	$1.8 \mathrm{E}-12$	0.083	11	0.577	3.4e-07 *
	thick_49_1337	Right	Subcort. thickness	Thalamus-Proper	110.2; 104.4; 111.3	0.536	0.081	$3.2 \mathrm{E}-11$	0.072	9	0.517	2.5e-04 *
	thick_49_1652	Right	Subcort. thickness	Thalamus-Proper	113.4;97.9;115.5	0.625	0.10	$1.7 \mathrm{E}-09$	0.084	2	0.76	3.2e-10 *
	thick_51_243	Right	Subcort. thickness	Putamen	98.6;109.8;117.3	-0.43	0.070	$9.1 \mathrm{E}-10$	-0.058	2	-0.348	5.6e-04 *
Sex	rht_46930	Right	Cort. thickness	Lateral orbitofrontal	-14; 11.2;-14.8	0.031	0.0043	$1.3 \mathrm{E}-12$	0.061	10	0.022	2.7e-04 *
	thick_10_1216	Left	Subcort. thickness	Thalamus-Proper	128.5; 113.5; 109.3	0.038	0.0058	$1.2 \mathrm{E}-10$	0.076	11	0.034	3.5e-05 *
	thick_10_2415	Left	Subcort. thickness	Thalamus-Proper	136.1; 111.9; 127.4	0.029	0.0046	$4.3 \mathrm{E}-10$	0.058	3	0.028	2.3e-05 *
	thick_49_1483	Right	Subcort. thickness	Thalamus-Proper	113.3; 97.8; 113.2	0.037	0.0064	9.2E-09	0.074	1	0.027	$2.3 \mathrm{e}-03$
	thick_50_1785	Right	Subcort. thickness	Right-Caudate	123.2;98.6;141.6	-0.034	0.0059	6.7E-09	-0.068	1	-0.031	1.3e-04 *
	thick_54_597	Right	Subcort. thickness	Amygdala	111.4; 121.1; 131.8	0.026	0.0046	$1.2 \mathrm{E}-8$	0.053	1	0.031	1.4e-06 *

[^0]STable 4: review of mass-univariate analyses of Age

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothing / mesh	Multiple testing	Significant regions
Medic et al.,	$\begin{aligned} & \hline 10.1038 / \mathrm{ijo.} 20 \\ & 16.42 \end{aligned}$	2016	Age	202	Healthy adults	Age, sex, scanner, BMI, hemisphere, global thickness, area)	Cortical thickness, area	15 mm	Cluster level using Monte Carlo simulations	11 regions in cortical thickness
Harrison et al.,	$\begin{aligned} & \text { 10.1016/j.neur } \\ & \text { obiolaging. } 201 \\ & 8.03 .024 \end{aligned}$	2018	Successful ageing (cognition)	129	Older adults (70+)	sex	Cortical thickness	NS	No correction	Impossible to conclude
Dotson et al.,	$\begin{aligned} & \hline \text { 10.3389/fnagi. } \\ & 2015.00250 \end{aligned}$	2016	Age	46	Middle aged adults (51-81 years	Sex, education, ICV/CT	Cortical thickness, surface	10 mm	FDR	9 cortical regions surface area
Ducharme et al.,	$\begin{aligned} & \text { 10.1016/j.neur } \\ & \text { oimage.2015.1 } \\ & 0.010 \end{aligned}$	2016	Age	384	HC 4-22 years old, longitudinal (753 scans)	Sex, scanner (TBV)	Cortical thickness	20 mm	RFT peak and clusters	Linear model good approx. for most vertices
Li et al.,	$\begin{aligned} & \text { 10.1093/cerco } \\ & \text { r/bhs413 } \end{aligned}$	2013	age	73	Imaged at birth and 2 years, longitudinal	NA	Asymetry in sulcal depth, surface area, curvature. Left right SA ratio	NA	sufstat	Regional asymetries found for several modalities
Hogstrom	$\begin{aligned} & \text { 10.1093/cerco } \\ & \text { r/bhs231 } \end{aligned}$	2012	Age	322	Healthy adults (20-85)	Sex, Total WM volume	Cortical thickness, surface, gyrification	30 mm	FDR Genovese et al., 2002	Surface area showed strong age-related decreases, particularly pronounced in dorsomedial prefrontal, lateral temporal, and fusiform cortices, independently of total white matter volume.
Hugues et al.,	$\begin{aligned} & \text { 10.1016/j.neur } \\ & \text { oimage.2012.0 } \\ & 7.043 \end{aligned}$	2012	Age	86	Healthy subjects (20-74)	none	Thalamus shape/expansion	NA	FDR (non-specified)	Most of thalamus vertices significant
Sowell et al.,	$\begin{aligned} & \text { 10.1523/JNEU } \\ & \text { ROSCI.1798- } \\ & 04.2004 \end{aligned}$	2004	Age	45	Imaged twice, age 5-11. Ttest between t1 and t2 (no mixed models).	none	Cortical thickness (Eikonal Fire Equation, not FreeSurfer) 65K vertices p.h.	15 mm	Permutation to estimate minimal area significant	10 significant regions
Muftuler et al.,	10.1016/j.brai nres.2011.05.0 18	2011	Age	126	Normally developing children age 6-10	none	Cortical thickness (FS)	Unclear	FDR (unspecified)	Many cortical regions significant
Reid	$\begin{aligned} & \text { 10.1002/hbm. } \\ & 20994 \end{aligned}$	2010	Age	503	nondemented elderly individuals (50-85 years) with a history ofsymptomatic cerebral small vessel disease (SVD	sex	Cortical thickness (CIVET) 40,962 vertices	NA	RFT	Most of the cortical sheet showed significant decrease with Age, with the greatest effects apparent in the ventrolateral prefrontal cortex(BA45, BA46, and BA47), the primary and secondary audi-tory cortices (BA41, BA42), Wernicke's area (BA22), medialtemporal lobe (BA36, BA28, excluding the hippocampal formation and amygdala), and the primary visual cortex.
Salat et al.,	$\begin{aligned} & \text { 10.1093/cerco } \\ & \text { r/bhh032 } \end{aligned}$	2004	Age	106	non-demented participants ranging in age from 18 to 93 years Imaged several times with T1 averaged	sex	Cortical thickness (FS)	22 mm	none	Some regions likely significant after bonferroni correction.
Gogtay	$\begin{aligned} & \text { 10.1073pnas. } \\ & 0402680101 \end{aligned}$	2004	Age	13	Healthy age 4-21. Up to 4 scans per subject (52 images)	none	Cortical GM density	15 mm	None	Results not interpretable

							(Thompson et al., 2000)			
Gogtay	$\begin{aligned} & \hline \text { 10.1002/hipo. } \\ & 20193 \end{aligned}$	2006	Age	31	Healthy age 4-21. Up to 4 scans per subject (100 images)	Sex, TBV	Hippocampus thickness, manual tracing, 30,000 measurements	NA	none	Results not interpretable
Van Soelen	$\begin{aligned} & \text { 10.1016/j.neur } \\ & \text { oimage.2011.1 } \\ & 1.044 \end{aligned}$	2012	Age	113	Healthy twins 9-13 Imaged twice with 3 years interval	Sex, handedness, scan interval	Cortical thickness (CLASP) 40962 vertices per hemisphere	20 mm	FDR (Genovese et al.,)	Widespread significant regions
Tamnes	$\begin{aligned} & \text { 10.1523/JNE } \\ & \text { UROSCI. } 330 \\ & 2-16.2017 \end{aligned}$	2017	Age	85	Healthy adolescents, up to 2 scans per individual, 170 images total. 4 samples	Sex, scanning interval	Cortical thickness, volume, surface (FS)	15 mm	Monte carlo simulations, clusters $\mathrm{p}<0.05$	Widespread significant regions

Stable 5: Review of mass-univariate analyses of Sex

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex/voxel modalities	Smoothing / mesh	Multiple testing	Significant regions
Lotze et al.,	$\begin{aligned} & 10.1038 / \mathrm{s} 4 \\ & 1598-018- \\ & 38239-2 \end{aligned}$	2018	Sex	2,838	Adults age 21-90	TBV, IQR, age, years of education, nicotine intake, alcohol consumption, and body mass index (BMI)	VBM	8 mm	FWER (not specified), cluster size >10 voxels	25 significant regions
Chen et al.,	$\begin{aligned} & \text { 10.1016/j.n } \\ & \text { euroimage. } \\ & \text { 2007.03.06 } \\ & 3 \end{aligned}$	2007	Sex	411	Adults, 44-48 years	age, years of education, handedness, and total intracranial volume	Cortical volume (VBM)	12 mm	FWER (not specified), threshold $\mathrm{p}<0.001$	15 significant regions
Ruigrok et al.,	$\begin{aligned} & 10.1016 / \mathrm{j} \cdot \mathrm{n} \\ & \text { eubiorev. } 20 \\ & 13.12 .004 \end{aligned}$	2014	Sex	<2186	Meta-analysis all ages. Incl. Chen et al., 2007	Depending on study	Cortical volume, density (VBM)	Depends on study	FDR	22 regions associated. Meta-analysis relies on foci, not on full map of summary statistics.
Jiang et al.,	10.1371/jo urnal.pone. 0073932	2013	Sex	266	Inflamattory Bowel Disease (90). 176 HC	Age, Total grey matter volume	Cortical thickness	8 mm	FDR (RFT)	4 cortical regions
Li et al.,	$\begin{aligned} & \text { 10.1093/ce } \\ & \text { rcor/bhs41 } \\ & 3 \end{aligned}$	2013	sex	73	Imaged at birth and 2 years, longitudinal	age	Asymetry in sulcal depth, surface area, curvature		sufstat	
Boulos et al.,	```10.1371/jo urnal. pone.01529 83```	2016	Sex	87	Right handed females (14-19 years) and males (14-18, See Chumachenko et al.,)	Age, IQ	Cortical thickness	10 mm	p<0.005, monte carlo simulations: cluster > 250 mm 2	No significant findings
Richie et al,.	$\begin{aligned} & \text { 10.1093/ce } \\ & \text { rcor/bhy10 } \\ & 9 \end{aligned}$	2018	Sex	5216	UK Biobank	Age, ethnicity	Cortical thickness, surface area, volume (FS) Rs-fMRI WM microstructur e	20 mm	None (post hoc analysis)	Results compared to ROI based results. Tred: large SQ and VOL in males, larger thickness in females
Luders et al	$\begin{aligned} & \hline 10.1002 / \mathrm{hb} \\ & \mathrm{~m} .20187 \end{aligned}$	2005	Sex	60	Healthy young adults, right handed, matched for age	2 processing, one accounting for global head size in realignment	Cortical thickness (Eikonal fire equations)	15 mm	permutation	Increased CT in females, widespread. Esp. when accounting for head size
Lv et al.,	$\begin{aligned} & \text { 10.1016/j.n } \\ & \text { euroimage. } \\ & 2010.05 .02 \\ & 0 \end{aligned}$	2010	Sex	184	Healthy adults (18-70)	Age, head size (GM+WM+CSF)	Cortical thickness (no FS) 40,962 p.h.	20 mm	FDR (Genovese et al.,)	cortical thickening in females appeared extensively in the frontal, parietal and occipital lobes, including the superior frontal gyrus, precentral gyrus, and postcentralgyrus in both hemispheres, and the superior parietal lobule, cuneus, and frontal pole in left hemispheres. The male cortex was significantly thicker than that of the female only in some small regions of the temporal lobes.
Sowell et al.,	$\begin{aligned} & \text { 10.1093/ce } \\ & \text { rcor/bhl066 } \end{aligned}$	2007	Sex	176	Healthy 7-87 years	Age, age2, (height)	Cortical thickness		Permutations (within large	Results of ROI permutation analyses (shown in Table 2) confirm the significance of sex differences in

							(manual and automated processing) Eikonal fire equation 65536 vertices p.h.		cortical regions) to estimate cluster size	cortical thickness in right lateral parietal ($\mathrm{P}=0.048$), right lateral temporal ($P=0.024$), and left medial occipital ($P=0.017$) regions.
				36	Follow up in male female sample matched for TBV					Female thicker. Right: Lateral ventral frontal Lateral occipital Lateral parietal Lateral temporal
Van Velsen	$\begin{aligned} & \text { 10.1016/j.n } \\ & \text { eulet.2013. } \\ & 06.063 \end{aligned}$	2013	Sex	1022	Non-demented elderly: age ~ 68	ICV, education (in men and women separately)	Cortical thickness (FS)	NA	none	Results not presented/discussed. ROI focus
Reid	$\begin{aligned} & \hline 10.1002 / \mathrm{hb} \\ & \mathrm{~m} .20994 \end{aligned}$	2010	Sex	503	nondemented elderly individuals (50-85 years) with a history ofsymptomatic cerebral small vessel disease (SVD	age	Cortical thickness (CIVET) 40,962 vertices	NA	RFT	Vertex-wise analyses highlightsome regions where a moderate Sex effect was apparent.AfterP-value correction, these effects were not significant;

Stable 6: Review of mass-univariate analyses of smoking (and related traits)

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothin g/mesh	Multiple testing	Significant regions
Jorgensen et al.,	$\begin{gathered} 10.1503 / \mathrm{j} \\ \mathrm{pn} .140163 \end{gathered}$	2015	Smoking	743	237 healthy controls and 506 psychiatric cases	Age, sex, diagnosis	Cortical thickness	20 mm	$\begin{aligned} & \hline \text { FDR (no } \\ & \text { reference) } \end{aligned}$	1 cluster significant in patient sample
			Smoking amount							No significant result
Cox et al.,	$\begin{aligned} & \text { 10.1093/e } \\ & \text { urheartj/e } \\ & \text { hz100 } \end{aligned}$	2019	Vascular risk factors (BMI, smoking)	$\begin{aligned} & 792 \\ & 8 \end{aligned}$	UKB adults	age, sex, ethnicity, head size (for volumetric data), and head positioning confounds	Cortical volume	20 mm	FDR (Benjamini Hochberg)	Several large cortical regions (lateral and medial temporal lobes)
Chye et al.,	$\begin{aligned} & \text { 10.1111/a } \\ & \text { db. } 12830 \end{aligned}$	2019	Substance dependence (incl. nicotine)	$\begin{aligned} & 390 \\ & 5 \end{aligned}$	Multiple substance dependence (ENIGMA)	Site, sex, age, and ICV	Subcortical thickness and area	none	FDR (Landers et al.,)	Several subcortical volumes associated
Boulos et al.,	$10.1371 / \mathrm{j}$ ournal. pone. 015 2983	2016	Substance abuse (10 substances, incl. tobacco)	43	Right handed females (14-19 years)	Age, IQ	Cortical thickness	10 mm	$\mathrm{p}<0.005$, monte carlo simulations: cluster $>250 \mathrm{~mm} 2$	pregenual rostral anterior cingulate cortex extending to the medial orbitofrontal cortex
Chumach enko	$\begin{aligned} & 10.3109 / 0 \\ & 0952990 . \\ & 2015.105 \\ & 8389 \end{aligned}$	2015	Substance use (and conduct problems)	44	Males 14-18	Age, IQ, total cortical thickness	Cortical thickness	NA	FWER - cluster leve; - Monte Carlo simulation (10,000 iterations) with a cluster-forming threshold vertexlevel p-value of 0.005 (55)	Left posterior cingulate/precuneus

Stable 7: Review of mass-univariate analyses of BMI (or related traits)

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothin $\mathrm{g} / \mathrm{mesh}$	Multiple testing	Significant regions
Medic et al.,	$\begin{aligned} & \hline 10.1038 / \mathrm{ijo.} 20 \\ & 16.42 \end{aligned}$	2016	BMI	202	Healthy adults	Age, sex, scanner, hemisphere, global thickness, area, (smoking status)	Cortical thickness, area	15 mm	Cluster level using Monte Carlo simulations	2 clusters in cortical thickness
Sharkey et al.,	$\begin{aligned} & \hline \text { 10.3389/fnins. } \\ & \text { 2015.00024 } \end{aligned}$	2015	BMI	378 (716 scans)	Healthy children (<18), longitudinal MRIs	Age, sex, scanner	Cortical thickness (CIVET)	20 mm	FDR correction (Non-specified, surfstat?)	No significant association
Bernardes et al.,	$\begin{aligned} & \hline 10.1007 / \mathrm{s} 110 \\ & 11-018-0223-5 \end{aligned}$	2018	BMI / obesity	31 lean normoglycemic controls 44 obese	28 Obese with T2Diabetes Age 40-70	Age, sex, hypertention and ICV	Cortical thickness, area, volume	10 mm	Monte-carlo simulations, Pthreshold <0.01	1 cortical thickness cluster
Veit et al.,	$\begin{aligned} & \text { 10.1016/j.nicl. } \\ & \text { 2014.09.013 } \end{aligned}$	2014	BMI	72	Healthy subjects age 1950	Age, sex, total surface area, education	Cortical thickness	10 mm	Monte carlo threshold estimation, after cutoff $\mathrm{P}<0.05$	3 thickness clusters
Varma et al.,	$\begin{aligned} & \hline 10.1002 / \text { hipo. } \\ & 22586 \end{aligned}$	2016	Physical activity	90	Adults > 60 years	intracranial volume (ICV), age, years of education, body mass index (BMI), cardiovascular disease burden (CVD), and global cognitive function	Subcortical shape	NA	FWER and FDR	Some significant regions (hippocampus)
Cox et al.,	10.1093/eurh eartj/ehz100	2019	Vascular risk factors (BMI, smoking)	7928	UKB adults	age, sex, ethnicity, head size (for volumetric data), and head positioning confounds	Cortical volume	20 mm	FDR (Benjamini Hochberg)	Several large cortical regions (lateral and medial temporal lobes)
Leritz et al.,	$\begin{aligned} & \text { 10.1016/j.neu } \\ & \text { roimage.2010. } \\ & \text { 10.050. } \end{aligned}$	2011	Cerebrovas cular health (PCs derived from BMI)	115	Healthy controls, age 43-83	age	Cortical thickness	20 mm	Clustering, after P<0.05	Comparison with other results impossible

Stable 7: Review of mass-univariate analyses of IQ/cognition

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothing / mesh	Multiple testing	Significant regions
Harrison et al.,	$\begin{aligned} & \hline \text { 10.1016/j.neu } \\ & \text { robiolaging. } 20 \\ & 18.03 .024 \end{aligned}$	2018	Successful ageing (cognition)	129	Older adults (70+)	sex	Cortical thickness	NS	No correction	Impossible to conclude
Abe et al.,	$\begin{aligned} & \text { 10.1111/acps. } \\ & 12922 \end{aligned}$	2018	Executive functionning	160	HC, Type I and II bipolar	Sex (no age) + lot more in sensitivity analyses	Cortical thickness	10 mm	Monte carlo, cluster wise. Threshold p<0.05	Several regions, some found across disease groups
NavasSanchez	$\begin{aligned} & \hline 10.1002 / \mathrm{hbm} . \\ & 23143 \end{aligned}$	2016	Math gifted	62	Spanish adolescents - IQ matched	age, gender, and IQ	Cortical thickness, area, volume	15 mm	Cluster wise probability method (FDR) Hagler et al., 2006	Surface and thickness associated regions
Burgaleta	$\begin{aligned} & 10.1002 / \mathrm{hbm} . \\ & 22305 \end{aligned}$	2014	Fluid IQ (and other IQ dimensions)	104	Psychology undergraduates (age ~19)	Age, sex (brain size in processing)	Subcortical shape/deformation	NA	FDR	right hemisphere only, for the accumbens, caudate, and putamen.
Burgaleta	10.1016/j.neu roimage. 2013. 09.038.	2014	IQ change	188	Healthy adolescents 6-20	Sex, scanner, time to repeat IQ	Cortical thickness, area	20 mm (thick) 40 mm (area)	Sufstat 5,000 permutations (Nichols and Holmes, 2002)	3 SA regions
Walhovd	10.1016/j.neu roimage. 2006. 01.011	2006	Memory recall ($5 \mathrm{mins}, 30$ mins, 83 days)	71	Healthy adults 40+	gender, age, $I Q$, and intracranial volume, (hippo volume)	Cortical thickness	12.6 mm	Uncorrected	Un-interpretable
Voineskos	$\begin{aligned} & \text { 10.1002/hbm. } \\ & 22825 \end{aligned}$	2015	Cognition (verbal episodic memory, visuospatial episodic memory, and working memory)	137	Healthy adults 18-86	Age, sex, education, APOE e4 status	Hippocampus shape (normalised fro TBV)	NA	10\% FDR (and 5\%) (Genovese et al.,)	No significant associations at FDR <5\%
Winjen	$\begin{aligned} & 10.1007 / \mathrm{s} 003 \\ & 30-019-06437- \\ & 9 \end{aligned}$	2019	EDSS and cognition domains	34	relapsing-remitting multiple sclerosis	Age, ICV	T1, T2, T2*, PD in grey matter masks	10 mm	Monte carlo, p<0.05	T2 associations (no multiple correction for number of phenotypes studied)

Bobholz	$\begin{aligned} & \hline 10.1007 / \mathrm{s} 116 \\ & 82-018-0005-\mathrm{z} \end{aligned}$	2019	Cognition domains focus: psychomotor speed (digit symobol)	135	81 idiopathic epilepsies 54 healthy controls	age, gender, and IQ, (epilepsy)	$\mathrm{CV}, \mathrm{CT}, \mathrm{SA}$, and LGI (local gyrification index)	15mm	Use of Qdec's Monte Carlo simulation allowed for corrections of multiple comparisons, with the cluster forming threshold set to $\mathrm{p}<0.05$	LGI associations: left postcentral gyrus, left lateral occipital gyrus, and right caudal middle frontal gyrus
Brathen	$\begin{aligned} & 10.1002 / \mathrm{hbm} . \\ & 24287 \end{aligned}$	2018	Episodic memory plasticity (improvment)	126	HC, did a 10 weeks memory course 2 separate age groups	Age, sex, ICV	Cortical volume (FreeSurfer), fALFF	15mm	The significance of this relationship was assessed within the FreeSurferframewor k (mri_glmfit), using cluster-based inference to account for multiple comparisons. To verify the reliability of the findings, several cluster-forming thresholds were tested, ranging from p<. 05 to $\mathrm{p}<.001$ (all tests were two-sided).	No significant relationships were observed between memory improvement and surface-level/vertex-wise cortical volume or cortical fALFF. Similarly, no relationships were found at the MNI voxellevel when investigating noncortical fALFF.

[^0]: : significant in the replication sample after multiple testing correction ($p<0.05 / 85=5.8 e-4$)

