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Genome-resolved	metagenomics	with	anvi’o	
	
#	A	set	of	single	copy	core	genes	to	identify	eukaryotic	MAGs		
	
As	 initially	 outlined	 in	 a	 blog	 post	 published	 at	 the	 beginning	 of	 this	 project	 to	
benefit	 others1,	we	 have	 defined	 a	 set	 of	 83	 single	 copy	 core	 genes	 from	BUSCO2	
compatible	 with	 the	 gene	 calling	 workflow	 of	 anvi’o3	 to	 best	 estimate	 the	
completion	 of	 eukaryotic	 metagenome-assembled	 genomes	 (MAGs).	 Figure	 1	
describes	 the	 efficacy	 of	 this	 collection	 to	 estimate	 completion	 of	 MAGs	 from	
Micromonas	 and	Ostreococcus.	Note	 that	 those	estimates	are	only	 initial,	 since	 this	
stage	 of	 the	 workflow	 uses	 a	 gene	 calling	 (Prodigal4)	 that	 is	 not	 optimal	 for	
eukaryotes.	 However,	 the	 results	 are	 sufficiently	 robust	 to	 effectively	 guide	 the	
manual	binning	and	curation	of	eukaryotic	MAGs	without	the	need	to	first	 identify	
eukaryotic	 contigs	 in	 the	 assembly	 output.	 While	 the	 identification	 of	 eukaryotic	
contigs	 prior	 to	 binning	 as	 been	 benchmarked	 by	 the	 group	 of	 Jill	 banfield5,	 false	
positives	 and	 false	 negatives	 associated	with	 this	 critical	 step	 can	 be	 problematic	
and	 are	 entirely	 avoided	 in	 our	 workflow.	 We	 found	 that	 binning	 metagenomes	
containing	multiple	domains	of	 life	can	be	done	smoothly	within	anvi’o,	as	 long	as	
proper	 single	 copy	 core	 gene	 collections	 are	 used	 to	 efficiently	 affiliate	 MAGs	 to	
Bacteria,	Archaea	and	Eukarya.	Note	that	this	dedicated	collection	for	eukaryotes	is	
the	 main	 improvement	 within	 anvi’o	 compared	 to	 the	 workflow	 outlined	 for	 the	
characterization	of	~1,000	bacterial	and	archaeal	MAGs	from	small	size	fractions	of	
TARA	Oceans6.	It	is	now	an	integral	component	of	the	anvi’o	metagenomic	flow	used	
by	a	growing	number	of	scientists	interested	in	genome-resolved	metagenomics.		
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Figure	1:	Completion	estimates	for	Micromonas	and	Ostreococcus	MAGs	using	a	set	of	83	
BUSCO	single	copy	core	genes,	as	a	function	of	the	length	of	the	MAGs.		
	
#	A	summary	of	the	workflow	to	bin	and	curate	eukaryotic	MAGs	
	

	
Figure	2:	The	manual	genome-resolved	metagenomic	framework	of	anvi’o	dedicated	to	the	
eukaryotes.	This	workflow	is	to	be	applied	to	each	assembly	outcome.		
	
We	followed	the	workflow	outlined	in	the	figure	2	for	each	of	the	11	metagenomic	
co-assemblies	 outlined	 in	 the	 study	 (see	Table	 S2).	 Briefly,	we	 used	 the	 sequence	
composition	 of	 contigs	 and	 their	 differential	 coverage	 across	 metagenomes	 to	
perform	a	first	automatic	binning	step	with	CONCOCT7	by	constraining	the	number	
of	created	clusters	to	a	number	substantially	below	the	number	of	genomes	in	the	
assembly.	This	number	ranged	from	50	to	400	depending	on	the	assembly	volume.	
Note	that	CONCOCT	is	used	because	the	interactive	interface	of	anvi’o	cannot	work	
efficiently	when	 loading	>25k	contigs.	For	each	of	 the	CONCOCT	clusters,	we	 then	
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used	 the	 anvi’o	 interactive	 interface	 to	 manually	 identify	 and	 curate	 eukaryotic	
MAGs.	This	step	took	about	10	months	of	manual	work.	
	
#	An	holistic	interactive	interface	now	compatible	with	eukaryotes	
	
Within	the	framework	of	our	study,	the	anvi’o	interactive	interface	took	advantage	
of	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	 across	
metagenomes,	 taxonomic	 signal	 using	 a	 reference	 database	 that	 includes	 METdb,	
and	HMM	models	for	single	copy	core	gene	collections	(Bacteria,	Archaea,	Eukarya).	
When	selecting	a	cluster	of	contigs	corresponding	to	a	MAG	in	the	interface,	anvi’o	
identified	 its	domain	affiliation	 in	real	 time	using	random	forest,	and	displayed	 its	
completion	and	redundancy	values	accordingly.	This	way,	it	was	possible	to	focus	on	
the	eukaryotic	MAGs	within	an	assembly	containing	also	many	abundant	bacterial	
and	archaeal	MAGs.		In	the	figure	3,	we	provide	the	example	of	one	CONCOCT	cluster	
from	 the	 Mediterranean	 Sea	 metagenomic	 co-assembly	 (95	 metagenomes)	
containing	 eukaryotic	MAGs	 for	Ostreococcus	 and	Micromonas	 (left	 panel).	 In	 this	
simple	example,	we	selected	those	two	clusters	in	the	interface,	saved	the	collection,	
and	subsequently	manually	curated	them	as	presented	here	for	Ostreococcus	(right	
panel).	 This	 MAG	 exhibited	 a	 completion	 of	 100%	 and	 a	 redundancy	 of	 3%.	 One	
metagenome	(most	outer	blue	layer)	was	particularly	useful	 in	this	particular	case	
since	the	Micromonas	MAG	was	more	detected	compared	to	the	Ostreococcus	MAG,	
allowing	 an	 effective	 binning	 outcome.	 Given	 the	 complexity	 of	 marine	
metagenomes,	 differential	 coverage	 across	 dozens	 of	 metagenomes	 strongly	
benefited	to	the	outcome	of	our	genome-resolved	metagenomic	survey.	
	

	
Figure	3:	The	anvi’o	interactive	interface	to	manually	bin	and	curate	eukaryotic	MAGs.	The	left	
panel	 displays	 the	 detection	 of	 contigs	 from	 a	 single	 CONCOCT	 cluster	 across	 95	
metagenomes,	alongside	 taxonomic	signal.	Clustering	was	done	using	sequence	composition	
and	differential	coverage.	Right	panel	displays	the	curated	Ostreococcus	MAGs	identified	from	
the	left	panel.		
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Decontamination	of	single	cell	genomes	with	anvi’o	
	
Eukaryotic	 single	 cell	 genomes	 (SAGs)	 can	 be	 heavily	 contaminated	 due	 to	 a	
combination	 of	 factors	 during	 cell	 sorting,	 DNA	 extraction	 and	 amplification,	 and	
multiplex	sequencing.	Here,	we	slightly	modified	the	anvi’o	metagenomic	workflow	
to	effectively	decontaminate	marine	eukaryotic	SAGs,	one	by	one.	Briefly,	we	used	
the	 anvi’o	 interactive	 interface	 to	manually	 curate	 eukaryotic	 SAGs	 by	 taking	 into	
consideration	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	
across	 100	 most	 relevant	 metagenomes	 (i.e.,	 those	 with	 highest	 mapping	
recruitment	 scores	 within	 the	 scope	 of	 TARA	 Oceans),	 taxonomic	 signal	 using	 a	
reference	database	that	includes	METdb,	and	HMM	models	for	single	copy	core	gene	
collections	 (Bacteria,	 Archaea,	 Eukarya).	 Note	 that	 compared	 to	 the	metagenomic	
co-assemblies,	the	number	of	contigs	under	consideration	was	orders	of	magnitude	
smaller.	Since	all	contigs	could	be	 loaded	in	the	 interactive	 interface,	 there	was	no	
need	to	use	the	pre-clustering	step	with	CONCOCT.	However,	CONCOCT	could	also	
be	used	here	if	some	SAG	assemblies	include	more	than	~25k	contigs.		
	

	
Figure	5:	The	manual	metagenomic	framework	of	anvi’o	dedicated	to	the	decontamination	of	
SAGs.	This	workflow	is	to	be	applied	to	each	SAG	assembly	outcome.		
	
Figure	 6	 provides	 a	 striking	 example	 of	 heavily	 contaminated	 SAG	 we	 could	
effectively	 curate	 thanks	 to	 the	 clear	differential	 coverage	 signal	 of	 contigs	 across	
100	metagenomes.	 In	 this	particular	 case,	 contamination	 seemed	 to	have	multiple	
origins,	and	a	large	number	of	contigs	were	removed.	Overall,	our	manual	curation	
of	 SAGs	using	 a	 genome-resolved	metagenomics	workflow	 initially	 built	 for	MAGs	
turned	out	to	be	highly	valuable,	 leading	in	our	study	to	the	removal	of	more	than	
one	hundred	thousand	scaffolds	for	a	total	volume	of	193.1	million	nucleotides.	This	
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metagenomic-guided	 decontamination	 effort	 contributes	 to	 previous	 efforts	
characterizing	eukaryotic	SAGs	from	the	same	cell	sorting	material8–12	and	provides	
new	 guidelines	 for	 marine	 eukaryotic	 SAGs.	 This	 approach	 is	 now	 highly	
recommended	for	 future	efforts	generating	eukaryotic	SAGs	 from	the	sunlit	ocean.	
This	 is	 important,	especially	since	SAGs	could	become	a	valuable	asset	 in	 the	near	
future	to	target	lineages	genome-resolved	metagenomics	failed	to	recover	so	far.	It	
is	especially	the	case	of	Dinoflagellates.		
	

	
Figure	6:	Example	of	the	decontamination	of	TOSAG00-8.	Left	panel	describes	all	contigs	
reconstructed	from	this	SAG.	The	selection	of	contigs	(outer	layer)	corresponds	to	our	final	
curated	SAG,	displayed	in	the	right	panel.		
	

The	METdb	database	for	eukaryotic	transcriptomes	
	
METdb	is	a	curated	database	of	transcriptomes	from	marine	eukaryotic	isolates	that	
cover	 the	MMETSP	 collection13	 (new	 assemblies	were	 performed,	 combining	 time	
points	 from	 the	same	culture	 in	 co-assemblies	when	available)	as	well	 as	 cultures	
from	TARA	Oceans.	The	 associated	manuscript	 is	 not	 yet	 published.	However,	 the	
database	 is	 publically	 available	 and	 can	 be	 accessed	 at	 http://metdb.sb-
roscoff.fr/metdb/.	
	
Categorizing	the	939	TARA	Oceans	metagenomes		
	
Our	 study	 surveyed	a	 total	of	939	TARA	Oceans	metagenomes	 (Table	S1)	 that	we	
organized	into	four	cellular	size	categories	(size	1:	0.2-5µm,	size	2:	3-20µm,	size	3:	
20-200µm,	 size	 4:	 180-2000µm)	 as	 well	 as	 a	 wider	 cellular	 size	 fraction	
encompassing	all	categories	considered	in	our	study	(wider	size:	0.8-2000µm).	The	
four	cellular	size	categories	were	well	 represented	across	 the	 five	oceans	and	 two	
seas.	Overall,	119	stations	contained	at	 least	3	out	of	the	4	cellular	size	categories,	
which	we	defined	as	Station	 subset	1	(757	metagenomes).	Using	this	first	subset,	
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SMAGs	were	assigned	a	“cosmopolitan	 score”	corresponding	to	the	percentage	of	
stations	 in	which	 they	were	 detected.	 SMAGs	were	 also	 assigned	 a	 “cellular	 size	
range”	and	 “oceanic	 signal”	using	average	coverage	in	each	size	categories	(n=4)	
for	 the	 former	 and	 in	 each	 ocean	 and	 sea	 (n=7)	 for	 the	 later.	 Those	 results	 are	
summarized	 in	 the	 tables	 S3	 an	 S4.	Unfortunately,	 the	wider	 cellular	 size	 fraction	
was	missing	in	the	Mediterranean	Sea,	Red	Sea	and	Indian	Ocean,	limiting	its	use	to	
91	stations	from	the	four	remaining	oceans,	which	we	defined	as	Station	subset	2	
(130	metagenomes).	Critically,	this	second	subset	offers	a	glimpse	into	the	relative	
proportion	of	planktonic	lineages	of	different	cellular	sizes.	While	more	limited	in	its	
geographic	 scope,	 the	Station	 subset	 2	 could	provide	 important	 insights	 into	 the	
“relative	 proportion”	 of	 SMAGs	 in	 stations	 from	 the	 Atlantic,	 Pacific,	 Arctic	 and	
Southern	Ocean.		
	
Manual	curation	of	the	DNA-dependent	RNA	
polymerase	genes	for	SMAGs	and	METdb	
	
An	 eukaryotic	 dataset	 (Da	 Cunha)14	 was	 used	 to	 build	 HMM	 profiles	 for	 the	 two	
largest	 subunits	 of	 the	 DNA-dependent	 RNA	 polymerase	 (RNAP-a	 and	 RNAP-b).	
These	two	HMM	profiles	were	incorporated	within	the	anvi’o	framework	to	identify	
RNAP-a	 and	 RNAP-b	 genes	 (Prodigal4	 annotation)	 in	 the	 SMAGs	 and	 METdb	
transcriptomes.	
	
We	 independently	 performed	 the	 following	 workflow	 for	 RNAP-a	 sequences	
identified	in	the	SMAGs	(round	A,	n=	1,626)	and	METdb	(round	B,	n=	2,823)	as	well	
as	 for	RNAP-b	sequences	 identified	 in	 the	SMAGs	 (round	C,	n=	1,373)	and	METdb	
(round	D,	n=	3,941):	
	

(1) Stetting	 the	 stage	 with	 references:	 Reference	 sequences	 for	 the	 relevant	
largest	 subunits	 of	 the	 DNA-dependent	 RNA	 polymerase	 (e.g.,	 RNAP-a	 for	
round	 A)	 corresponding	 to	 eukaryotic	 (types	 I,	 II	 and	 III),	 bacterial	 and	
archaeal	 lineages	 from	 the	Da	 Cunha	 dataset	were	 added	 to	 the	 sequences	
identified	by	the	HMM.		

(2) Phylogenetic	tree	Phase	1:	Sequences	were	aligned	using	the	iterative	FFT-
NS-i	refinement	method	of	MAFFT15	v7.464	with	default	parameters,	and	the	
sites	with	more	than	50%	of	gaps	were	trimmed	using	Goalign	v0.3.0-alpha5.	
Phylogenetic	trees	were	reconstructed	with	IQ-TREE16	v1.6.12.	The	model	of	
evolution	was	 estimated	with	 the	ModelFinder	 Plus	 option17,	 and	 supports	
were	computed	from	1,000	replicates	for	the	Shimodaira-Hasegawa	(SH)-like	
approximation	 likelihood	 ratio	 (aLRT)18	 and	 ultrafast	 bootstrap	
approximation	 (UFBoot)19.	 Anvi’o	 v6.1	 was	 used	 to	 visualize	 and	 root	 the	
phylogenetic	trees.	

(3) Identifying	sequences	of	 type	 I,	 II	 and	 III:	We	used	the	anvi’o	interactive	
interface	 to	 root	 the	 tree	 between	 Bacteria	 and	 the	 rest,	 and	 identify	
sequences	corresponding	to	eukaryotic	DNA-dependent	RNA	polymerase	of	
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type	 I,	 II	 and	 III.	 Sequences	 not	 clearly	 belonging	 to	 one	 of	 these	 three	
clusters	 were	 discarded.	 Note	 that	 during	 this	 process	 other	 types	 of	
eukaryotic	 RNA	 polymerase	 (e.g.,	 nucleomorphs)	 were	 identified	 and	 put	
aside	for	investigations	beyond	the	scope	of	this	study.		

(4) Fusing	 fragmented	 sequences	 when	 needed:	 For	 each	 SMAG	 or	METdb	
transcriptome,	 sequences	 corresponding	 to	 the	 same	RNA	polymerase	 type	
(e.g.,	RNAP-a_type_I	for	round	A)	were	aligned	against	each	other	and	against	
a	 relevant	 eukaryotic	 reference	 sequence	 using	 blastp20.	 Non-overlapping	
sequences	corresponding	to	the	same	subunit	(based	on	Phylogenetic	 tree	
Phase	1)	were	considered	fragments	of	the	same	gene	and	fused	manually,	
overcoming	fragmentation	issues	during	gene	calling	and/or	transcription.	In	
addition,	 only	 the	 longest	 sequence	was	 kept	 for	 overlapping	 isoforms	 and	
closely	related	duplicates	(>95%	identity	and	>30%	coverage).		

(5) Phylogenetic	 tree	 Phase	 2:	 A	 phylogenetic	 tree	 was	 performed	 for	 each	
subunit	(DNA-dependent	RNA	polymerase	of	type	I,	II	and	III)	as	done	for	the	
Phylogenetic	 tree	 Phase	 1	 (for	 improved	 resolution,	 archaeal	 references	
were	 used	 as	 outgroup	 and	 bacterial	 sequences	 removed	 in	 this	 analysis).	
Distantly	related	duplicates	(those	occurred	 in	<5%	of	SMAGs	and	<10%	of	
METdb	 transcriptomes,	 possibly	 due	 to	 contamination)	 were	 carefully	
considered	in	the	context	of	the	three	phylogenetic	trees	as	well	as	taxonomy	
to	 identify	 and	 remove	 sequences	 with	 incoherent	 phylogenetic	 and/or	
taxonomic	signal.		

(6) Final	 collection:	 We	 removed	 sequences	 shorter	 than	 200	 amino-acids,	
providing	a	final	collection	of	DNA-dependent	RNA	polymerase	genes	for	the	
SMAGs	(n=2,150)	and	METdb	(n=2,032)	with	no	duplicates.		
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World	map	projections	
	
#	World	Ocean	Atlas	data	
	
Seven	physicochemical	parameters	were	used	 to	define	environmental	niches:	 sea	
surface	 temperature	 (SST),	 salinity	 (Sal),	 dissolved	 silica	 (Si),	 nitrate	 (NO3),	
phosphate	 (PO4),	 iron	 (Fe),	 and	 a	 seasonality	 index	 of	 nitrate	 (SI	 NO3).	 With	 the	
exception	 of	 Fe	 and	 SI	 NO3,	 these	 parameters	 were	 extracted	 from	 the	 gridded	
World	Ocean	Atlas	2013	(WOA13)21.	Climatological	Fe	fields	were	provided	by	the	
biogeochemical	model	PISCES-v222.	The	seasonality	index	of	nitrate	was	defined	as	
the	 range	of	nitrate	 concentration	 in	one	grid	 cell	 divided	by	 the	maximum	range	
encountered	 in	 WOA13	 at	 the	 Tara	 sampling	 stations.	 All	 parameters	 were	 co-
located	with	the	corresponding	stations	and	extracted	at	the	month	corresponding	



Genome-resolved	metagenomics	disentangles	the	evolution	and	functioning	of	eukaryotic	plankton	

	

to	 the	 Tara	 sampling.	 To	 compensate	 for	missing	 physicochemical	 samples	 in	 the	
Tara	 in	 situ	 data	 set,	 climatological	 data	 (WOA)	 were	 favored.	 The	 correlation	
between	in	situ	samples	and	corresponding	values	extracted	from	WOA	were	high:	
	
	#	R-squared	values	for	the	surface	samples:		
SST:	0.99,	Sal:	0.86,	Si:	0.89,	NO3:	0.85,	PO4:	0.90		
	
#	R-squared	values	for	the	DCM	samples:		
SST:	0.97,	Sal:	0.47,	Si:	0.97,	NO3:	0.74,	PO4:	0.85		
	
In	the	absence	of	corresponding	WOA	data,	a	search	was	done	within	2°	around	the	
sampling	location	and	values	found	within	this	square	were	averaged.	
	
Nutrients,	such	as	NO3	and	PO4,	displayed	a	strong	collinearity	when	averaged	over	
the	 global	 ocean	 (correlation	 of	 0.95	 in	 WOA13),	 which	 could	 complicate	
disentangling	 their	 respective	 contribution	 to	 niche	 definition.	 However,	
observations	and	experimental	data	allow	distinguishing	between	limiting	nutrients	
at	 regional	 scale	 characterized	 by	 specific	 plankton	 communities23.	 The	 future	
projection	of	niches	will	yield	spurious	results	when	the	present-day	collinearity	is	
not	maintained24,25.	To	this	day,	there	is	no	evidence	for	large	scale	changes	in	global	
nutrient	stoichiometry26.	
	
#	Earth	System	Models	and	bias	correction	
	
Outputs	 from	six	Earth	system	models	were	used	 to	project	environmental	niches	
under	greenhouse	gas	emission	scenario	RCP8.527:	

	
	
Environmental	 drivers	 were	 extracted	 for	 present	 day	 (2006-2015)	 and	 end	 of	
century	 (2090-2099)	 conditions	 for	 each	 model	 and	 the	 multi-model	 mean	 was	
computed.	 A	 bias	 correction	 method,	 the	 Cumulative	 Distribution	 Function	
transform,	CDFt28,	was	applied	to	adjust	the	distributions	of	SST,	Sal,	Si,	NO3	and	PO4	
of	the	multi-model	mean	to	the	WOA	database.	CDFt	is	based	on	a	quantile	mapping	
(QM)	 approach	 to	 reduce	 the	 bias	 between	 modeled	 and	 observed	 data,	 while	
accounting	 for	 climate	 change.	 Therefore,	 CDFt	 does	 not	 rely	 on	 the	 stationary	
hypothesis	and	present	and	future	distributions	can	be	different.	CDFt	was	applied	
on	the	global	fields	of	the	mean	model	simulations.	By	construction,	CDFt	preserved	
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the	 ranks	 of	 the	 simulations	 to	 be	 corrected.	 Thus,	 the	 spatial	 structures	 of	 the	
model	fields	were	preserved.	
	
#	Environmental	niches	models:	training,	validation	and	projections	
	
From	 the	 initial	 dataset	 of	 713	 SMAGs,	 we	 selected	 those	 present	 in	 at	 least	 4	
stations	for	environmental	niche	training,	discarding	just	58	of	them.	Four	machine	
learning	methods	 were	 applied	 to	 compute	 environmental	 niches	 for	 each	 of	 the	
655	remaining	SMAGs:		
	

(1) Gradient	Boosting	Machine	(gbm)29	
(2) Random	Forest	(rf)30	
(3) Fully	connected	Neural	Networks	(nn)31	
(4) Generalized	Additive	Models	(gam)32	

	
Hyper	parameters	of	each	technique	(except	gam)	were	optimized	as	followed:	
	

(1) For	gbm,	 the	 interaction	depth	(1,	3	and	5),	 learning	rate	 (0.01,	0.001)	and	
the	minimum	number	of	observations	in	a	tree	node	(1	to	10)	

(2) 	For	rf,	the	number	of	trees	(100	to	900	with	step	200	and	1000	to	9000	with	
step	2000)	and	the	number	of	parameters	used	for	each	tree	(1	to	8)	

(3) For	nn,	the	number	of	layers	of	the	network	(1	to	10)	and	the	decay	(1.10-4	
to	9.10-4	and	1.10-5	to	9.10-5)	

(4) For	gam	the	number	of	splines	was	set	to	3.		
	

R	 packages	 gbm	 (2.1.3),	 randomForest	 (4.6.14),	 mgcv	 (1.8.16)	 and	 nnet	 (7.3.12)	
were	used	for	gbm,	rf,	nn	and	gam	models.		
	
To	define	the	best	combination	of	hyper	parameters	for	each	model,	we	perform	30	
random	 cross-validations	 by	 training	 the	model	 on	 75%	 of	 the	 dataset	 randomly	
sampled	 and	 by	 calculating	 the	 Area	 Under	 the	 Curve51	 (AUC)	 on	 the	 25%	
remaining	points	 of	 the	dataset.	 The	best	 combination	of	 hyper	parameters	 is	 the	
one	for	which	the	mean	AUC	over	the	30	cross-validation	is	the	highest.	A	model	is	
considered	valid	 if	at	 least	3	out	of	 the	4	techniques	have	a	mean	AUC	superior	to	
0.65,	 which	 is	 the	 case	 for	 374	 out	 of	 the	 655	 SMAGs	 (57%).	 Final	 models	 are	
trained	 on	 the	 full	 dataset	 and	 only	 the	 techniques	 that	 have	 a	mean	AUC	 higher	
than	 0.65	 are	 considered	 to	make	 the	 projections.	 The	majority	 (286)	 of	 the	 374	
validated	niches	 is	validated	by	all	 four	models	and	88	by	only	3	models.	Relative	
influences	of	each	parameter	in	defining	environmental	niches	are	calculated	using	
the	feature_importance	function	from	the	DALEX	R	package33	for	all	four	statistical	
methods.	For	model	training	and	projections,	physicochemical	variables	are	scaled	
to	 have	 a	mean	 of	 0	 and	 a	 variance	 of	 1.	 For	 this	 scaling,	 the	mean	 and	 standard	
deviation	of	each	WOA13	variable	(+	PISCES-v2	Fe)	co-localized	with	Tara	stations	
with	 a	 value	 available	 is	 used.	 This	 standardization	 procedure	 allows	 for	 better	
performance	 of	 models.	 Finally,	 as	 statistical	 models	 often	 disagree	 we	 use	 the	
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ensemble	 model	 approach	 for	 global-scale	 projections	 of	 niches34	 i.e.	 the	 mean	
projections	of	the	validated	machine	learning	techniques.	
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