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Summary 

Regulation of transcript structure generates transcript diversity and plays an important role in 

human disease. The advent of long-read sequencing technologies offers the opportunity to 

study the role of genetic variation in transcript structure. In this paper, we present a large human 

long-read RNA-seq dataset using the Oxford Nanopore Technologies platform from 88 samples 35 

from GTEx tissues and cell lines, complementing the GTEx resource. We identified just under 

100,000 new transcripts for annotated genes, and validated the protein expression of a similar 

proportion of novel and annotated transcripts. We developed a new computational package, 

LORALS, to analyze genetic effects of rare and common variants on the transcriptome via 

allele-specific analysis of long reads. We called allele-specific expression and transcript 40 

structure events, providing novel insights into the specific transcript alterations caused by 

common and rare genetic variants and highlighting the resolution gained from long-read data. 

We were able to perturb transcript structure upon knockdown of PTBP1, an RNA binding protein 

that mediates splicing, thereby finding genetic regulatory effects that are modified by the cellular 

environment. Finally, we use this dataset to enhance variant interpretation and study rare 45 

variants leading to aberrant splicing patterns.  

Main 

Variation in transcript structure via RNA splicing and differences in the 5’ and 3’ untranslated 

regions (UTRs) is a key feature of gene regulation1. Disruption of transcript structure has a 

major role in human disease, with genetic variants associated with changes in splicing enriched 50 

in genome-wide associations for common diseases2–4 and implicated in many severe Mendelian 

diseases5–7. Common genetic variants affecting transcript structure can be mapped by transcript 

ratio and splicing quantitative trait locus (trQTL and sQTL) analyses that have further shown that 

genetic variants affecting gene expression levels and splicing tend to be distinct8–10. An 

orthogonal method to analyze genetic regulatory effects, allele-specific expression (ASE) 55 

analysis, has proven to be a highly sensitive method for studying rare genetic variants in cis11–13. 

However, the application of these approaches to short-read data relies on proxies for the full 

transcript structure and quantification, which are often inaccurate14–18. Furthermore, most 

metrics only attempt to quantify alternative splicing, leaving the role of UTRs obscure despite its 

demonstrated critical role in disease19–21. Long-read RNA sequencing technologies22,23 have 60 

now reached a mature stage, having already been used to study transcript structures24,25 and 

novel transcripts26–28, as well as early allele-specific analyses29,30. Allele-specific transcript 
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structure (ASTS) analysis, enabled by long-read transcriptome data, could therefore provide 

important new information on how rare and common variants affect transcript structure and 

disease risk. 65 

Overview of dataset 

Altogether, cDNA from 88 samples from 56 donors and 4 K562 cell line samples were 

sequenced on the MinION and GridION ONT platforms. Fibroblast cell lines were used to test 

the platform and to assess the direct-cDNA versus PCR-cDNA RNA-seq protocols (Suppl. 

Figure 1A-C). Since the primary purpose of this study was to study allelic events, which require 70 

high coverage, we prioritized depth and sequenced the remaining samples using the PCR-

cDNA protocol. To evaluate the RNA isolation protocol, we used the K562 cell lines. The 88 

GTEx samples included: 1) Assessment of replicability by three samples sequenced in duplicate 

and five samples in triplicate. Replicability was high (Spearman rho 0.87-0.95; Suppl. Figure 

1D), leading us to merge the samples to increase depth; 2) The main dataset for analysis of 75 

transcriptome variation across tissues, consisting of 1-5 donors from 14 tissues; 3) Analysis of 

the effects of transcript perturbation by comparison of five GTEx fibroblast cell lines with and 

without PTBP1 RNA binding protein knockdown. Data were produced across two research 

centers (Methods; Suppl. Table 1). All the GTEx samples had Illumina TruSeq short-read 

RNA-seq data and 83 samples (51 donors) had whole genome sequencing data made available 80 

by the GTEx Consortium4. 

Principal component analysis (PCA) and hierarchical clustering of samples based on transcript 

expression correlation showed tissue clustering (Figure 1A,B and Suppl. Figure 1E), similar to 

the GTEx consortium analysis of short-read RNA-seq data4. Gene and transcript quantifications 

from long-read data were highly concordant with those from Illumina RNA-seq (median R2=0.75 85 

for genes and R2=0.57 for transcripts; Figure 1C and Suppl. Figure 1F). Genes and transcripts 

with low correlation were enriched for lower expression in ONT data, higher complexity genes 

and transcripts with multiple exons (Suppl. Figure 2A-C). We manually checked the read 

coverage of some of the genes that displayed low correlation, such as PRELID1, which is better 

captured by ONT, and ARSB, which displays 3’ bias (Figure 1D). Overall, cell lines with fresh 90 

RNA extracted with Trizol in Center 1 had lower 3' bias than tissue samples and samples 

processed in Center 2 (Figure 1E). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2021. ; https://doi.org/10.1101/2021.01.22.427687doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427687
http://creativecommons.org/licenses/by-nd/4.0/


 5

 

Figure 1: Overview and quality control of the dataset. A) Principal component analysis of samples 

with replicates merged, without K562 cell lines and without PTBP1 knockdown samples, based on 95 

GENCODE transcript expression (>3 TPM in >=5 samples). B) Hierarchical clustering of samples based 

on correlation of transcript expression (as in A), using Euclidean distance. C) Example of gene and 

transcript expression correlation between Illumina and ONT in the muscle tissue of GTEX-1LVA9. D) Two 

examples of genes displaying low correlation between ONT and Illumina. PRELID1 was better captured 

by ONT than Illumina, while ARSB had 3’ bias when assayed by ONT. They are shown across three 100 

different tissues and all protein-coding transcripts are plotted below. FPM: Fragments per million. E) 

Median 3’ bias per sample, grouped by biospecimen type, RNA isolation method and sequencing center. 

Black diamonds indicate the median per group.  
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Discovery of novel transcripts 105 

We used FLAIR31 to quantify transcripts and identify novel ones, defined as transcripts with 

intron chains not matching with any transcript in GENCODE (v26) (Methods). We found 

127,478 transcripts across 27,461 genes (Suppl. Table 2), of which 77% were novel (Suppl. 

Figure 3A). In most cases we quantified one, often already annotated, transcript for a gene, 

while more novel transcripts were discovered in genes with a high number of annotated 110 

transcripts (Figure 2A). Of the novel transcripts, 65,571 shared at least one splice junction with 

annotated transcripts (Suppl. Figure 3B,C) and 27,327 had intron retention, a significant 

enrichment compared to annotated ones (OR=3.8; Figure 2B). This suggests the presence of 

pre-mRNA despite carrying out a poly-A enrichment step. On the other hand, there was a 

modest depletion of exon skipping events in novel transcripts, suggesting they are well-115 

represented in the existing annotations (OR=0.77; Figure 2B). We compared our findings with 

the 33,984 transcripts defined by Workman et al.28 based on GM12878 cell lines using ONT 

direct and cDNA RNA-sequencing, and detected 46% of the transcripts they identified, 4,584 of 

which were novel, providing further evidence to support the identified transcripts (Suppl. Figure 

3D). 120 

We validated our novel transcripts via proteome mass spectrometry data of 32 GTEx samples32. 

For most tissues we had assayed a similar number of samples using long-read RNA-seq and 

proteomics, with the exception of brain tissue, where additionally the sub-regions between the 

two assays did not match (Suppl. Table 3). We limited this analysis to 29,759 transcripts (61% 

of which were novel) expressed at ≥5 TPM in a sample per tissue and tested for matches in the 125 

predicted amino-acid chain. A comparable proportion of annotated and novel transcripts were 

validated in matched tissues (Figure 2C). In total, 2,397 unique transcripts were validated, of 

which 1,367 were novel, comparable to Jian et al32. Validated transcripts were enriched for exon 

skipping events, which was driven by novel transcripts, and both annotated and novel intron 

retention events showed lower validation rates (Suppl. Figure 4A,B). This depletion could be 130 

partially explained by nonsense-mediated decay or other post-transcriptional events depleting 

protein products rather than poor quality of the transcript annotations. For 201 genes we 

validated more than one transcript (445 total), with 294 transcripts being novel, often detecting 

tissue-specific protein transcript expression (Suppl. Table 4 and Suppl. Figure 4C). 

Novel transcripts resulted in clearer clustering of samples by tissue based on transcript 135 

expression correlations and PCA (Suppl. Figure 5A,B), suggesting that novel transcripts 
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capture tissue-specific expression patterns. We therefore examined the gene and transcript 

expression across nine tissues with at least five samples. Highly-expressed novel transcripts 

were tissue-specific, with 55.5% expressed in a single tissue at >1 TPM (Figure 2D). This may 

explain their absence in existing annotations and highlights the potential for characterizing 140 

tissue-specific gene expression and regulation with long-read transcript analysis. We found 

thousands of transcripts exclusively expressed in a single tissue or having different transcript 

ratios across all nine tissues (Suppl. Figure 6). Of the novel transcripts exclusive to a tissue, 

the highest ratios were specific to the cerebellar hemisphere and the liver (41% and 19% 

respectively), concordantly with previous observation of high transcript diversity33,34. 145 

 

Figure 2: Discovery of new transcripts and comparison between tissues. A) Number of annotated 

and novel transcripts per gene quantified in our dataset. B) Proportion of alternative transcript structure 

(AltTS) events across all quantified transcripts, normalized per AltTS event. P-values were calculated 

using Fisher’s exact test. C) Percentage of validated transcripts at the protein level using mass 150 

spectrometry per primary tissue. D) Number of transcripts expressed across different TPM thresholds and 

classified based on how many tissues express the transcript at that level in at least two samples. 

Allele-specific analysis 

Allele-specific analysis captures cis-regulatory genetic effects on expression and transcript 

structure8. The expression of a gene or a transcript is quantified for each haplotype of a sample, 155 
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separated based on the allele at a heterozygous site. Seventy-two of the long-read RNA-seq 

samples also had phased whole genome sequencing information from GTEx4, which allowed us 

to carry out allelic analysis. To address local alignment biases caused by sequencing errors 

adjacent to the variant sites of interest, we developed an alignment pipeline where two 

haplotype-specific references are created for each donor (Suppl. Figure 7). To perform allele-160 

specific expression (ASE) and allele-specific transcript structure (ASTS) analysis, we developed 

a new software package, LORALS (Long-Read Allelic analysis). In addition to adopting 

mappability and genotyping error filters previously developed for short-read data35, we 

introduced flags addressing the higher error rate of long-read data (Suppl. Figure 8). 

Furthermore, we performed power calculations using simulated data to test how read counts, 165 

number of transcripts, and effect size affect ASTS detection power (Suppl. Figure 9). 

Having established and optimized our pipeline, we performed the analysis using the FLAIR-

aligned transcripts. Per sample, an average of 9% of genes analyzed for ASE or ASTS had a 

statistically significant event. To maximize power for generalizable insights, we analyzed all ASE 

(3,418 significant out of 34,255 across 6,370 unique genes) and ASTS events (321 significant 170 

out of 3,527 across 1,098 unique genes) combined across samples (Suppl. Figure 10). For 

77% of genes analyzed for ASTS we quantified and tested the counts of 2 transcripts per gene, 

while the remaining ranged between 3 and 13. 

Comparing the long-read ASE events to the ones reported for short-read GTEx v8 data35, we 

observed moderate concordance when looking at the p-values in short-read data using the long-175 

read significant ASE events (π1 = 0.23) and vice-versa (π1 = 0.41) (Suppl. Figure 11A). Of the 

354 events that were significant in both datasets, 84% had the same direction of effect (Suppl. 

Figure 11B). Differences were explained by low read depth and some variants being filtered out 

in one of the datasets (Suppl. Figure 11C), for example, 433 variants with significant ASE in 

long-read data were filtered in short-read data due to the mapping bias flag. Next, we sought to 180 

establish that ASE and ASTS recapitulate genetic regulatory effects of expression and splicing 

QTLs (eQTL and sQTL) mapped by GTEx4. Individuals who are heterozygous for a QTL lead 

SNP are expected to show increased allelic imbalance compared with those who are 

homozygous, and such significant enrichments were observed in the data (Figure 3A). 

Classification of alternative transcript structure (AltTS) changes enables better understanding of 185 

the nature of the ASTS events, and thus genetic variants affecting transcript structure. When 

considering each AltTS event alone, the most common was exon skipping, followed by 
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alternative 3’ UTR events that were enriched for significant ASTS (Suppl. Figure 12). We then 

examined the combination of two types of AltTS events per gene (Figure 3B). We observed that 

certain event combinations occurred more commonly in significant compared to all ASTS 190 

events, for example the combination of alternative 3’ UTR with alternative 3’ splice sites 

(binomial test p-value = 1.6x10-6). On the other hand, there were combinations that were 

depleted from significant ASTS events, such as the combination of alternative 3’ UTR with 

retained introns (binomial test p-value = 7.6x10-5) or skipped exons (binomial test p-value = 

1.2x10-5). This analysis highlights the prominent role of alternative UTR regions within the 195 

significant ASTS genes, missed in most sQTL mapping approaches. 

In order to better understand the relationship between genetic effects on expression and 

transcript structure, we compared the ASE and ASTS events. We found that 203 of the 834 

significant ASE genes displayed significant nominal p-values in ASTS (π1 = 0.13). This 

proportion was larger when looking at significant ASTS, where we found that 152 of the 320 200 

genes displayed significant nominal p-values in ASE (π1 = 0.54; Figure 3C). This indicates that 

changes in transcript structure are often accompanied by changes in transcript levels, but less 

often the other way around. When repeating this analysis stratified by AltTS events we observed 

that an exception to this were ASTS events caused by alternative 3’ ends, where an equal 

proportion of events were ASE and ASTS.  205 

Based on these observations, we examined sQTL-significant genes in ASE, where, as expected 

there was not a great difference between heterozygous and homozygous individuals (Fisher’s 

exact test p-value=0.0374). However, when looking at eQTLs, we observed that more 

heterozygous had significant ASTS compared to homozygous (Fisher’s exact test p-

value=4.39x10-5; Figure 3D), indicating that genetically induced expression differences manifest 210 

in ASTS. In order to test the origin of this, we stratified the events by the AltTS events. We 

observed that the sQTLs were mostly manifesting in differences in exon skipping (32%; Figure 

3E), as expected, while eQTLs were manifesting not only in total expression differences but also 

in transcript structure changes of the 5’ end of a gene (35%; Figure 3E). Differences in the 5’ 

end of a gene are therefore driving the capture of eQTLs in ASTS data, which would be 215 

normally missed by sQTL mapping. 

This breakdown of events allows us to revisit existing sQTLs and find examples where ASTS 

data enables better understanding of the exact molecular events associated with the genetic 

variant, potentially contributing to diseases and traits (Methods). DUSP13, for example, is a 
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gene specifically expressed in muscle, and has three sQTL intron excision phenotypes 220 

colocalizing with a single locus associated with body fat percentage. Multiple transcripts arise 

from this gene, but in both donors displaying ASTS we observed that the transcript 

ENST00000372700 lacking four middle exons was more highly-expressed from the risk allele 

(Suppl. Figure 13A). As further validation, GTEx short-read transcript ratios recapitulated this 

pattern (Suppl. Figure 13B). We were therefore able to pinpoint to the exact event leading to 225 

differences in transcript expression from the two alleles and potentially predisposing to high 

body fat percentage. 

To test how ASTS captures changes in the effects of cis-regulatory variants due to perturbation 

of the cell’s splicing machinery, we knocked down PTBP1 RNA binding protein in five GTEx 

fibroblast cell lines. PTBP1 mediates exon skipping in pre-mRNAs and is involved in the 3′-end 230 

processing of mRNA. We therefore expected to see a disturbance of transcript expression as 

well as ASTS patterns for some genes upon siRNA knockdown. Indeed, we found 1,932 

differentially expressed genes, 99.5% of which were validated with short-read data, and 1,742 

differentially expressed transcripts. Exon skipping and alternative 3’ UTR events were enriched 

in transcripts upregulated in PTBP1 knockdown samples (Suppl. Figure 14). 235 

We then compared allelic events in the knockdown and control samples (Methods and Suppl. 

Figure 15A,B), and observed an enrichment of condition-specific events in ASTS compared to 

ASE (Fisher’s exact test p-value = 0.0024; Suppl. Figure 15C), consistent with the fact that 

PTBP1 affects splicing and not gene expression at the allelic level. Control samples were 

enriched for ASTS with 3’ differences and 3’ alternative splice sites, while 5’ differences 240 

combined with 3’ differences, intron retention or 5’ alternative splice site ASTS events were 

enriched in the knockdown-specific ASTS (Figure 3F). This indicated that heterozygous genetic 

variants driving the ASTS in control samples lose their effect in the absence of PTBP1, and 

different transcript processing events take place. We hypothesized that ASTS disturbance upon 

PTBP1 knockdown is driven by heterozygous variants within RNA binding protein sites 245 

detectable in ChIP and eCLIP36 (Suppl. Table 5). We identified six control-specific ASTS events 

overlapping such sites. In ITGBP1, a donor has a heterozygous site within a PRPF4 binding site 

and ASTS that is strongly attenuated by PTPB1 knockdown (Figure 3G). A similar effect is seen 

in PLAUR, where there are two highly-expressed transcripts, one of which includes an exon 

skipping event (Suppl. Figure 15D). These analyses show how changes in the cellular 250 

environment altering splicing regulation can affect the molecular function of genetic variants. 
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Figure 3: Allelic analysis of long-read data. A) Percentage of significant allele specific expression and 

transcript structure events for samples that are heterozygous or homozygous for a lead eQTL or sQTL 

variant for that gene, respectively. P-values from Fisher’s exact test. B) Co-occurrence of alternative 255 

transcript structure events within the transcripts used for ASTS analysis that are observed at least once 

per each event (or a single time for the diagonal) in a given gene. C) Sharing of ASE and ASTS events 

for all events, and stratified by AltTS event. D) Percentage of significant allele specific expression and 

transcript structure events for samples that are heterozygous or homozygous for a lead sQTL or eQTL 

variant for that gene, respectively. E) Percentage of significant ASTS for samples that are heterozygous 260 

or homozygous for a lead eQTL or sQTL variant for that gene, respectively, by type of event based on 

whether at least 50% of the differences in transcript can be assigned to that AltTS event. P-values from 

Fisher’s exact test. F) Changes in ASTS by PTPB1 knockdown, with the heatmap showing the co-
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occurrence alternative transcript structure events that are observed at least once per each event (or a 

single time for the diagonal) in a given gene. Color corresponds to the log2 ratio of the number of events 265 

found in the control over PTBP1 knockdown (KD) samples. G) ITGBP1 gene transcript read pile-ups that 

display significant ASTS only in the control sample. Also shown are the transcript structures and the 

eCLIP and ChIP-seq for RNA binding proteins as assessed by ENCODE 

Rare variant interpretation 

Finally, we evaluated the potential to better interpret rare variants with novel transcript 270 

annotations and ASTS data from long reads. We complemented the GENCODE v26 annotation 

with an additional 76,278 transcripts for protein-coding genes, and reannotated genetic variants 

from GTEx WGS data using VEP37 (Methods). The most severe consequence for a variant 

changed for 0.67% of all variants (Suppl. Figure 16A), 18,506 of which were coding (2.7% of 

coding variants). We used CADD scores as a proxy for the pathogenicity of a variant and as 275 

further support for validity of the re-classifications. We observed that variants reassigned to a 

more severe consequence had on average a higher CADD score than those that retained the 

same annotation (Figure 4A). An exception were variants previously annotated as 5’ UTR and 

reassigned as coding, but the already high CADD scores and selective constraint on 5’ UTR 

variants38 suggests that the UTR classification better reflects their functional impact. The higher 280 

CADD scores for variants reassigned as pathogenic provides independent evidence that our 

novel transcripts detect real biology and functional variants that may have been missed before. 

We therefore re-annotated ClinVar variants, resulting in the reassignment of 8,951 variants 

(1.2%). We observed that variants with benign clinical significance and no assertion criteria 

were reassigned at the highest rate (3.8%) while pathogenic variants reviewed by an expert 285 

panel were reassigned at the lowest rate (0.057%). Benign variants with low reviewer support 

were also reassigned at an order of magnitude higher rate than variants with pathogenic clinical 

significance (Suppl. Figure 16B). This provides an explanation for the conflicting reports of 

these variants and a potential pathogenic mechanism. 

Long-read allelic data provides the opportunity to observe rare variants disrupting transcriptional 290 

regulation. GTEx has previously defined individuals that are extreme ASE, expression and 

splicing outliers, and shown that they are enriched for having rare genetic variants in the gene’s 

vicinity13,39. While our sample size is insufficient for analogous analysis of ASTS outliers, we 

tested the presence of rare (MAF<0.01) heterozygous variants within a 10kb window of each 

ASTS gene. Across all samples, missense variants were enriched for being in significant ASTS 295 
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genes compared to all genes measured for ASTS (Suppl. Figure 17A,B). This indicates that 

ASTS can capture rare variant effects on transcript structure. Finally, we searched for specific 

examples where a rare variant is likely causing ASTS in our data (Suppl. Table 6). Out of ten 

genes where an individual has a rare heterozygous variant, is a splicing outlier as defined by 

GTEx, and has significant ASTS, we highlight two examples: PPA2 has two intron variants 300 

chr4:105409456:G:A and chr4:105449015:G:A (MAF = 5.97x10-4 and 9.55x10-3) with the 

alternative allele having higher expression levels of transcript ENST00000348706 and lower 

expression of ENST00000341695 (Figure 4B) and NDUFS4 (Suppl. Figure 17C,D). 
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Figure 5: Variant interpretation through novel transcripts and allele-specific transcript structure 305 

analysis. A) Difference in the mean CADD score of variants that were reassigned to a more severe 

consequence when the GENCODE gene annotations were complemented with the novel FLAIR 

transcripts, compared to variants that retained their annotation (downsampled to a similar size). P-values 

from t-test. B) PPA2 is an example of a gene with a rare heterozygous variant in a sample that is a GTEx 

splicing outlier and has significant ASTS, with read pileups, and grey arrows indicating the rare variants. 310 
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Discussion 

In this study, we present the largest dataset of long-read RNA-seq to date, using material 

derived from cell lines and human tissues collected by the GTEx project. We identified 98,372 

novel transcripts, which is higher than any other study26–28 likely due to our large sample size 

and tissue diversity, which is consistent with the high number of tissue-specific novel transcripts 315 

discovered. Supported by a high validation rate of the novel transcripts in high-throughput mass 

spectrometry proteome data32, our data makes an important contribution to human transcript 

annotations. Expanding long-read studies to further tissues and cell types, coupled with more 

extensive validation efforts, will enable better understanding of regulatory mechanisms of 

different types of transcript changes26, functionally distinct protein isoforms that different 320 

transcripts can give rise to40, and improved variant annotation, as demonstrated by our analysis. 

Long reads provide the ability to map allelic effects over transcripts, instead of just expression41, 

thus providing the opportunity to analyze cis effects of genetic variants on transcripts. We 

developed LORALS, a toolkit for allelic analysis specific to long reads, taking into account 

various biases inherent to the technology. It is tunable and applicable to any long-read data, 325 

improving on previous work in this field28,29. We observed that the majority of ASTS events 

coincided with ASE, indicating that genetic effects on transcript usage rarely happen by 

reciprocally flipped transcript expression, but are typically accompanied by change in total 

expression levels which could happen for example via altered stability of specific transcripts42. 

However, the widespread co-occurrence of ASTS with ASE as well as eQTLs manifesting as 330 

ASTS are seemingly at odds with multiple QTL mapping studies that have established that 

expression and splicing are affected by distinct regulatory variants and processes3,4,8. The ability 

to distinguish the exact alternative transcript structure events in ASTS data allowed us to 

discover allele-specific 5’ differences as the cause of eQTLs manifesting in transcript structure 

changes, while expression and splicing are indeed highly independent. Given that promoter 335 

differences greatly affect gene expression levels and that most sQTL mapping methods do not 

capture variation in UTRs, this explains both the low overlap between causal variants of sQTLs 

and eQTLs and the overlap of ASTS with ASE and eQTLs. 

These results reinforce the emerging understanding20 of the importance of analyzing the 

transcriptome not at the level of genes or imprecisely defined splicing, but rather with a detailed 340 

characterization of specific transcripts, their changes and combinations. These insights are 

readily captured by long-reads. Given the important role of genetic variants affecting transcript 
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structure in disease risk2–4,43,44, we anticipate that a high-resolution characterization of the 

transcriptome with long-read data will be an important approach for the discovery of regulatory 

mechanisms of disease-associated variants. 345 

Data availability 

Raw long read data generated as part of this manuscript are available in the GTEx v9 release 

under dbGAP accession number phs000424.v9. The GTEx WGS and Illumina short-read data 

are part of the GTEx v8 release phs000424.v8. 

Code availability 350 

All original code used in the manuscript is released as part of a software package: 

https://github.com/LappalainenLab/lorals. 
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