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Abstract 
Conformation capture-approaches like Hi-C can elucidate chromosome structure at a genome-

wide scale. Hi-C datasets are large and require specialised software. Here, we present GENOVA: 

a user-friendly software package to analyse and visualise conformation capture data. GENOVA is 

an R-package that includes the most common Hi-C analyses, such as compartment and insulation 

score analysis. It can create annotated heatmaps to visualise the contact frequency at a specific 

locus and aggregate Hi-C signal over user-specified genomic regions such as ChIP-seq data. 

Finally, our package supports output from the major mapping-pipelines. We demonstrate the 

capabilities of GENOVA by analysing Hi-C data from HAP1 cell lines in which the cohesin-subunits 

SA1 and SA2 were knocked out. We find that ΔSA1 cells gain intra-TAD interactions and increase 

compartmentalisation. ΔSA2 cells have longer loops and a less compartmentalised genome. 

These results suggest that cohesinSA1 forms longer loops, while cohesinSA2 plays a role in forming 

and maintaining intra-TAD interactions. Our data supports the model that the genome is provided 

structure in 3D by the counter-balancing of loop formation on one hand, and compartmentalization 

on the other hand.  By differentially controlling loops, cohesinSA1 and cohesinSA2 therefore also 

affect nuclear compartmentalization. We show that GENOVA is an easy to use R-package, that 

allows researchers to explore Hi-C data in great detail. 

 

Introduction 
The organization of the genome inside the nucleus can be measured using proximity ligation 

assays such as Hi-C(1). A detailed picture is emerging of a hierarchically organized genome. 

Chromosomes are subdivided into compartments or compartmental domains which form 

microenvironments that segregate active and inactive chromatin(2). Compartments can be further 

segmented into Topologically Associated Domains (TADs)(3, 4), which are genomic regions that 
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show increased self-interaction. Although the initial observation of TADs was largely 

phenomenological(5), the mechanisms shaping TADs are starting to be understood. TADs are a 

collection of loops formed by the ring-shaped cohesin complex(6, 7).  

The mechanism by which cohesin forms these loops, and by extension TADs, is loop 

extrusion (8). In this model, cohesin processivily increases the size of chromatin loops. Extrusion 

is halted when cohesin encounters the CCCTC-binding factor (CTCF) bound to DNA. The 

orientation of the CTCF consensus-motifs is important for the ability of CTCF to act as a boundary-

element for chromatin loops (9). The majority of stable loops observed in Hi-C maps brings 

together CTCF motifs in opposite orientation (the 'convergency rule') (9, 10). We and others have 

shown that stabilising chromatin-bound cohesin, by depleting the cohesin-release factor WAPL, 

leads to more and longer loops(7, 11). These loops follow the convergency rule less strictly, and 

are generally extensions of wild-type loops, suggesting that loop-anchors collide in de absence of 

WAPL(7, 12). These observations show that by regulating the cohesin complex we can critically 

influence the organization of the genome inside the nucleus. The cohesin complex is a multimeric 

complex consisting of the core proteins SMC1, SMC3, RAD21/SCC1 and a STAG/SA subunit. 

There are two different cohesin variants, that contain either SA1 or its homologue SA2. Recent 

studies suggested that cohesinSA1 forms long CTCF-anchored loops(13–15), whereas cohesinSA2 

is involved in the formation of promoter-enhancer loops(13, 16). 

Many recent discoveries concerning the organisation of the 3D genome and the role of 

cohesin in this has been learned from Hi-C, which is an all-versus-all chromosome conformation 

capture method(1). Visualising individual chromatin loops requires Hi-C maps with resolutions of 

at least 20kb (17). Since Hi-C data is a pairwise analysis method, increasing the resolution requires 

a quadratic increase in reads. For this reason, Hi-C datasets are often very large. More recently, 

higher-resolution methods like micro-C (18) have emerged, resulting in even larger datasets. 

These large amounts of data call for purpose-built and highly powerful computational methods.  

Several software-packages for Hi-C analysis and visualisation have been described in 

recent years (19). Some of these focus on generating tracks or snapshots of regions of interest 

(20, 21). Another powerful feature is aggregating Hi-C data on specific features like loops, also 

referred to as pile-ups (7, 22–25). By averaging the limited signal of many features, one can 

surmise general changes in nuclear organization from changes in signal distribution. These 

aggregations are conceptually similar to metaplots in ChIP-seq and ATAC-seq analyses. The Hi-

C analysis methods referenced above are currently scattered over many packages and 

programming languages. This dispersed landscape of tools is cumbersome for many 

experimentalists, as it forces them to spend time learning how to use each of these tools and to 

become versed in multiple programming languages. Here we present GENome Organisation 

Visual Analytics (GENOVA): an R-software package for Hi-C data-analysis. This package is 

designed to be the one-stop shop for 3D genomics. It features all of the key Hi-C analyses and 
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works with all major mapping-pipelines. GENOVA can be downloaded and installed from 

github.com/dewitlab/GENOVA. 

GENOVA has previously been used to study the role of the ChAHP in nuclear 

organization(26), to investigate the loss of all CTCF anchored loops in a CTCF point mutant(27) 

and other studies(28, 29). In the current study we present GENOVA in detail and use it to chart 

the roles of SA1 and SA2 in genome organisation. We generated knockouts of each homolog in 

human HAP1 cells. GENOVA enabled the integration of published Hi-C data of knockdowns and 

acute depletions (13–15, 30). Using GENOVA we were able to determine the contribution of 

cohesinSA1 and cohesinSA2 to genome organization. 

 
Methods 
The basic principle in Hi-C data analysis is identifying ligations between non-contiguous restriction 

fragments. This is achieved by performing paired-end sequencing of a Hi-C template. Hi-C 

mapping pipelines have the following steps in common. First, paired-end sequence reads are 

mapped to a reference genome. When the paired ends fall on different restriction fragments this 

amplicon is identified as a valid interaction pair. Next, the valid pairs are summed over equally-

sized (e.g. 10 kilobase) interaction bins. Finally, the resulting contact matrix is normalized to 

account for biases using iterative correction (31) or matrix balancing (32). The most common 

pipelines (Hi-Cpro, juicer and cooler) perform these steps but produce different output formats (23, 

33, 34).    

Loading and representation of Hi-C data 
In GENOVA, the contact matrices are loaded into contacts-objects, which stores the matrices in a 

compressed sparse triplet format and the user-added metadata (e.g. colours and sample-names) 

of one Hi-C dataset (fig. 1A). There is also the option to calculate Z-score normalised values. 

These scores express data in units of standard deviation relative to other values at equal distance. 

This can be of use when exploring small (i.e. 1 by 1 bin) far-cis features, as the increase in sparsity 

at these distances means that it is more difficult to separate noise from true local contact-

enrichment. Data from the Juicer, Cooler and HiC-pro pipelines can all be loaded with the same 

function inside GENOVA. The Juicer pipeline produces .hic-files that are parsed with the strawr-

package. The Cooler pipeline produces ".cooler"-files that stored in the HDF5 standard. The Rhdf5-

package enables the loading of these into R. 

After contact-objects are made, the user can analyse these with the tools (R-functions to 

analyse Hi-C data) in GENOVA. All tools have a similar syntax and standardised output: the 

discovery object. An added benefit of using contacts- and discovery-objects is that they are 

portable: they contain all the information of a Hi-C dataset or result, including metadata. This averts 

common errors, like swapping labels, and facilitates sharing (raw) data of analyses with 

collaborators. The user can visualise the discovery-objects, as well as quantify them for further 

analysis (fig. 1A). 
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The main benefit of using GENOVA is that it comprises a large set of available tools, that 

are otherwise distributed over a number of different software packages and programming 

languages. The tools in GENOVA can perform quality-control, generate tracks, visualize contact 

matrices and aggregate Hi-C data over genomic features (fig. 1B). This has resulted in a package 

that can be used to run the majority of analyses currently used in the literature within a single 

programming environment. We will discuss these tools in detail below. 

Quality control 
The first analysis-step after loading the data is to perform quality control to check the integrity of 

the Hi-C experiment. A good indicator of the quality of a Hi-C library is the percentage of reads 

mapping in cis. Previous work has shown that the expected amount of intra-chromosomal contacts 

is in the 90-93% range in both mouse embryonic stem cells and in human K562 cancer cells (35). 

This implies that the desired cis-percentage should also be in this range. To test this, users can 

run the cis_trans-tool, which computes this percentage genome-wide (fig. 2A). 

In studies with translocation-prone (cancer-)genomes, the Hi-C data of sites surrounding 

the breakpoints will be misleading. The same is true when the reads are aligned to draft genomes 

that may still contain assembly errors, which can be the case for uncommon model system or 

strains. In the case of structural variation, the regions around a breakpoint will have increased 

amounts of —seemingly— trans-contacts, which are in reality cis-contacts of two translocated 

pieces of chromosome. In the case of a misassembly, actual wild-type cis-interaction will appear 

as translocations. The result in both cases is the appearance of merged and/or deleted TADs and 

unexpected changes in compartment-scores. It is therefore recommended that translocated 

chromosomes are omitted from further analyses. GENOVA can compute the enrichment of cis-

interactions between chromosomes with chromosome_matrix. Moreover, this tool generates an 

overview-plot for checking for translocations (fig. 2B).  

Tracks and matrices 
Hi-C data analysis often focusses around comparing features like TADs and compartments. 

Identifying the locations of these features first requires that the two-dimensional Hi-C data is 

reduced to a quantitative linear track. GENOVA provides tools to distil Hi-C into linear tracks on 

compartment- and domain-level. Aside from calling features on these tracks, users can also use 

them for matrix-annotation, alignments on regions (e.g. tornado-plots) and viewing in genome-

browsers.  

To generate a matrix overview for an entire chromosome or chromosome arm (i.e. far-cis 

interactions) we devised the cis.compartment.plot function. The resulting plot shows a 

heatmap of one or two contacts-objects. In the case of two experiments either experiment occupies 

a triangle in the matrix (top or bottom). The plot can show both the absolute Hi-C signal or the 

observed over expected (i.e., the distance-dependent average) scores. Above and to the side of 
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the heatmap the compartment-scores are plotted (fig. 2C). This matrix is thus a useful way to get 

an overview of the far-cis landscape and even directly compare two samples 

In order to determine A- and B-compartments, users can also generate compartment-

scores using a separate function (compartment_score). The compartment score is determined 

by first computing an observed over expected matrix for a chromosome (arm). From this matrix 

one is subtracted and an eigen decomposition is performed. The first eigenvector of the matrix is 

multiplied by the square root of the corresponding eigenvalue (31). To ensure that positive values 

are corresponding to euchromatin, we advise correlating the arm-wise compartment-score to the 

ChIP-seq data of an active histone mark (e.g. H3K4me1). This can be done from within GENOVA: 

when this correlation is negative, the compartment-score is multiplied by -1 (36). 

Compartments are subdivided in sub-megabase TADs. Two common TAD-level metrics 

are the directionality index and the insulation score (3, 37). GENOVA includes tools for computing 

these two separate metrics for TAD-level tracks. It goes beyond the scope of this study to discuss 

the various downsides and benefits of either method, for a more detailed discussion we refer the 

reader to (38). These tracks can be used to call TADs and align on genomic features, like genes 

or precomputed TAD-boundaries (supp. fig. 1A). 

The insulation score reflects the differences of contact density of every Hi-C bin with its 

surrounding bins (37). Briefly, the insulation_score tool uses a sliding window to compute the 

average signal intensity per Hi-C bin. This score is then divided by the genome-wide average 

signal to produce the insulation-score. To plot the Hi-C matrix and the corresponding insulation 

score, users can call plot_insulation. At the boundary between two TADs there is a clear dip 

in the insulation score. This feature is exploited in the call_TAD_insulation tool to call TAD-

boundaries at local minima. 

The second TAD-level track, the directionality index, quantifies the bias between upstream 

and downstream interactions for each Hi-C bin. This score is low just upstream of a TAD-boundary 

and high just downstream of a TAD-boundary, as has been extensively described by Dixon et al. 

(2012). The direct_index tool will, in short, average the signal in a set region upstream and 

downstream of a Hi-C bin. Afterwards it is normalized in a similar matter as computing the c2 

metric, where a score of zero means that there is no bias. A bin where this score suddenly crosses 

zero means that interactions are biased up- or downstream, which is the case at TAD-boundaries. 

Plotting Hi-C data in user-specified regions in combination with genomic features or data 

can be done with hic.matrixplot (fig. 2D). It accepts multiple sources of annotations: linear 

features such as ChIP-seq peaks and gene information can be plotted above and to the left of the 

matrix. TADs and chromatin loops are are plotted over the Hi-C matrix heatmap. Furthermore, 

linear tracks in bigwig- and bedgraph-format can be plotted to add quantitative information about 

protein-DNA interactions or gene expression. Two samples can be plotted in a mirrored fashion 

alongside the diagonal (i,e, the top and bottom triangles of the matrix) or the difference can be 

plotted by subtracting one experiment from the other (fig. 2E). 
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Chromosome-level analyses 
The relative contact probability can be used to investigate distance-dependent contact frequencies 

(1, 39). Because chromosomes are subject to polymer physics (31) the probability of two regions 

on a chromosome interacting in 3D decreases as function of the linear distance. When comparing 

two Hi-C experiments, a change in the relative contact probability (RCP) in the 1-5Mb range is 

indicative of a change in contacts in TAD-level, for example. Moreover, Gassler et al. (40) have 

shown that the derivative of the RCP can be used to estimate the average extruded loop size. The 

RCP tool in GENOVA can be used to calculate genome-wide RCP score or for a user-defined set 

of regions or chromosomes. In addition to the standard methods of plotting the RCP decay as a 

function of distance for every sample, GENOVA offers the option to compute the fold-change over 

a control sample (15) (supp. fig. 1B).  

While the RCP can give insight into the far-cis interactions, it is not designed to reveal 

changes in the strength of the compartmentalisation, which is measured as the degree in which A 

and B compartments segregate in the nucleus. For this, users can use the de saddle-tool, which 

is based on the work of Imakaev et al. (31). In brief, the tool first stratifies each genomic bin on the 

quantiles of the compartment score. The number of quantile bins can be chosen by the user. 

Pairwise interactions are then allocated to the combination of their compartment-score quantiles. 

Next, it computes the average of the observed over expected Hi-C score for each quantile-

combination. This results in a NquantilexNquantile sized matrix, which can be visualised as a heatmap, 

a so-called saddle plot. The name of this method comes from the fact that the resulting plot 

resembles a saddle, with strong interactions at A-A and B-B and weaker interactions between A 

and B. 

 A related measure is the compartment strength, which computes the strength of 

compartmentalisation as the product of the observed over expected (O/E) scores in A/A and B/B 

(i.e. within compartment) interaction bins divided by the square of the O/E scores in the A/B (i.e. 

between compartment) interaction bins. A score of one means that the within-compartment 

interactions are as common as between-compartment, whereas a higher score means that within-

compartment interaction are more prevalent. 

Data aggregation  
De novo TAD and loop calling relies on a sufficiently sequenced dataset (at least 108 reads for the 

human genome). However, when data is sparse (e.g. less than 25 million reads) we can still extract 

meaningful information from these datasets through the aggregation over genomic features. 

GENOVA can perform several forms of aggregation analysis. (fig. 2F). 

GENOVA has a family of tools for aggregating contacts at features of interest, like peaks, 

loops and TADs. Users can aggregate the regions around one-dimensional features (e.g. ChIP-

seq peaks or transcriptional start sites, TSS) at the diagonal with the Aggregate Region Analysis 

(ARA). Since subtle changes can be obscured by the high contact-intensity of the diagonal, the 
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tool computes an observed over expected score. This expected score is generated by calculating 

the same aggregate matrix for the same features, but shifted 1Mb downstream, and averaging per 

distance. The Aggregate Peak Analysis (APA) averages the signal surrounding the pixels making 

up the loop taking by default a region 21 bins around the feature (fig. 2F). To aggregate TADs, the 

ATA-tool extracts both the regions of interest (i.e., TADs), including the regions up- and 

downstream of half of the TAD-size. We average the matrices, after resizing through bilinear 

interpolation of the individual matrices, to show the average contact-distribution of all TADs and 

their surroundings (fig. 2F).  

All three aggregation-tools have customisable thresholds for the sizes of the feature and 

its surrounding region to include. Setting the feature-size threshold allows for stratification of 

specific sizes, such as large versus small loops, but can also be used to remove features that are 

not in the expected size-range. Users can set a threshold on pixels (i.e., interaction-bins) with 

extreme values, which are often considered outliers. When a pixel has a higher signal than the 

threshold, the pixel-intensity will be set to the value of the threshold. This approach keeps all 

features, regardless of outliers, but limits the influence of the outliers on the final average. 

Afterwards, the visualise- and quantify-methods allow for comparisons between feature-sets and 

samples. 

Another possibility to visualise aggregates is to generate a tornado-plot, in which the 

enrichment is plotted for every individual feature (i.e., loop). We calculate the enrichment of each 

feature with the pixels surrounding it with the same distance (supp. fig. 1C). Afterwards, we sort 

and k-means cluster the features—both the samples to sort on and the number of clusters can be 

set. As is the case for all discovery-objects and plots in GENOVA, the output of the tornado 

contains the raw data, which allows users to further analyse these features, stratified on the 

clustering.  

Aside from Hi-C features, GENOVA also enables the aggregation of contacts between two 

one-dimensional regions, like ChIP-seq peaks (fig. 2F). PE-SCAn (24) creates virtual loop anchors 

by combining pairs of features within certain distance-thresholds and calculates the enrichment. 

C-SCAn is an extension of PE-SCAn and allows multiple sets of peaks (e.g. enhancers and 

promoters or positively and negatively oriented CTCF motifs). It then creates virtual loops based 

on combinations of these sets. The discovery-object of PE-SCAn and C-SCAn can be visualised 

and quantified in the same way as the APA, ARA and ATA. 

 
Genome editing and cell culture 

Hap1 cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 10% 

FCS (Clontech), 1% Penicillin/Streptomycin (Invitrogen) and 0.5% UltraGlutamin (Lonza). Hap1 

SA1 and SA2 knock-out cells were generated using gRNA’s targeting SA1 exon 2 

(ACTACTGCCCATTCCGATGC) and SA2 exon 3 (TGATGACCATTCATTCGGTT), which were cloned 

into PX330. Cells were transfected with PX330 and pDonorTia containing a puromycin resistance 
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gene. Clones were selected using puromycin (2 µg/µl). Colonies were screened for the loss of SA1 

and SA2 using PCR and western blot analysis. Used antibodies for the western blots were ab4457 

(SA1) from Abcam, 158a (SA2) from Bethyl, sc365189 (WAPL) and sc13119 (HSP90) from Santa 

Cruz. Rad21 immunofluorescence was performed with Millipore 05-908 (Rad21) antibodies in 

1:250 dilution. 

Hi-C from Hap1 SA1 and SA2 knockouts 
We performed in-situ Hi-C, as described in Haarhuis et al. (2017). Sequencing was done on the 

HiSeq X sequencing platform and mapped with hic-pro 2.11.1. We performed loop calling with 

HiCCUPS 1.9.9. 

Previously published Hap1 data (WT and ΔWAPL) was included in this manuscript (7). We used 

both the ice-normalised Hi-C matrices and generated z-normalised matrices during loading. TAD- 

and loop-calls from the same manuscript were also included. To compare our results to a different 

cell line, we downloaded the sequencing-reads and juicer-files for the siControl, siSA1 and siSA2 

of MCF10A from Kojic et al. (2018). We mapped the reads with hic-pro 2.11.1 (33) to the hg19 

reference genome with default settings. 

 

Results 

Performance and benchmarking 
We have developed GENOVA on the premise that it combines all the key Hi-C analysis tools for 

the most common Hi-C data formats. To illustrate that contacts-objects from different formats can 

be compared in GENOVA, we mapped the data of Kojic et al. (2018) with HiC-pro and compared 

it to .hic files mapped with TADbit and converted with Juicer-tools. The relative contact probabilities 

between the two formats are similar for both siSA1 and siSA2 (supp. fig. 1D). This shows that the 

different formats give nearly identical output and that these different outputs can be compared 

inside GENOVA. 

Because Hi-C maps are often large and complex datasets, the speed of these tools is key 

to many of the analyses. Therefore, we use key-based binary searches(41), which has the benefit 

that the speed of the analyses is no longer linearly proportional to the number of regions queried 

(41). To test the performance of our method, we performed an Aggegrate Peak Analysis on Hap1 

Hi-C data of Haarhuis et al. (2017) with both GENOVA and Juicer(23). Our analysis showed that, 

irrespective of resolution, the absolute increase in calculation time is less with more loops queried 

in our implementation (supp. fig. 1E). These results indicate that GENOVA’s implementation of 

region-lookups is robust and quick enough to handle large queries. 

Aggregation enables the gathering of information from dataset that have a higher level of 

sparsity. To investigate how sparse the data can be and still be used in aggregation-analyses, we 

downsampled the HAP1 data of Haarhuis et al. (2017). The RCP analysis shows that there is little 

to no deviation of the full dataset up to 90Mb at 1 million reads (supp. fig. 1B). Both the APA and 
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ATA show good signal-to-noise, even at 5 million reads—twenty percent of the output of a current 

Illumina MiniSeq (supp. fig. 1F,G). These results indicate that aggerate analyses can be faithfully 

performed on low-coverage datasets. 

 

C-SCAn and loop clustering 
In GENOVA we have implemented two novel tools, C-SCAn and loop clustering. The first is an 

extension of the previously published Paired-End Spatial Chromatin Analysis (PE-SCAn) 

method(42), that aggregates of all pairwise combinations of a genomic feature such as gene 

promoters or super enhancers(43). C-SCAn builds on this by performing aggregation of pairwise 

combinations of two different genomic features, for instance gene promoters and distal enhancers, 

but excluding the homotypic pairwise combinations. We tested our method by aggregating over 

combinations of forward and reverse oriented CTCF binding sites. Our analysis showed, as 

expected, that there was a clear increased contact frequency between CTCF binding sites in a 

convergent orientation (fig. 2G).  This contact frequency was further increased in the absence of 

WAPL, consistent with the observation that cohesin is bound more stably to DNA(7). Note that the 

C-SCAn function allows the user to analyse genomic features in a specific direction, like with the 

forward and reverse CTCF sites, or in a direction agnostic manner, as with promoters and 

enhancers. The C-SCAn function is a powerful new method to elucidate features that shape the 

3D genome. 

 A powerful method to visualise ChIPseq data is a heatmap of the signal around, for 

instance, peaks, also referred to as tornado plots. We realised that, for obvious reasons, no such 

method existed for Hi-C data. We have therefore developed a method that selects diagonals from 

the Hi-C matrix that overlap with specific points in said matrix, such as chromatin loops or putative 

chromatin loops, represented as a one-dimensional array of values. These arrays can be stacked 

together in a heatmap, similar to ChIPseq tracks. Visualization of the heatmap enables the 

assessment of global versus specific changes in loop changes (supp. fig. 1C). The organisation of 

the loop data into a matrix also enables the user to perform k-means clustering, to identify specific 

subsets of loops (discussed in more detail below). These are two additions to a roster of analysis 

tools that can be used to analyse Hi-C. Below we will use these tools to analyse the role of different 

cohesin variant in nuclear organisation.  

Differing far-cis landscapes of cohesinSA1 and cohesinSA2 
The cohesin-complex has been shown to play a major role in the formation of CTCF-anchored 

loops and contacts within TADs (6). There are two variants of the complex, containing either the 

SA1 (STAG1) or SA2 (STAG2) homologs, that are suggested to have specialised functions (fig. 

3A) (15, 16, 30). To elucidate the differences of cohesinSA1 and cohesinSA2 with regard to genome 

organisation, we made knock-outs of either SA1 or SA2 by inserting a puromycin resistance 

cassette in-frame in HAP1 cells (supp. fig. 2A). We confirmed the knockouts by PCR (supp. fig. 

2B) and western blot (fig. 3B). We refer to these knock-out lines as ∆SA1 and ∆SA2. 
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 To reveal the effects of knocking out SA1 or SA2 on chromosome organization, we 

generated high-resolution Hi-C maps. When inspecting whole chromosome-arms, we saw that the 

two knockouts had different effects on the intrachromosomal interaction landscape. In ΔSA1 cells 

there were more far-cis interactions, indicated by the stronger “plaid”-pattern in the Hi-C map. On 

the other hand, in ΔSA2 cells there are more interactions at the sub 5Mb-scale, which can be seen 

as a stronger diagonal (fig. 4A, supp. fig. 3A). This difference was confirmed in the relative contact 

probability (RCP) plots, where the ΔSA2 has increased interactions in the close-cis range (1-

10Mb), compared to the WT. The ΔSA1 cells show a general increase in contacts compared to 

WT for regions more than 5Mb apart. (fig. 4B, supp. fig. 3B). We found that the technical replicates 

show extremely similar distributions, and thus combined the replicates in all subsequent analyses 

(supp. fig. 3B). Our results indicate that cohesinSA1 and cohesinSA2 affect chromosome organization 

differently.  

The observation that ΔSA1 has increased far-cis interactions compared to ΔSA2 brings up 

an interesting possibility that cohesinSA1 inhibits compartmentalisation (i.e. more intra-

compartment contacts) to a larger extent than cohesinSA2. This difference in compartmentalisation 

can already be seen in the compartment-score tracks of figure 4A: the amplitude of the B-

compartment score (blue) is increased in the ΔSA1 compared to both the WT and ΔSA2. Since a 

higher compartment-score amplitude is an indication of more homotypic compartment interactions 

(i.e. between two A compartment bins or two B-compartment bins), we quantified these differences 

genome-wide. To this end, we generated saddle-plots to quantify the amount of self-interaction of 

A- and B-compartments (31, 44). These plots show that ΔSA1 has increased B-B (and less A-B) 

interactions compared to control (fig. 4C). This can be further quantified using the compartment 

strength(31), which corresponds to the proportion of intra- versus inter-compartment contacts and 

is calculated for every chromosome arm separately (31). We found that the ΔSA1 overall has 

significantly stronger compartmentalisation, while ΔSA2 has weaker compartmentalisation, 

compared to wild-type (fig. 4D). These results show that cohesinSA1 and cohesinSA2 differ in their 

propensity to restrict compartmentalisation. 

CohesinSA2 promotes intra-TAD contacts 
Depletion of the cohesin loading/extrusion factor Scc2/Nipbl or loss of the cohesin loading factor 

SCC4/MAU2 leads to an increase in compartmentalisation, whereas cohesin stabilization on DNA 

reduces compartmentalization (7, 45). From this it has been postulated that cohesin loops actively 

counter compartmentalisation (46). We thus investigated chromosome organisation at the level of 

chromatin loops. TADs are thought to be an average representation of cohesin-mediated 

chromatin loops. Therefore a difference in loop formation activity should be visible at this level of 

resolution. We indeed observed a striking difference in TADs between both cohesin-variants (fig. 

5A, supp. fig. 4A). In ΔSA2, TADs show an increased signal at the edges (i.e. corner peaks) and 

diminished intra-TAD signal. We used the TAD-calling tool in GENOVA, which is based on the 

insulation score(37), to identify TAD-boundaries in all samples. The number of TAD-boundaries 
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between WT and ΔSA1 was similar, whereas the ΔSA2 has a decreased number of boundaries 

(fig. 5B). Furthermore, the overlap of TAD-boundaries between ΔSA1 and WT is three-fold higher 

than ΔSA2 versus WT. These results suggest that cohesinSA2 plays a role in the formation of intra-

TAD contacts, which in turn leads to a stronger insulation of TADs. 

Our observations regarding TADs in ∆SA2 cells were reminiscent of loop formation in 

∆WAPL. Stabilisation of cohesin by loss of WAPL also leads to more-pronounced corner peaks at 

TAD boundaries, and fewer intra-TAD interactions. To further explore the consequences on TADs, 

we performed an Aggregate TAD Analysis (ATA) on TADs called in Haarhuis et al. (2017). The 

ATA shows that the aforementioned loss of intra-TAD contacts in ΔSA2 is found genome-wide (fig. 

5C, supp. fig. 4B). Moreover, the quantification of the ATA indicates that ΔSA1 have increased 

intra-TAD off-diagonal contacts (supp. fig. 4C). Loss of SA2 by RNAi in MCF10A cells (13) results 

in a similar phenotype (supp. fig. 4D).  

The similarity at the level of TADs between ΔSA2 and ΔWAPL prompted us to investigate 

the contacts over boundaries. The intra_inter_TAD tool in GENOVA enables this comparison 

a systematic manner. As shown previously(7), there are more interactions between (maximal 5) 

neighbouring TADs in the ΔWAPL, while the intra-TAD score is decreased (fig. 5D). On the other 

hand, intra-TAD contacts are decreased even more in ΔSA2 cells and inter-TAD score increases 

as far away as 10 TADs. These findings again suggest that cohesinSA2 is required for intra-TAD 

contacts.  

CohesinSA1 creates longer CTCF-anchored loops 
FRAP experiments have recently shown that cohesinSA1 is more stably associated with 

chromosomes than cohesinSA2
 (14). We hypothesize that a longer residence time of cohesin on 

chromatin leads to the formation of longer loops. One way to measure this is to investigate a 

feature of Hi-C maps called “stripes”, which are formed at CTCF sites and thought to be a 

manifestation of one-sided loop extrusion by cohesin. We measured stripe formation in our Hi-C 

data by performing an ARA on CTCF-sites with a specific orientation (supp. fig. 5A). We observed 

a pattern that is reminiscent of insulation consistent with the function of CTCF. Furthermore, a 

clear stripe pattern is found in the direction of the CTCF site. In ΔSA1 cells the stripe signal decays 

more rapidly compared to the wild-type (supp. fig. 5B). In contrast, the ΔSA2 cells show hardly any 

decay compared to the wild-type over the distances we measured. In addition to this, we also see 

an increase in contacts upstream of the CTCF-site in cells that only have cohesinSA1 (supp. fig. 

5B). This increase of upstream contacts at CTCF-sites is in line with the presence of bidirectional 

anchors due to loop-extension, as anchors of extended loops are combinations of CTCF-loops 

themselves (47). 

Upon further inspection of the Hi-C matrices we indeed observed loops over larger 

distances in the ΔSA2 cells, which only have cohesinSA1 (fig. 6A). To systematically investigate 

these differences, we called loops with HICCUPS and calculated the size-distribution per genotype 

(fig. 6B). We find that the average loop-size is increased in the ΔSA2 from 410kb to 500kb. 
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Conversely, in the ΔSA1 the average loop length is decreased to 320kb. The ∆SA2 specific longer 

loops connect loop anchors already found in wild-type (fig. 6A). We systematically analysed this 

using a function in GENOVA that enables the calculation of average contact frequency between 

extended loops, that are formed between the 5’ and 3’ anchors of loops called in wild-type cells. 

The APA for these extended loops showed that ∆SA2 cells show an increase in the contact 

frequency (fig. 6C), which is reminiscent of results we previously observed for ∆WAPL cells (7). 

We also observed this in the data of Kojic et al. (2018), where the SA2-depletion showed an 

increased signal at extended loops (supp. fig. 5C). To exclude that the effect on loop length that 

we are seeing is an indirect effect of lower WAPL levels, we performed Western blot analysis. This 

confirmed that the WAPL protein level was unaffected (supp. fig. 5D). Together, these analyses 

support the notion that the stability of a cohesin-variant on chromatin determines the length of the 

loops that can be produced. 

Loss of WAPL also leads to increased stability of cohesin on DNA and an increase in loop 

length. This is accompanied by a striking ‘vermicelli’ chromosome phenotype in which a thread-

like staining of cohesin is seen. Because of the increased loop size in ∆SA2 we investigated 

whether the vermicelli phenotype is also found in our ∆SA2 cells. To this end, we stained the 

cohesin subunit SCC1 in WT, ∆SA1, ∆SA2 and ∆WAPL cells. Whereas the ∆WAPL cells showed 

a clear vermicelli phenotype, the ∆SA2 cells lack vermicelli chromosomes (fig. 6D). These results 

show that, although the absence of WAPL and SA2 correlate with an increase in loop size and the 

formation of extended loops, further differences in cohesin stability likely determine whether 

vermicelli chromosomes are formed (see Discussion). 

Extended loops form at bidirectional anchors 
Because both ∆SA2 and ∆WAPL cells show extension of loops, but result in different chromosome 

organization at the ultrastructural level, we looked in more detail at the extended loops in these 

different genotypes. To quantify and cluster the underlying loops of the APA, we used the 

aggregate tornado tool. Running this tool on our data showed that there are three clusters, of which 

cluster 3 (containing 674 pairwise sites) has a strong enrichment in the ΔSA2 only (fig. 6E). This 

enrichment shows that cohesinSA1 can form extended loops when cohesinSA2 is absent at 

previously identified loop-anchors.  

Casual observation of extended loops in figure 6A already revealed that not all loop 

anchors have the same propensity to form extended loops. To determine whether there are any 

predictive features for extension in the ΔSA2, we compared the signal in the WT-cells of these 

anchors in the different clusters, as well as the complete set of WT-anchors. We performed an 

ARA on the 5’ anchors in the wild-type Hi-C data (fig. 6F). The anchors of all three clusters show 

the expected stripe in the downstream direction (i.e. the direction of the called loop). Surprisingly, 

however, we observed a difference in contact enrichment in the upstream direction. The 

quantification of the signal upstream of the anchor showed that cluster 3 anchors have a stronger 

upstream signal and showed stripe-like behaviour in the opposite orientation (fig. 6G, left). When 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2021. ; https://doi.org/10.1101/2021.01.22.427620doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427620
http://creativecommons.org/licenses/by-nc-nd/4.0/


performing the same analyses for the downstream anchors, we also see that cluster 3 anchors 

have the strongest signal outside of the loop (fig. 6G, right).  These results suggest that 

bidirectional anchors (which have both up- and downstream loops in the wild-type) are more likely 

to gain extended loops in the ΔSA2.  

 

Discussion 
Here we present GENOVA, an R package that combines the most important Hi-C data analyses 

and which can be run on commodity hardware. GENOVA has powerful visualization tools for a 

suite of analyses, ranging from relative contact probability plots to compartmentalization analyses 

and aggregations of TADs and loops. While visualization is an important aim in Hi-C data analysis, 

GENOVA also provides tools to quantify the underlying data for specific analyses. For instance, 

when the user runs an analysis to check the average contact frequency for a set of loops, the result 

can be visualized. However, the relevant pixel information can also be extracted using 

quantification tools. These data can then be visualised and analysed with one of the many 

visualisation and statistical tools available in R. Specifically for this reason the package does not 

contain options to automate null-hypothesis testing. Due to that the sheer number of possible tests 

and comparisons we leave it up to user to choose the statistical test that matches their data type. 

We are confident that running the quantify-tool on the discovery-objects of the aggregations, 

provides the user with enough options to pursue these tests outside of GENOVA. 

The aggregation analyses also enable the analyses of more sparsely sequenced datasets. 

The costs of sequencing Hi-C matrices to kilobase resolution can be quite daunting, especially 

when replicates are involved. By performing aggregation analyses, relevant information can be 

extracted from datasets that are sequenced at relatively low depth. Importantly, this also opens 

the door for performing analyses on replicate experiments, which are now often combined into a 

single dataset to boost the visualization. Obviously, these analyses work only for perturbations that 

have a general effect on 3D genome organization. For perturbations that affect only a handful of 

loops in the genome, deeper sequencing will still be required. 

A number of tools have been developed that enable the browsing of Hi-C data such as 

Juicebox(23) and HiGlass(48). These tools also enable adding one-dimensional tracks for 

ChIPseq and RNAseq data, for instance. Although GENOVA does not allow interactive browsing 

of Hi-C data, it does offer the creation of publication-ready Hi-C matrix plots that can be annotated 

with genomic features and genomic data tracks. A powerful suite of tools that has an overlapping 

feature set with GENOVA is HiCexplorer(49). This is a command line tool that is written in Python, 

we command structure that is similar to the popular deeptools package(50).There is a large 

number of dependencies, which makes this package difficult to install on an operating system such 

as Windows. Because GENOVA is written in R it is largely platform agnostic and we have 

confirmed installation on Linux, Windows and MacOS. With the increasing popularity of R with in 

the genomics and broader life sciences community we believe that GENOVA can serve as an 
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important go-to package for Hi-C data analysis for experimentalists and bioinformatics-specialists 

alike. 

 

Cohesin variants differently contribute to 3D genome organisation 
Here we studied the roles of variant cohesin-complexes on chromosome organisation. We made 

knockouts in Hap1 cells of either SA1 or SA2, generated Hi-C data and performed analyses in 

GENOVA.  We find that cohesinSA1 produces longer loops, while cohesinSA2 is biased towards 

shorter loops. The stronger compartmentalisation in cohesinSA2-only cells is consistent with a 

decrease in loop extrusion, as suggested by (7, 11, 46).   

The differences in loop length are consistent with recent FRAP experiments that surveyed 

the residence time of the two cohesin variants by measuring cohesin association with DNA in the 

absence of either SA1 or SA2(14). CohesinSA1 was shown to have a longer chromatin residency 

time, which was suggested to result in longer extrusion and longer loops. Interestingly, co-

depletion of CTCF with SA2 diminished cohesinSA1 residence time to wild-type levels, indicating 

that cohesin binding to chromatin is stabilised by CTCF. If CTCF leads to long-term stabilisation 

of cohesin the observed differences in loop length may also be the result of differences in extrusion 

kinetics between the cohesin variants. If cohesinSA2 would be slower to extrude, fewer cohesin 

complexes would reach a distal CTCF site and ultimately result in cohesin complexes stably 

associated with DNA. Recent advances in in vitro single molecule imaging experiments of cohesin-

mediated DNA extrusion (51, 52) offer an exciting opportunity to measure these parameters. 

Alternatively, measuring loop formation kinetics using Hi-C following mitosis(53) or rapid 

reconstitution of RAD21 proteins levels(6) in an SA1 or SA2 null background should be able to 

address this question. 

Finally, it has been speculated (based primarily on the loss of intra-TAD contacts) that 

cohesinSA2
 plays a role in enhancer-promoter interactions, while cohesinSA1

 is thought to be 

responsible for looping together CTCF binding sites (13, 15, 16). Our current results suggest that 

this distinction is too strict, as we show that CTCF-anchored loops are still present in the ΔSA1 

cells This is further supported by the fact that other reports also show that CTCF-loops are still 

present in SA1-depletion lines (13–15, 30). It should be noted that cohesin’s CTCF binding pocket 

is conserved in both SA1 and SA2 (54). It therefore is likely that CTCF can bind and regulate both 

cohesin variants. Our current results show that the different cohesin variants contributed differently 

to genome organization. Varying the levels of SA1 and SA2 relative to each other could therefore 

be an important mechanism to regulate genome organization and gene expression. How these 

variants contribute to or counteract the function of the other variant in the wild-type situation will 

be an important question for the future. 

Vermicelli versus extrusion 
As described previously and again in this study, SCC1-staining during WAPL depletion leads to a 

thread-like distribution of cohesin in interphase nuclei as measured by immunofluorescence, 
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known as the vermicelli phenotype (58). This —and the fact that loops become extended— had 

been attributed to the increased stability of cohesin onto chromatin (7).  In the ∆SA2 cells we found 

extended loops, but not a vermicelli phenotype. An explanation could be the model above, in which 

the cohesinSA1-only cells have increased cohesin-stability, but not enough compared to ΔWAPL to 

form sufficient numbers of loop-collisions to be visible as vermicelli. Multi-contact analyses are 

necessary to determine whether in the absence of SA2 loop collisions are indeed not formed (12). 

Further research into the formation of loop-extension and the vermicelli phenotype is also needed 

to provide evidence for this model or uncoupling of the two phenotypes.  

 

Concluding, we propose a model in which cohesin-variants have differing loop formation kinetics, 

which leads to the changes in nuclear architecture that we observe. This points towards another 

layer of chromatin-regulation: balancing of the loops formed between specific anchors to ensure a 

proper chromatin landscape. 

 

Availability 
GENOVA is an open source software package in the GitHub repository 

http://www.github.com/dewitlab/GENOVA. 

 

Accession numbers 
Data has been deposited at GEO under accession GSE160490. 
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Figure legends 
 
Figure 1: GENOVA is a pipeline-agnostic R-package and includes the majority of Hi-C 
analyses. 
A) Data from the three major pipelines can be loaded with the load_contacts tool into a 

contacts-object. Quality control and other analyses can then be performed on these objects: all 

tools generate the results in the form of a discovery-object. The user can print, visualise and 

quantify these objects. B) An overview of the tools and options in GENOVA and other Hi-C 

software. The majority of the available software focus on a subset of the possible analyses and 

are often restricted to specific mapping pipelines. 

 

Figure 2: The GENOVA-package contains a complete suite of tools for Hi-C analyses. 
A) Quantification of the percentage contacts in cis of WT and ΔWAPL made with the cis_trans 

tool. B) Enrichments of contacts between all pairs of chromosomes with chromosome_matrix. 

Both the reciprocal 9-22 translocation and the addition of a fragment of chromosome 15 on 

chromosome 19 lead to a high enrichment-score. C) Whole-arm chromosome matrices with 

compartment-scores for WT (top right) and ΔWAPL (bottom left). The matrix can either be the 

Pearsson-matrix (shown) or the contact-intensity.  D) The hic.matrixplot tool allows for the 

plotting of a regions of interest, including annotations. Signal-tracks, gene-models and ChIP-seq 

peaks can be used for the annotation-tracks above and to the left, while loops and TADs can be 

plotted on top of the matrix. All annotations can be customised on placement and colour. E) 

Additionally, a second contacts-object can be added to the bottom-left half of the matrix (top 

triangle) or can be subtracted from the first contacts-object to produce a differential matrix (bottom 

triangle). F) Features of the Hi-C data (top) can be summarised with the aggregation-tools of 

GENOVA (middle) to produce genome-wide averages of the features (bottom). G) C-SCAn of 

pairwise combinations of CTCF ChIP-seq peaks on forward and reverse binding motifs in 

convergent (top row) and divergent (bottom row) in WT and ΔWAPL. 

 

Figure 3: Generation of Hap1 SA1 and SA2 knockouts. 
A) The two cohesin-variants differ in their SA subunits. B) Western blot analysis confirms SA1 

knockout in ΔSA1 cells and ΔSA2 knockout in ΔSA2 cells. 

 

Figure 4: Far-cis differences between the cohesin-variants. 
A) Hi-C matrices of chromosome 2p of wild-type, ΔSA1 and ΔSA2. Compartment-scores are 

plotted on top. Bars in matrices denote 5mb and 10mb distances in red and blue, respectively. B) 

Relative contact probabilities compared to wild-type in log2-space, with blue denoting ΔSA1 and 

red denoting ΔSA2. C) Saddle-plots (top) and differential saddles (bottom), with purple denoting 
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more interactions in the sample compared to the wild-type. D) Boxplot of the compartmentalisation-

strength per chromosome-arm (dots). *** indicates paired t-test p < .005.   

 

Figure 5: CohesinSA1-only cells have diminished intra-TAD contacts. 
A) Snapshots of two regions on chromosome 5 and chromosome 9, showing ΔSA1 in top-right 

and ΔSA2 in bottom-left triangle. B) Intersections of called TAD-boundaries in wild-type, ΔSA1 and 

ΔSA2. C) Aggregate TAD analysis of Hap1 TADs in wild-type, ΔSA1, ΔSA2 and ΔWAPL (top). 

Differential ATA compared to wild-type (bottom), which blue denoting loss of interactions in the 

specific sample. D) TAD-neighbour analysis: interactions between TADs, stratified on the number 

of TADs in between, compared to wild-type.  

 

Figure 6: Extended loops in ΔSA2 are formed at bidirectional loop-anchors. 
A) Pyramid-plots of wildtype, ΔSA1, ΔSA2 and ΔWAPL at chromosome 12. Predicted loop-

extensions, based on wild-type anchors, are indicated in blue circles. B) Length-quantification of 

loops called by HICCUPS in wild-type, ΔSA1, ΔSA2 and ΔWAPL. Dashed line denotes median. 

C) Aggregate peak analysis of the predicted extended loops in wild-type and the three knockouts 

(top). Differential plots comparing knockouts to wild-type are shown in the bottom row, where red 

indicates an enrichment in the knockout. D) Immunofluorescence of DNA-bound SCC1, showing 

the vermicelli-phenotype in ΔWAPL. E) The aggregate tornado-plot extracts the signal around and 

at every individual loop visualises them as a heatmap, with a loop at every row (left). A K=3 

clustered tornado on the APA-discovery object of figure 6C. Cluster 3 harbours ΔSA2-specific 

extended loops. F) Aggregate region analysis on wild-type data, using upstream anchors of all 

loops (primary) and those of the extended loops from the clusters found in figure 6E.  G) 

Quantification of the upstream regions from the ARA of figure 6F (left) and of the complimentary 

analysis of the downstream anchors (right). 

 

Supplementary Figure  1: GENOVA can produce tornado-plots of tracks and aggregations 
and produces robust results. 
A) Calculating and aligning the insulation score of multiple samples can be done with the 

insulation_score and insulation_tornado tools. B) Log-fold changes in RCP between 

the downsampled Hi-C matrices and the full high-depth dataset. C) Tornado-plots of an APA-

discovery object, containing primary loops of Haarhuis et al. (2017), with K=4. D) RCP-outputs of 

siSA1 and siSA2 from Kojic et al. (2018), from either the hic-pro or juicer input. E) Number of loops 

surveyed in an APA versus the time taken for both 10kb and 25kb. Blue line denotes APA tool from 

GENOVA; yellow line denotes APA from juicer_tools.jar. F,G) ATA and APA of WT Hap1, 

subsampled to various levels of sparsity. 

 

Supplementary Figure 2: Knockout-strategy of Hap1 ΔSA1 and ΔSA2. 
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A) A puromycin-cassette is inserted by CRISP-cas9 in the third and fourth exon of SA1 and SA2, 

respectively. B) PCR confirms the loss of the endogenous locus and the gain of the puromycin-

cassette at the targeted sites.  

 

Supplementary Figure 3: Contact-distributions of ΔSA1- and ΔSA2-replicates show strong 
similarity. 
A) Relative contact probabilities of wildtype (black), ΔSA1 (blue) and ΔSA2 (red). Square denotes 

1-10mb distance-range. B) Zoom of 1-10Mb distances, showing the individual replicates. Replicate 

1 in solid line and replicate 2 in dashed line.  

 

Supplementary Figure 4: The loss of intra-TAD interactions is reproducible in SA2-
knockouts and -depletions. 
A) Snapshots of two regions on chromosome 5 and chromosome 9, showing wild-type in top-right 

and ΔSA2 in bottom-left triangle. B) Aggregate TAD analysis of Hap1 TADs in the separate 

replicates of ΔSA1 and ΔSA2 (top) and compared to wild-type (bottom). C) Quantification of the 

second diagonal in the ATA in B. D) Aggregate TAD analysis of MCF10A TADs in control, siSA1 

and siSA2 data of Kojic et al. (2018). 

 

 

Supplementary Figure 5: CTCF-stripes are increased in ΔSA2. 
A) Aggregate region analysis of wild-type, ΔSA1 and ΔSA2  on CTCF-motifs in the forward 

orientation. B) Quantification of the ARA on forward CTCF sites of supplementary figure 5A. C) 

APA of predicted extended loops in the data of Kojic et al. (2018). D) Western blot analysis 

confirms that WAPL levels are unaffected in ΔSA1 and ΔSA2. 
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Figure 1
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discovery

visualise
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Cooler analysis

QC

tools
A

B

bioinformatics

Global analyses include contact probabilities and compartments-analysis. CLI-user: a user that is 
comfortable and able to work on the command-line. Raw output means that the tools return the underlying 
data of results in a usable fashion.

tool language userbase input output

analyses*

QC global local aggregates

GENOVA R broad juicer, cooler, hic-pro raw, pdf, png + + + +

HiCdatR R bioinformatics proprietary pdf, png +

HiTC R broad hic-pro, my5C raw, pdf, png +

Coolpup.py Python CLI-user Cooler raw, pdf +

HiCExplorer Python CLI-user proprietary raw, png, pdf + +

HiCPlotter Python CLI-user hic-pro,proprietary jpg, pdf +

GITAR Python CLI-user proprietary png

Juicer tools Java bioinformatics juicer raw, png

NAT MATLAB Homer, Cooler pdf, png +

An overview of analysis-tools for Hi-C data.

hic_wt <- load_contacts("data/wt.hic") apa_wt <- APA( hic_wt, loops)
ara_wt <- ARA( hic_wt, ctcf)
ata_wt <- ATA( hic_wt, tads)

            ...            
v4c_wt <- virtual_4C(hic_wt, viewpoint)

print( apa_wt)
quantify( apa_wt)
visualise(apa_wt)
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Figure 1: GENOVA is a pipeline-agnostic R-package and includes the majority of Hi-C analyses.
A) Data from the three major pipelines can be loaded with the load_contacts tool into a contacts-object. 
Quality control and other analyses can then be ran on these objects: all tools generate the results in 
the form of a discovery-object. The user can print, visualise and quantify these objects. B) An overview 
of the tools and options in GENOVA and other Hi-C software. The majority of the available software 
focus on a subset of the possible analyses and are often restricted to specific mapping pipelines.
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Figure 2: The GENOVA-package contains a complete suite of tools for Hi-C analyses.
$��4XDQWLILFDWLRQ�RI�WKH�SHUFHQWDJH�FRQWDFWV�LQ�FLV�RI�:7�DQG�у:$3/�PDGH�ZLWK�WKH�cis_trans tool. 
B) Enrichments of contacts between all pairs of chromosomes with chromosome_matrix. Both the 
reciprocal 9-22 translocation and the addition of a fragment of chromosome 15 on chromosome 19 
lead to a high enrichment-score. C) Whole-arm chromosome matrices with compartment-scores for 
:7��WRS�ULJKW��DQG�у:$3/��ERWWRP�OHIW���7KH�PDWUL[�FDQ�HLWKHU�EH�WKH�3HDUVVRQ�PDWUL[��VKRZQ��RU�WKH�
contact-intensity.  D) The hic.matrixplot tool allows for the plotting of a regions of interest, includ-
ing annotations. Signal-tracks, gene-models and ChIP-seq peaks can be used for the annota-
tion-tracks above and to the left, while loops and TADs can be plotted on top of the matrix. All annota-
tions can be customised on placement and colour. E) Additionally, a second contacts-object can be 
added to the bottom-left half of the matrix (top triangle) or can be subtracted from the first contacts-ob-
ject to produce a differential matrix (bottom triangle). F) Features of the Hi-C data (top) can be summa-
rised with the aggregation-tools of GENOVA (middle) to produce genome-wide averages of the 
features (bottom). G) C-SCAn of pairwise combinations of CTCF ChIP-seq peaks on forward and 
UHYHUVH�ELQGLQJ�PRWLIV�LQ�FRQYHUJHQW��WRS�URZ��DQG�GLYHUJHQW��ERWWRP�URZ��LQ�:7�DQG�у:$3/�
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Figure 3: Generation of Hap1 SA1 and SA2 knockouts.
A) The two cohesin-variants differ in their SA subunits. B) Western blot analysis confirms SA1 knockout 
LQ�у6$��FHOOV�DQG�у6$��NQRFNRXW�LQ�у6$��FHOOV�
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Figure 4
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Figure 4: Far-cis differences between the cohesin-variants.
$��+L�&�PDWULFHV�RI�FKURPRVRPH��S�RI�ZLOG�W\SH��у6$��DQG�у6$���&RPSDUWPHQW�VFRUHV�DUH�SORWWHG�RQ�
top. Bars in matrices denote 5mb and 10mb distances in red and blue, respectively. B) Relative contact 
SUREDELOLWLHV�FRPSDUHG�WR�ZLOG�W\SH�LQ�ORJ��VSDFH��ZLWK�EOXH�GHQRWLQJ�у6$��DQG�UHG�GHQRWLQJ�у6$���&��
Saddle-plots (top) and differential saddles (bottom), with purple denoting more interactions in the 
sample compared to the wild-type. D) Boxplot of the compartmentalisation-strength per chromo-
some-arm (dots). *** indicates paired t-test p < .005.  
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Figure 5
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Figure 5: CohesinSA1-only cells have diminished intra-TAD contacts. 
A) Snapshots of two regions on chromosome 5 and chromosome 9, showing ΔSA1 in top-right 

and ΔSA2 in bottom-left triangle. B) Intersections of called TAD-boundaries in wild-type, ΔSA1 and 

ΔSA2. C) Aggregate TAD analysis of Hap1 TADs in wild-type, ΔSA1, ΔSA2 and ΔWAPL (top). 

Differential ATA compared to wild-type (bottom), which blue denoting loss of interactions in the 

specific sample. D) TAD-neighbour analysis: interactions between TADs, stratified on the number 

of TADs in between, compared to wild-type.  
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)LJXUH����([WHQGHG�ORRSV�LQ�у6$��DUH�IRUPHG�DW�ELGLUHFWLRQDO�ORRS�DQFKRUV�
$��3\UDPLG�SORWV�RI�ZLOGW\SH��у6$���у6$��DQG�у:$3/�DW�FKURPRVRPH�����3UHGLFWHG�ORRS�H[WHQVLRQV��
based on wild-type anchors, are indicated in blue circles. B) Length-quantification of loops called by 
+,&&836�LQ�ZLOG�W\SH��у6$���у6$��DQG�у:$3/��'DVKHG�OLQH�GHQRWHV�PHGLDQ��&��$JJUHJDWH�SHDN�
analysis of the predicted extended loops in wild-type and the three knockouts (top). Differential plots 
comparing knockouts to wild-type are shown in the bottom row, where red indicates an enrichment in 
WKH�NQRFNRXW��'�� ,PPXQRIOXRUHVFHQFH�RI�'1$�ERXQG�6&&���VKRZLQJ�WKH�YHUPLFHOOL�SKHQRW\SH� LQ�у
WAPL. E) The aggregate tornado-plot extracts the signal around and at every individual loop visualises 
them as a heatmap, with a loop at every row (left). A K=3 clustered tornado on the APA-discovery object 
RI� ILJXUH� �&�� &OXVWHU� �� KDUERXUV� у6$��VSHFLILF� H[WHQGHG� ORRSV�� )��$JJUHJDWH� UHJLRQ� DQDO\VLV� RQ�
wild-type data, using upstream anchors of all loops (primary) and those of the extended loops from the 
clusters found in figure 6E.  G) Quantification of the upstream regions from the ARA of figure 6F (left) 
and of the complimentary analysis of the downstream anchors (right).
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Supplementary figure 1
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Supplementary Figure 1: GENOVA can produce tornado-plots of tracks and aggregations and 
produces robust results.
A) Calculating and aligning the insulation score of multiple samples can be done with the insula-
tion_score and insulation_tornado tools. B) Log-fold changes in RCP between the downsam-
pled Hi-C matrices and the full high-depth dataset. C) Tornado-plots of an APA-discovery object, 
containing primary loops of Haarhuis et al. (2017), with K=4. D) RCP-outputs of siSA1 and siSA2 from 
Kojic et al. (2018), from either the hic-pro or juicer input. E) Number of loops surveyed in an APA versus 
the time taken for both 10kb and 25kb. Blue line denotes APA tool from GENOVA; yellow line denotes 
APA from juicer_tools.jar. F,G) ATA and APA of WT Hap1, subsampled to various levels of sparsity.
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6XSSOHPHQWDU\�)LJXUH����.QRFNRXW�VWUDWHJ\�RI�+DS��у6$��DQG�у6$��
A) A puromycin-cassette is inserted by CRISP-cas9 in the third and fourth exon of SA1 and SA2, 
respectively. B) PCR confirms the loss of the endogenous locus and the gain of the puromycin-cassette 
at the targeted sites. 
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Supplementary figure 3
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6XSSOHPHQWDU\� )LJXUH� ��� &RQWDFW�GLVWULEXWLRQV� RI� у6$��� DQG� у6$��UHSOLFDWHV� VKRZ� VWURQJ�
similarity.
$��5HODWLYH� FRQWDFW�SUREDELOLWLHV�RI�ZLOGW\SH� �EODFN���у6$�� �EOXH��DQG�у6$�� �UHG���6TXDUH�GHQRWHV�
1-10mb distance-range. B) Zoom of 1-10Mb distances, showing the individual replicates. Replicate 1 
in solid line and replicate 2 in dashed line. 
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Supplementary figure 4
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Supplementary Figure 4: The loss of intra-TAD interactions is reproducible in SA2-knockouts 
and -depletions.
A) Snapshots of two regions on chromosome 5 and chromosome 9, showing wild-type in top-right and 
у6$��LQ�ERWWRP�OHIW�WULDQJOH��%��$JJUHJDWH�7$'�DQDO\VLV�RI�+DS��7$'V�LQ�WKH�VHSDUDWH�UHSOLFDWHV�RI�у
6$��DQG�у6$���WRS��DQG�FRPSDUHG�WR�ZLOG�W\SH��ERWWRP���&��4XDQWLILFDWLRQ�RI�WKH�VHFRQG�GLDJRQDO�LQ�
the ATA in B. D) Aggregate TAD analysis of MCF10A TADs in control, siSA1 and siSA2 data of Kojic et 
al. (2018).
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Supplementary figure 5
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6XSSOHPHQWDU\�)LJXUH����&7&)�VWULSHV�DUH�LQFUHDVHG�LQ�у6$��
$��$JJUHJDWH�UHJLRQ�DQDO\VLV�RI�ZLOG�W\SH��у6$��DQG�у6$��RQ�&7&)�PRWLIV�LQ�WKH�IRUZDUG�RULHQWDWLRQ��
B) Quantification of the ARA on forward CTCF sites of supplementary figure 5B. C) APA of predicted 
extended loops in the data of Kojic et al. (2018). D) Western blot analysis confirms that WAPL levels 
DUH�XQDIIHFWHG�LQ�у6$��DQG�у6$��
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