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Abstract

Different theories have been proposed to explain how the human brain de-
rives an accurate sense of time. One specific class of theories, intrinsic clock
theories, postulate that temporal information of a stimulus is represented
much like other features such as color and location, bound together to form
a coherent percept. Here we explored to what extent this holds for temporal
information after it has been perceived and is held in working memory for
subsequent comparison. We recorded EEG of participants who were asked
to time stimuli at lateral positions of the screen followed by comparison
stimuli presented in the center. Using well-established markers of working
memory maintenance, we investigated whether the usage of temporal infor-
mation evoked neural signatures that were indicative of the location where
the stimuli had been presented, both during maintenance and during com-
parison. Behavior and neural measures including the contralateral delay ac-
tivity, lateralized alpha suppression and decoding analyses through time all
supported the same conclusion: the representation of location was strongly
involved during perception of temporal information, but when temporal in-
formation was to be used for comparison it no longer showed a relation to
spatial information. These results support a model where the initial percep-
tion of a stimulus involves intrinsic computations, but that this information
is subsequently translated to a stimulus-independent format to be used to
further guide behavior.

Introduction

Most of our behavior benefits from an accurate sense of time, from holding a fluent
conversation with well-timed pauses, to playing music or sports, to navigating traffic. Tim-
ing is crucial to determine when to act or when to expect an upcoming event. Therefore,
understanding the mechanisms, processes and representations of time and durations in the
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brain are essential aspects of understanding human cognition and behavior as a whole. To
this end, a wide array of competing models and theories have been proposed: One of the
most recent review articles lists eighteen different models (Addyman et al., 2016; see also
Hass & Durstewitz, 2014), each relying on different assumptions and computations.

Models of timing are typically evaluated and constrained on the basis of errors and
biases in time perception displayed by both humans and other animals. For example,
the ‘scalar property’ describes that variability in perceived duration is proportional to the
objective duration (Gibbon, 1977; Hass & Herrmann, 2012; Kacelnik et al., 1990; Malapani
& Fairhurst, 2002). As this is so commonly found in both human and nonhuman timers this
has been described as a hallmark of interval timing models (Buhusi & Meck, 2005; Okamoto
& Fukai, 2001). Other factors that are typically considered include how time perception
is affected by the physical properties of the timed stimulus (Eagleman, 2008; Schlichting,
de Jong, et al., 2018; Walsh, 2003), the contextual or emotional salience of the stimulus
(Allman et al., 2014; Droit-Volet & Meck, 2007; Ernst et al., 2017; Halbertsma & van Rijn,
2016; Matthews, 2011), the influence of past timing experiences (Jazayeri & Shadlen, 2010;
Lejeune & Wearden, 2009; Maafl, Schlichting, et al., 2019; Roach et al., 2017; Schlichting,
Damsma, et al., 2018; Taatgen & van Rijn, 2011), and how temporal percepts are affected
by neuropharmacological substances (Coull et al., 2011; Meck, 1996; Soares et al., 2016) or
aging processes (Lustig & Meck, 2001; Maaf}, Riemer, et al., 2019; Turgeon et al., 2016).

While such studies have yielded important constraints on the dynamic computations
that underlie a temporal percept, much fewer studies have directly investigated the actual
representation of this percept. Consider, for example, the simple task of sequentially per-
ceiving two intervals of different durations, followed by the question: “which interval lasted
longer?” Such a task will not only involve the perception of time, but also requires one to
commit some representation of the first duration to memory in a manner that it is then
usable for comparison with the second interval. The present study aims to investigate the
nature of this representation.

With respect to this representation, the wealth of models and theories on timing can
be coarsely divided into two classes. In dedicated clock models (e.g., Gibbon, 1977; Gu
et al., 2015; Matell & Meck, 2004; van Rijn et al., 2014), the representation of time is
functionally decoupled from the imperative stimulus. These models assume that sensory
events are processed and subsequently fed into a largely independent timing system. Sensory
information serves to signal the onset or offset of an interval, and can, in some models,
trigger or modulate internal dynamics that give rise to the temporal percept. However, the
end result of timing is represented by a dedicated circuit and is in itself not linked to the
presented stimulus or any of its features. For example, the Striatal Beat Frequency model
assumes that the representation of time derives from a concert of oscillatory activity at
slightly different frequencies, which are reset by the perceived onset of an interval. Whenever
time is to be read out and committed to memory, it is represented by the state of the peaks
and troughs in each frequency band. This representation is completely independent from
the stimulus that initially triggered the oscillations.

By contrast, intrinsic clock models (e.g., Finnerty et al., 2015; French et al., 2014;
Mauk & Buonomano, 2004; Paton & Buonomano, 2018) assume that the representation of
time is a product of the stimulus percept itself. In these models, perceiving the stimulus
triggers dynamics that are intrinsically part of a stimulus representation, just like features
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such as location and shape, but that can be used to infer time. In some models, such as the
Temporal Context Model (Shankar & Howard, 2010; and its successors Shankar & Howard,
2011, 2013) and the Gaussian Activation Model of Interval Timing (French et al., 2014),
the perceived time of an interval is directly derived from its representation in memory.
These models typically assume that the stimulus representation is not static but gradually
changes as a function of time, which endows these representations with the capabilities of
an intrinsic clock.

While dedicated and intrinsic clock models differ in their assumptions regarding the
representations and dynamics involved in the perception of duration, models of both classes
assume that in a comparison task, the duration percept must somehow be committed to
memory. As such, the nature of working memory for time poses important implementation
constraints for all models of timing. Nevertheless, models typically make no claims about
how temporal information is represented in working memory. Therefore, here we attempt
to map this representation by means of electroencephalography (EEG). In particular, we
will measure lateralized signals that are ubiquitously studied in visual working memory
research and which suggest that space might be a crucial dimension to bind features of
representations in memory. Here, we investigate whether these spatial signatures can also
be observed when durations are to be maintained.

The first of these signatures is the Contralateral Delay Activity (CDA), a component
in the event-related potential (ERP) that was originally identified in change detection ex-
periments (Eimer & Kiss, 2010; Tkkai et al., 2010; Luria et al., 2016; Vogel & Machizawa,
2004). When participants are required to remember items presented on one side of the
screen, then a sustained occipital contralateral negativity is observed. The amplitude of
this component can be related to the memory load on the trial, and to the memory capac-
ity of the participant. Interestingly, a CDA is also found in studies where the location of the
remembered stimulus is irrelevant for the upcoming task, for example when the stimulus is
to be used in visual search (Carlisle et al., 2011; Woodman et al., 2013) or merely has to
be recognized in the center of the screen (Gunseli et al., 2014). Together with the CDA-
component found in the ERP, working memory for laterally presented items is often found
to yield a contralateral suppression of frequency power in the alpha band (Klimesch, 2012;
Mazaheri, 2010; Van Driel et al., 2017). Such lateralized alpha suppression has been linked
to both maintenance of items in working memory, as well as covertly attending a location
in space (Foster et al., 2017; Sauseng et al., 2005; van Diepen et al., 2016; van Moorselaar
et al., 2018).

Lateralized neural signatures have not only been found for memory maintenance but
similarly for when visual information is retrieved from memory. The N2pc is an occipital
contralateral negative inflection of the ERP typically found 200-350ms after a stimulus and
is assumed to reflect attentional orienting (Eimer, 1993; Eimer & Grubert, 2014; Luck et al.,
1993; Luck & Hillyard, 1994; Tan & Wyble, 2015). While the N2pc is classically studied in
the context of visual search, various studies have reported that retrieving lateralized stimuli
from working memory similarly evokes an N2pc (Dell’Acqua et al., 2010; Kuo et al., 2009;
Leszczynski et al., 2011). Much like these effects on the ERP, orienting to endogenous
representations in working memory has been found to produce lateralized suppression of
alpha-band power. In these cases, alpha power is found to be suppressed, contralateral to
the side that an item that was presented that either has just become relevant or is expected
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to become relevant. In most studies such orienting is explicitly triggered by means of
retro-cues (Poch et al., 2014; van Ede, 2018; Wolff et al., 2017), but it is also observed in
experiments where a sequence of subtasks sequentially requires the activation of a different
item from memory (de Vries et al., 2017, 2019). Particularly relevant to the present research,
orienting responses in the alpha band have also been found in a task where no explicit cues
for retrieval are given, but where instead the duration of the memory delay itself informed
participants which of two memory items is more likely to be tested (van Ede et al., 2017).

These findings constitute lateralized signatures of maintenance and retrieval of work-
ing memory items. Crucially, in most of these studies, lateralized EEG-responses were
found despite the fact that spatial information was itself irrelevant for the task: often only
non-spatial features of these items, such as color or orientation needed to be maintained.
These findings suggest that the memory representation of visual features inherently in-
cludes spatial information, which is subsequently detected in the EEG. The visual cortex
is spatiotopically organized, and space is the primary dimension along which features are
bound in many computational models of working memory storage (Oberauer & Lin, 2017;
Schneegans & Bays, 2017; Swan & Wyble, 2014). Therefore, we reason that if the work-
ing memory representation of time is similarly bound to sensory information, these spatial
neural signatures would be the most likely markers to detect such binding.

Specifically, participants were sequentially presented with two intervals (Interval 1 and
Interval 2), separated by a memory delay. Participants subsequently had to determine which
of the intervals was longer. Each interval was presented by means of visual markers: stimuli
that were briefly presented to indicate the start- and the end-signal for timing. Critically,
for Interval 1 these markers were lateralized, that is, presented on either the left or right
side of the display, whereas the markers for Interval 2 were both presented in the center.
If temporal information uses a representation that is bound to spatial information, then
we should find lateralized EEG-signals indicative of maintenance, retrieval, or anticipation
during the centrally presented second interval. In that case, their dynamics and their
timing could be informative of how such a comparison task is solved: for example, temporal
information might be retrieved either only at the start or end of Interval 2, or might be held
active throughout comparison. Furthermore, signals of retrieval might reflect anticipation
of the start- or end of Interval 2 (cf. van Ede et al., 2017), or they might be evoked in
response to the stimuli marking its duration (cf. Kuo et al., 2009).

To further disentangle the precise role of memory representations in such a comparison
task, we additionally manipulated the manner in which Interval 1 was presented. In blocks
with ‘Same’ trials , the start- and end-marker were presented in the same side of the screen,
whereas in ‘Opposite’ blocks, they were on opposite sides. If we observe lateralized neural
responses in both of these block types, then the direction of such lateralization could help
us identify whether this reflects retrieval of the start-moment, the end-moment or both.
Should we only observe lateralization in the EEG in ‘Same’ blocks, then this might point to
a representation where the interval duration as a whole is bound to one location in space,
and retrieved during comparison.

Additionally, we explored whether lateralized neural responses would differ between
correct- and incorrect trials, thereby attempting to relate these signatures to behavior. If the
representations underlying lateralized neural signatures play a functional role in maintaining
accurate memory for time, then these neural responses may be found to be weaker or absent
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on incorrect trials. However, as we will show, behavioral performance on this task was
reasonably high. As a result, the number of trials to assess neural signatures on ‘incorrect’
trials was limited and variable across participants.

Method

Participants. We collected data from 24 healthy participants with normal or
corrected-to-normal vision, who were recruited through the participant pool of the Faculty
of Behavioral and Movements Sciences of the Vrije Universiteit Amsterdam. All partici-
pated for course credits or monetary compensation (€10/hour). Data of four participants
were discarded after EEG data preprocessing (described below), two of which due to the
number of noisy channels (8 and 10 electrodes) and two due to the high percentage of
discarded data segments (38% and 52%) due to contamination from muscle artefacts or
horizontal eye movements. No participants were excluded based on behavior. We inspected
behavioral performance, we fit an individual logistic regression model to the proportion of
‘longer’ responses as a function of At = (Interval 2 - Interval 1), and all slope coefficients
were less than 2 SD away from the group mean. The final sample contained 20 participants
(ages 19-26, Mean age 21.9, 10 female). For all participants, informed consent was obtained
before participation, and all procedures during the experiment were in accordance with the
Helsinki declaration. The protocol was approved by the ethical review board of the Faculty
of Behavioral and Movement sciences of the Vrije Universiteit Amsterdam.

Procedure and stimulus presentation. Participants were seated in a darkened,
sound-attenuated room at 75cm viewing distance from a 22 inch screen (Samsung Syncmas-
ter 2233, 1680 x 1050 resolution, 120 Hz refresh rate). The experiment was programmed
and presented using OpenSesame (Mathot et al., 2012) with the PsychoPy back-end (Peirce,
2007). The stimulus sequence of a trial is schematically depicted in Figure 1A (gray and
black colors in Figure 1A are inverted for visibility). Trials started with a gray fixation
cross (0.2°), on a black background for 1000ms, followed by the onset of three, horizontally
aligned gray placeholder circles (radius 1.97°, one in the center and two at 9.83° eccentric-
ity) around a central gray fixation dot (0.2°). The placeholders and fixation dot stayed on
screen until the end of the trial.

The presentation of Interval 1, the ‘standard interval’, started 500ms after placeholder
onset, and was indicated by an onset- and offset marker flashing (125ms) in either the left or
right placeholder. Both markers were red diamonds (3.94° width and height). Their SOA
defined the standard interval, which was randomly sampled from a uniform distribution
U(1250—2250ms). After the offset marker was presented, a 1250ms memory delay followed.
Interval 2, the ‘comparison interval’, was then similarly presented by means of an onset- and
offset marker, each a green square (same surface area as the diamonds, sides 2.79°%; 125ms)
presented in the central placeholder circle. The duration of Interval 2 was derived from
the sampled duration of Interval 1, factorially defined to last either 10% or 20% shorter or
longer. For example, if the sampled duration of Interval 1 was 1500ms, Interval 2 could last
either 1200, 1350, 1650 or 1800ms. The resulting uniform distributions of possible Interval
2 durations are depicted on the right of Figure 1A. Visualizations of the empirical interval
distributions are available in the online Supplemental Information (https://osf.io/7gpka/,
Figure S1).
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The offset marker of Interval 2 was followed by a 1250ms response delay. The shape
and color of the interval markers were chosen so that Interval 1 and Interval 2 would not
share any non-temporal features that might automatically trigger the retrieval of spatial
information. The minimum duration between stimuli, 1250ms, was chosen to be long enough
for the relatively sluggish lateralized alpha response to emerge and resolve completely (de
Vries et al., 2018; Van Driel et al., 2017).

Participants were instructed to maintain fixation on the center of the screen through-
out the trial and not to move their eyes towards the peripheral stimuli. They were asked
to compare the duration of the stimuli and determine whether the second interval was
shorter or longer than the first. Once the response screen appeared, they could indicate
their answer by pressing ‘Z’ or ‘M’ on a standard QWERTY keyboard with their left or
right index finger. On each trial, the mapping of these keys varied unpredictably and was
unknown to the participant until the response screen appeared. This was done to prevent
any (lateralized) motor preparation signals contaminating the EEG. On the response screen,
the options (Z and M) were presented centrally above or below fixation accompanied by
the words “shorter” (above fixation) or “longer” (below). Participants were instructed to
prioritize accuracy over response speed.

Participants completed eight blocks of 40 trials each. Before each block, participants
were informed how Interval 1 would be presented: via markers on the ‘Same’ side or on
‘Opposite’ sides (Figure 1B). Note that in either block type, participants could not predict
the location of the Interval 1 onset marker, but after its presentation, the location of the
offset marker was fully predictable. All combinations of the percentage change and the
onset location of Interval 1 were presented five times per block in a random order. Block
types (Same/Opposite) alternated and their order was counterbalanced across participants.
Before starting the experiment, participants completed practice blocks with Same and Op-
posite marker presentations, ten trials each. These practice trials were not considered in
any of the analyses.

FEEG acquisition and data cleaning. EEG data were recorded at 512Hz from
64 channels (BioSemi, Amsterdam, The Netherlands; ActiveTwo system, 10-20 placement;
biosemi.com), with two additional electrodes placed at the earlobes, two placed 2cm above
and below the right eye, and two electrodes placed lcm lateral to the external canthi. All
offline analyses and data cleaning steps were performed using MNE-python (Gramfort et al.,
2013; Gramfort et al., 2014) and R (R Core Team, 2018). EEG data were re-referenced to
the average of the data from the earlobes, and V/HEOG traces were created by subtracting
data from the opposing channels around the eyes.

For data cleaning, three filtered versions of the raw dataset were created by means
of zero-phase FIR filters: band-passed at at 110-140Hz to highlight muscle artefacts; high-
passed at 1Hz, removing medium-slow drifts to be used for independent component analysis
(ICA); and one high-pass filtered at 0.1Hz to be used for the main analyses. Most algo-
rithms that were used for data cleaning assume epochs of equal length reflecting “trials” as
their input. Unless otherwise specified, we used “preprocessing epochs” as input for these
algorithms. The size of these epochs was based on the shortest possible interval durations
(1250ms and 1000ms for Interval 1 and 2 respectively), the fixed 1250ms memory delay
between them, and the fixed 1250ms response delay. These epochs thus spanned -2500ms
— 2250ms around the onset of Interval 2. The preprocessing epochs were not used in any
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Figure 1. Schematic representation of the design. Note that in the experiment, fixation-,
placeholder stimuli were gray on a black background (here inverted for legibility) A The
general sequence in all trials. A trial is initiated by the appearance of three placeholder
stimuli, indicating where Onset- and Offset markers can appear. This is followed by the
presentation of Interval 1, the memory delay, Interval 2 and the response delay, after which
participants are probed to indicate which Interval was longer. The duration of Interval
1 (red clock) was a uniform random sample between 1250 and 2250. Interval 2 duration
(green clock) was based on Interval 1, and was either 10% or 20% shorter or longer. B Two
trial types were presented in blocked fashion and differed in how Interval 1 was presented.
Both markers in ‘Same’ blocks (top row) were in the same location, but in ‘Opposite’
blocks (bottom row) they were in opposite locations. Note that the marker locations in
Interval 1 determine which electrodes are labeled as ‘contralateral’” and ‘ipsilateral’ in the
analyses, both for Interval 1 as for Interval 2 where markers were presented in the center.
For ‘Opposite’ trials, this means that these labels alternate for each consecutive data epoch
in the same trial, as illustrated in the bottom row.

difference =
contra -

of the analyses, which instead were based on four epochs surrounding the on- and offset
markers (see below). Rather, preprocessing epochs were used to determine the thresholds
for artefact detection, which were subsequently used to accept or reject data in the analysis
epochs.

Following the PREP-pipeline (Bigdely-Shamlo et al., 2015) we first identified exces-
sively noisy channels by means of the RANSAC algorithm, as implemented by the ‘autore-
ject’ package (Jas et al., 2017). This procedure generates permutations of the epoched data,
and predicts full channel activity by interpolating data from a subset (25%) of the channels.
If the correlation between the observed and interpolated data is less than a threshold value
(r < 0.75) in more than 40% of the epochs, the channel is classified as ‘bad’. In our dataset,
the algorithm identified 6 (n=1), 4 (n=1), 2 (n=2), and 1 (n=3) faulty channels per par-
ticipant, which were found to be in agreement with visual identification. Faulty channels
were primarily located on more peripheral electrode sites, and did not overlap with the
preselected electrodes of interest at parieto-occipital sites (see Supplemental Information,
Table S1). We excluded these channels from all other preprocessing steps.

Muscular activity can introduce broadband noise that overlaps with neural activity in
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the EEG signal, which can be challenging to filter out (Muthukumaraswamy, 2013). There-
fore, we sought to identify data segments that might have been contaminated by muscle
artefacts and remove data from epochs that contained such contaminated segments. To do
so, we used a procedure adopted from the PREP-pipeline (Bigdely-Shamlo et al., 2015) also
offered by FieldTrip (Oostenveld et al., 2011). This procedure is based on the observation
that muscle contamination is characterized by high-frequency power found simultaneously
across multiple electrodes. To identify epochs with such contamination, we used the 110-
140Hz band-passed dataset, computed its Hilbert envelope and convolved the result with
a 200ms boxcar averaging window. This yielded a per-channel time course estimate of
high-frequency power in the original signal. Across all data in the preprocessing epochs, we
computed a per-channel median and median absolute deviation, and used these to compute
a robust Z-score for all data inside and outside these epochs. Data at time points where
the Z-score averaged across channels exceeded 5.0 were marked as contaminated and were
not considered in future analyses.

ICA was used to identify and remove artefacts in the data caused by eye blinks. We
first subsampled the high-pass filtered (at 1Hz) dataset at 102.4Hz (=512), and computed
independent components (using extended-infomax ICA, the default in EEGLAB; Delorme
& Makeig, 2004). From the resulting spatial components, we visually identified those cor-
responding to blinks. To confirm the validity of this approach, we defined ‘blink epochs’, as
1000ms windows around local maxima in the 1-10Hz band-passed VEOG signal. The time
course of the selected ICA components, and only these components, had a high correlation
with the VEOG signal in these epochs (r? > .5).

To identify horizontal eye movements, we used a procedure inspired by methods from
ERPLAB (Lopez-Calderon & Luck, 2014): Data from the HEOG signal were high-pass
filtered at 1Hz, and convolved with a stepwise kernel, defined by 150ms each of -1 and +1
values, with a 25ms linear ramp between them. In the resulting signal, local maxima that
exceeded the 99th percentile were marked as potential horizontal saccades. Data from the
start of such a mark up to the end of the current trial were excluded from further analyses.

The autoreject algorithm (Jas et al., 2017) was used on the preprocessing epochs
in order to identify trials with unreasonably high amplitude fluctuations. This algorithm
improves on typical epoch rejection methods that use a fixed threshold, and instead esti-
mates optimal channel-specific thresholds by means of cross-validation methods inspired by
RANSAC. In epochs where a channel’s peak-to-peak value exceeds its threshold, autoreject
will initially attempt to interpolate that channel’s data from neighboring channels. Only if
the number of to-be-corrected channels in an epoch is above an additionally fit integer k,
the entire epoch is rejected. We fit autoreject on the preprocessing epochs to find individual
thresholds per participant per channel (Supplemental Information, Figure S2)).

Using the results of these preprocessing algorithms, we created ‘cleaned’ data epochs
around moments of interest. In each trial, four epochs were defined with data surrounding
the presentation of each marker: the onset/offset of Interval 1 and the onset /offset of Interval
2 (Table 1). Time windows were chosen to be maximally long without overlapping with other
markers (Table 1). As a consequence, onset- and offset-locked intervals contain partially
overlapping data, with the amount of overlap dependent on the interval duration. For each of
these time windows, ‘cleaned’ epochs were created: first, the raw dataset (high-pass filtered
at 0.1Hz) was loaded after which the ICA components related to blinks were removed. Data
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epochs were extracted, where epochs were dropped if they contained muscle artefacts or if
they contained data following a horizontal eye movement on the same trial. The autoreject
algorithm was then applied to interpolate data with extreme peak-to-peak amplitudes or
drop rejected epochs. Finally, data from faulty channels as identified by RANSAC were
interpolated on the basis of the neighboring channels. The resulting number of clean epochs
per participant used in all analyses is given in online Supplemental Information, Figure S3.

Epoch / Event tmin  tmax Includes
Omnset Interval 1 -1250 1250 Placeholder onset, Onset marker, Start Interval 1
Offset Interval 1 -1250 1375 End of Interval 1, Offset marker, Memory delay

Onset Interval 2 -1375 1000 Memory delay, Onset marker, Start Interval 2
Offset Interval 2 -1000 1250 End of Interval 2, Offset marker, Response delay
Table 1

Epoch definition

FEvent related potentials. To construct ERPs, all epochs were baseline corrected
by subtracting the average data of each channel in the 100ms leading up to the onset of
the placeholders !. We then computed two average signals for the electrode clusters [P7,
P5, PO7, PO3, P3, P1] and [P8, P6, PO8, PO4, P4, P2| on left and right parieto-occipital
sites. These electrodes were selected on the basis of earlier work (de Vries et al., 2017, 2019;
Van Driel et al., 2017), and corresponded to the visually identified locus of peak lateralized
responses. On each trial, in each data epoch, these two signals were labeled as ‘contralateral’
and ‘ipsilateral’ with respect to the onset- or offset marker under consideration (Figure 1B).
For epochs around the onset- and offset of Interval 2, with centrally presented markers,
‘contralateral’ and ‘ipsilateral’ were defined based on the onset- and offset location of Interval
1. The dependent measure in all ERP analyses was the difference between contralateral
and ipsilateral sites, which would indicate lateralized neural responses.

Note that this lateralization definition is in line with convention, but has consequences
for how lateralization is computed on ‘Same’ and ‘Opposite’ trials (Figure 1B). To illus-
trate this point: a ‘Same’ trial where the onset- and offset marker are both presented on
the left side, the contrast between contralateral and ipsilateral sites entails computing the
difference in activity (Right - Left) in the same way in all four data epochs. However, on an
‘Opposite’ trial, an onset marker on the left is followed by an offset marker on the right, and
lateralization in that epoch is computed accordingly (Left - Right). The subsequent data
epoch around the central onset marker for Interval 2 is again referenced with respect to the
marker location of Interval 1 onset (Right-Left), and data surrounding the offset marker is
again referenced in the opposite direction (Left-Right).

Time-frequency analyses. Time-frequency spectra were computed for the same
four data epochs in a trial (Table 1). We computed frequency power for frequencies
F = 2 to 40Hz, in 25 steps on a geometric scale. That is, each subsequent frequency
was a multiple of a constant growth factor (1.133Hz). To prevent temporal edge-artifacts,

! Another approach would be to subtract pre-stimulus baseline activity for each marker separately. That
approach is better suited to isolate effects in the transient evoked responses post-stimulus, but is likely
to obscure potential slow-wave lateralization differences that might still be present right before stimulus
presentation (like the CDA). We have ran analyses where epochs were re-baselined as such, but these did
not lead to different conclusions
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the spectra were computed over epochs that were 1.0s wider than the data of interest.
Before computing frequency power, the overall evoked response was subtracted from the
individual data epochs. We used multitaper filtering, using 500ms windows tapered with
three Slepian windows and subsequently zero-meaned. Data and filters were convolved by
multiplication in frequency space after fast-fourier transformation. Note that compared to
many approaches using wavelet convolution, this multitaper approach tends to be more
accurate in determining the timing of power effects at the cost of being somewhat less ac-
curate in terms of frequency. After filtering, time-frequency data were cropped to align
with ERPs, and were sub-sampled to 102.4Hz (:%) Power was baselined and converted
to decibel (dB) with respect to the per-trial average power 300-100ms before placeholder
onset.

As for the ERPs, frequency power was spatially averaged across left-and right occipito-
parietal electrodes, and subtracting contra- from ipsilateral sites yielded a measure for
power lateralization. For analyses contrasting different trial types (same/opposite; cor-
rect /incorrect) we focused on the time course of lateralized alpha power, by first averaging
data across frequencies between 7 and 13 Hz.

Classification analyses. Using a classification analysis, we investigated whether
information regarding marker locations was maintained or retrieved in a manner that was
not reflected in lateralized parieto-occipital ERPs. To this end, we trained logistic classifiers
to predict the location of the onset- or offset marker from the 64-channel EEG data. Asinput
to these classifiers, we used the epoched data, low-pass filtered at 35Hz and subsampled to
64Hz. Classifiers were trained on 125ms sliding window segments of data (8 time points X
64 channels) which were Z-scored and used as input features. This setup was constructed to
produce high classification performance in decoding the onset marker of Interval 1, and was
subsequently applied to decode other epochs. To prevent overfitting, classifier performance
in each epoch was evaluated on the basis of 10-fold stratified cross-validation. Performance
on each datafold was scored using the area under the curve (AUC) of the receiver-operator
curves. Compared to ‘accuracy’, the AUC is a better performance metric to quantify
classifier sensitivity while accounting for potential biases in choosing one class over the
other. A perfect classification would yield a score of 1.0, whereas scores around 0.5 reflect
an inability to meaningfully decode the marker location from the neural data.

Statistics. Participants’ behavior was characterized by means of General Linear
Mixed-Effects regression (Baayen et al., 2008). Models were constructed to predict which of
the two intervals was perceived as longer using logistic regression with predictors including;:
the length of Interval 1, the length of Interval 2, their absolute difference (in seconds), their
proportional difference (percentage change), and block type (Same/Opposite presentation).
All models with different combinations of these predictors, with and without interactions
between main effects, were compared by means of their BIC scores. We report the result-
ing best model, and report statistical evidence for or against effects (likelihood ratio test
x? statistic, corresponding p-value, and ABIC) by comparing nested models that either
included or excluded the effect under consideration.

The computation of ERPs, time-frequency- and classification scores were initially
all done independently per subject, resulting in time courses and time-frequency spectra
for each data epoch under consideration. These multivariate measures were subjected to
group-level statistical testing using cluster-based permutation tests (Maris & Oostenveld,
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2007). Clusters were defined as regions adjacent in time and frequency where univariate
statistical testing yielded a p-value lower than 0.05. Low-variance t-values were corrected
for using ‘hat’ variance adjustment (Ridgway et al., 2012) with a correction factor § = 0.001.
The t-values within each cluster were aggregated into a single cluster statistic by summing
them together. The same cluster statistic was computed in 5,000 random permutations,
the results of which were used as a nonparametric null distribution. An observed cluster
was considered statistically significant with respect to this distribution at o = 0.05.

Results
Behavior
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Figure 2. Proportion of trials where participants perceived Interval 2, the compari-
son interval, as longer. Curves reflect responses predicted by the preferred statistical
model with three predictors: the percentage change, Interval 2 duration, and block type
(Same/Opposite). For comparison, the data points reflect the proportion of ‘longer’ re-
sponses in three ‘Interval 2 duration’ bins defined separately per ‘percentage change’ con-

dition. Error bars reflect 95% within-subject confidence intervals (Cousineau, 2005; Morey,
2008).

The best model in terms of BIC predicted ‘longer’ responses as a function of three
additive main effects (Figure 2). First, responses were determined by the percentage change,
included in the model as a linear predictor (x2(1) = 23.8,p < 0.001, ABIC = 15.0). This
predictor captures that participants accurately performed the task: that is, they were more
likely to produce a ‘longer’ response on trials that indeed had a longer Interval 2 and vice
versa, with more certainty for the 20% change than the 10% change conditions.

Second, participants were more likely to respond ‘longer’ on trials where the second
interval was physically long. (x?(1) = 298.8,p < 0.001, ABIC = 296.0). This suggests that
participants at least in part made a decision based on the absolute duration of Interval 2,
regardless of how it related to Interval 1. Although this could reflect participants’ poor
memory for Interval 1 on some trials, note that it could also reflect a strategic weighting
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Figure 3. Lateralized ERPs during epochs around the markers of Interval 1 A-C and
the markers of Interval 2 D-F. The three rows of subplots depict, from top to bottom,
the ERPs across all trials, in ‘Same’ and ‘Opposite’ trials separately, and in correct versus
incorrect trials separately. Data in these plots were low-pass filtered at 35Hz for visualization
only. Colored horizontal line segments indicate clusters where the corresponding condition
significantly deviates from 0. Gray segments in B and E indicate significant differences
between ‘Same’ and ‘Opposite trials’.

of evidence: in the present task, the absolute duration of Interval 2 is a good heuristic to
determine whether the interval is relatively longer too (see Figure 1A).

Third, we found that participants’ judgments were modulated by the manner of pre-
sentation of Interval 1. That is, in blocks where markers were on opposite sides of the
screen, Interval 1 was more often perceived longer than Interval 2 than in ‘Same’-blocks
(x%(1) = 91.2,p < 0.001, ABIC = 82.5). The EEG results presented below offer tentative
evidence that this finding relates to the neural response evoked by the offset marker in
‘Opposite’ blocks. However, as this does not immediately relate to the current research
question, we have presented a more in-depth investigation elsewhere (Kruijne et al., 2020).
In the present article, EEG analyses will focus on neural markers for memory maintenance
and retrieval.

ERP analyses

Figure 3 depicts the ERP waveforms during the epochs surrounding the onset- and
offset markers of Interval 1 (A-C) and Interval 2 (D-F). Note that for the centrally pre-
sented Interval 2, ‘ipsilateral” and ‘contralateral’ electrodes are defined with respect to the
corresponding marker location during Interval 1 (cf. Figure 1)B.
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Interval 1. Figure 3A depicts the ERP computed from all trials at contralateral
and ipsilateral sites, as well as the lateralized signal computed as their difference. The figure
depicts the ERP evoked by the onset (left) and offset (right) of Interval 1. The left plot shows
that before the onset of the interval, the onset of the placeholders (dotted line at t = —0.5s)
gives rise to a large, bilateral visual response in both hemispheres. The lateralized onset
marker at ¢ = Os gives rise to a second visual response, which gives rise to lateralization
in the ERPs. This is characterized by an early lateralized response, offset by an early
(90-145ms) significant postivity. Interestingly, this is shortly after followed by another
significant contralateral positive cluster (305-482ms). While we had expected to find a
negative component here (the N2pc), there are reported conditions where this component
reverses, which we will come back to in the Discussion. After this initial positive component,
however, this gradually deflects into a negative component starting at approximately 400ms,
yielding a sustained negativity marked by two significant clusters (594-1076ms)2. This
sustained negativity matches the typical profile of the CDA.

Leading up to the offset of Interval 1 (Figure 3A, right), the grand-average ERP
does not show signs of lateralization in anticipation of the upcoming marker. Following
the presentation of the offset marker, the grand-average ERP showed a lateralized evoked
response that was highly similar to that in response to the onset marker, although here
none of the early positive and negative inflections were found to be significant. The later,
sustained contralateral negativity resembling a CDA was marked by three significant clusters
(576 — 1199ms).

In Figure 3B, the lateralized ERPs are depicted separately for ‘Same’ and ‘Opposite’
trials. These analyses were intended to further separate whether start- or end-marker
locations were being maintained or retrieved during comparison, or whether the location was
only represented in memory when the entire duration was presented at the same location.
In response to the Interval 1 onset marker, both conditions evoke virtually identical ERPs,
with similar clusters indicating significant differences in either condition as in the grand-
average ERP. Between the two conditions, no significant differences were found.

In the data surrounding the offset marker (right plot), two notable differences between
Same- and Opposite presentation conditions can be observed. First, results suggested that
the CDA evoked by the onset marker persisted throughout most of Interval 1 in the data
before the offset marker. In Same-trials, we still found a contralateral negativity, which
gave rise to a significant cluster (-773 to -689ms). In Opposite trials, the ERP is mirrored
with respect to the data from the onset marker, and as a result the same CDA component
now manifests as a sustained positivity (two significant clusters from -871 to -672ms). Note
that because of these mirrored lateralized components, the grand average ERP plotted in
Figure 3A shows no significant lateralization as it collapsed across these conditions. The
mirrored CDA components also result in a significant difference between the two conditions
(-904 to -520ms). No significant clusters were found in the final 500ms of the interval,
although numerically, lateralization seemed to persist.

Second, in response to the offset marker, an early lateralized positivity was found for
‘Opposite’ trials (significant cluster 295 to 373ms) but not for ‘Same’ presentations, with
a significant difference between them from 195 to 455ms. In part, this condition difference

2in this and all subsequent descriptions, we will treat adjacent clusters as one ‘effect’ wherever they are
less than 50ms apart and denote effects in the same direction.
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might be accounted for by the CDA difference described above, which numerically persisted
up to the offset marker. However, in a separate analysis where these epochs were re-
baselined we still found a significant difference. This transient difference therefore probably
reflects a stronger visual evoked response to the offset marker in Opposite blocks than in
Same blocks. This makes this neural response a prime candidate neural correlate to drive
the behavioral bias that intervals with opposite markers are perceived to last longer.

Note that despite this early modulation, there were no apparent differences between
Same- and Opposite conditions after approximately 500ms into the memory delay: both
showed a sustained CDA of similar amplitude with respect to the location of the offset
stimulus which persisted throughout the memory delay.

In the plots in Figure 3C, we depict ERP-traces for correct- and incorrect trials,
collapsed across ‘Same’ and ‘Opposite’ conditions. Throughout the epochs surrounding both
markers of Interval 1, there were no significant differences between these trials: overall, both
conditions closely followed the pattern displayed by the grand-average ERP in Figure 3A.

Interval 2. Figure 3D depicts the grand average ERP for both the onset (left) and
the offset (right) of Interval 2. These markers were all presented in the center of the screen,
and lateralized ERPs were computed in relation to the location of the onset- and offset
markers of Interval 1 (cf. Figure 1B). While both the onset and the offset marker clearly
evoke strong visual responses, the average ERP shows little signs of lateralization, neither
in anticipation of the markers nor in response to their presentation. Two significant clusters
were found, one early in the memory delay (1,197 to -938ms) and one short-lived negative
cluster, long before the offset marker of Interval 2 (-844 and -773ms). However, these are
likely to both reflect remnants of the lateralized response to the Interval 1 offset marker,
rather than signs of reinstatement or reactivation of a memory representation.

This point is illustrated when lateralized ERPs on ‘Same’ and ‘Opposite’ trials are
considered separately (Figure 3E). Note that the ERPs in the time leading up to the offset
marker reflect the same data as the data at the end of the offset-epoch plotted in Figure 3B,
but with the polarity reversed on Opposite trials. They thus depict the same visual response
to the offset of Interval 1, and it is clear to see that the difference in early visual response
between the two conditions would give rise to the early lateralized negativity found in the
grand-average potential. This early visual response is then followed by a sustained CDA,
with opposite polarity for Same- and Different conditions (three significant clusters from -
814ms to -184ms). Qualitatively, however, note that this sustained CDA component appears
to persist well into Interval 2 up to 500ms into Interval 2. In the data epoch leading up
to the offset marker of Interval 2, this sustained positivity in Opposite trials is expressed
as a negativity, again aligning itself with the lateralization of ERPs in Same- trials. This
can account for the short lived negativity found in the grand-average data. More crucially
though, neither the Same- nor Opposite data showed any signs of ERP lateralization in
anticipation of or in response to the centrally presented markers.

The ERPs contrasting correct and incorrect trials again revealed no differences be-
tween them, and closely followed the pattern found in the grand-average data.

To conclude, these ERP analyses suggest that actively timing an interval marked by
laterally presented stimuli is paired with lateral CDA components resembling maintenance
of these markers, suggesting that spatial information concerning these stimuli is stored and
maintained in working memory. However, the ERPs gave no indication that this memory
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representation is then subsequently used at retrieval, that is, during the centrally presented
comparison interval.

Time-frequency decomposition
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Figure 4. Lateralized Time-frequency decomposition for the four consecutive epochs, plot-
ted as in Figure 3: A-C reflect data surrounding the markers of Interval 1, D-F reflect
data surrounding Interval 2. The three rows of subplots depict, from top to bottom, the
Time-frequency decomposition across all trials, alpha lateralization in Same and Opposite
trials separately, and alpha lateralization in correct versus incorrect trials separately. Clus-
ters indicating significant lateralization are marked by contours in A and D, and by colored
horizontal line segments in B, C, E and F.

Figure 4A depicts the full spectrum of lateralized power in data surrounding the
onset- and offset of Interval 1. Both markers give rise to large, significant lateralized clus-
ters indicating contralateral power suppression. Both clusters were centered around the
alpha band, but extended to frequencies from approximately 5 to 20Hz. This wide spread
in terms of frequencies is most likely due to the multitaper approach used here, which has
a high temporal accuracy, sometimes at the cost of spectral bleed. The alpha suppression
in response to Interval 1 onset was triggered almost immediately after stimulus onset, and
spanned approximately 750ms. Around the offset of Interval 1, similar contralateral sup-
pression in the alpha band was found. Interestingly, such suppression already arose during
the interval in the time leading up to the offset marker, with data from 500ms before the
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marker included in the significant cluster. These results might therefore reflect attentional
shifting to the predictable location of the offset marker in anticipation of its presentation.

Figure 4B depicts lateralized power in the alpha band for Same- and Opposite trials
separately. These data are largely in line with the observations regarding the grand-average
data: Both conditions showed strong, contralateral alpha suppression in response to the
presentation of the onset marker, though this qualitatively seemed to be more pronounced
for Same-trials. Both conditions also seemed to show anticipatory shifts in alpha suppres-
sion reflecting the location of the upcoming offset marker: Same-trials showed significant
contralateral suppression from -709ms to 766ms, and Opposite trials seemed to shift polarity
leading up to the offset marker, resulting in a significant negative cluster from -55 to 639ms.
There were, however, no significant differences between data from these two conditions.

Figure 4C depicts the same time courses of lateralized alpha power separately for
correct and incorrect responses. As with the ERPs, no significant differences were found
between the two conditions in either of the epochs, and both trial types had very similar
signatures of lateralized alpha suppression. Of note, the lateralized alpha suppression was
not marked by any significant cluster on incorrect trials, even though it was qualitatively
very similar to that on correct trials.

Figures 4D-F depict the same analyses for data around the onset and offset markers
of Interval 2. Across these plots, neither of the conditions gave any indication of lat-
eralized suppression related to the presentation of these markers. In the grand-average
time-frequency spectra (D), no significant clusters were found. Same- and Opposite trials
(E) showed significant, opposite lateralization responses during the memory delay, with a
siginificant difference between them early in this interval, but these lateralized responses
seemed to resolve right before the onset of Interval 2. No other significant differences were
found between these two conditions. Similarly, there were no signs of lateralized alpha
suppression for data from correct- or incorrect trials, and no differences between these two
conditions.

To conclude, the time-frequency analyses generally aligned with the ERP analyses:
we found lateralized alpha suppression indicative of attentional orienting in response to
the onset and offset markers of Interval 1. Of note, lateralized responses already arose in
anticipation of the predictable offset marker, suggestive of early attentional shifts to the
anticipated marker location. However, surrounding the markers of Interval 2, there was no
indication that these lateral locations were attended or retrieved again.

Classification

The classification analyses explored whether during comparison, marker locations
were maintained, retrieved or reactivated in a manner that was not captured by analyses
above, which focused on lateralization in occipito-parietal sites. To this end, we trained
classifiers to decode the location of onset or offset cues of Interval 1, based on the broadband
signal from all 64 channels. The results of this analysis are largely in line with our findings
from ERP- and time-frequency analyses.

Figure 5 depicts, for each epoch, the performance of classifiers trained on the overall
dataset, as well classifiers trained and tested separately on ‘Same’ or ‘Opposite’ trials.
Time courses of classification performance depicted that both the onset- and offset marker
of Interval 1 could be decoded from the data epochs around their presentation, both for a
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sustained period of time with an AUC significantly above chance from 109 to 984ms and
from 109 to 1031 ms for onset and offset epochs, respectively. Separately classifying ‘Same’
and ‘Opposite’ trials yielded virtually identical patterns of results.

As can be seen from the overall classification scores during the memory delay, mul-
tivariate EEG robustly and persistently reflects the location of the offset marker, which
gradually dissipates as the onset marker draws closer (Figure 5A, right plot). However,
when the same data are used to decode the onset marker location, leading up to the onset
of Interval 2, classification scores suggest that this location is not reflected in multivariate
data (Figure 5B, left). It may seem surprising that we find significant decoding above chance
in this latter analysis when Same- and Opposite trials are considered separately, but not
when both trials are pooled together. However, recall that in each of these conditions, the
Interval 1 offset marker location (and its associated visual response) are fully predictive of
the onset marker location. Therefore, these increments in classifier performance essentially
reflect the visual response to the offset marker.

After the onset of the centrally presented Interval 2, none of the classifiers were able
to accurately determine the marker locations of Interval 1. No other significant clusters of
decoding performance were found.

To conclude, the classification results were in line with the ERP and time-frequency
analyses: Results again indicated that marker locations were persistently represented af-
ter they had been presented as markers for Interval 1, but that these locations were not
memorized, retrieved, or otherwise represented during comparison.
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Figure 5. Classifier performance (Area Under the Curve) derived from 10-fold cross valida-
tion on either only ‘Same’ blocks, only ‘Opposite’ blocks, or all trials together (overall). A
Classifiers trained to decode the Interval 1 onset marker location (left) or the offset marker
location, on corresponding data from Interval 1 B Classifiers trained and tested on data
from Interval 2. For these epochs, the location of the onset- or offset marker of Interval 1
were the classification target.

Discussion

Many studies exploring the dynamics of working memory representations have ex-
ploited the finding that visual features in working memory appear to be bound to the
location at which they were presented (de Vries et al., 2017; Kuo et al., 2011; Poch et al.,
2014; van Ede et al., 2019). That is, maintaining or retrieving non-spatial visual informa-
tion has been found to evoke clear neural markers in the ERP and time-frequency spectra
that are reflective of the location of presentation. Here, we investigated whether temporal
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information is similarly bound to spatial information during encoding, maintenance and
retrieval, in order to explore the dynamics of temporal memory. Participants perceived an
interval presented by means of lateralized start- and end-marker stimuli, and we found that
the encoding of the interval indeed evoked spatial neural signatures typically associated with
working memory retention. However, when this interval was subsequently compared to an
interval with central markers, no signs of lateralization were found; neither in the ERP, nor
in the time-frequency spectrum, nor could spatial information otherwise be decoded using
multivariate pattern analysis. These results suggest that while memory for visual features
such as location might play a role during initially timing an interval, spatial information is
not involved when the interval is subsequently used for comparison.

The start marker of the first interval produced lateralized ERP components, lateral-
ized alpha suppression, and sustained robust classification scores that are highly comparable
to those found in typical studies on visual working memory encoding (Carlisle et al., 2011;
de Vries et al., 2017; Gunseli et al., 2014; Van Driel et al., 2017; Wolff et al., 2017), which
we interpret as signatures of working memory involvement in this timing task. One no-
table difference compared to those studies is that from 300 to 400ms, the results reveal a
contralateral positivity where we had anticipated to find an N2pc-component. One could
suspect that this discrepancy stems from the laterally unbalanced displays used in our de-
sign: in most working memory studies the lateralized memorandum is presented alongside
a non-target in the opposite hemifield. Indeed, unilaterally presented, highly salient stimuli
have been shown to evoke a so-called P2pc in this time window (Casiraghi et al., 2013).
However, the present results are very similar to those in early investigations of the N2pc,
in which displays could be similarly ‘unbalanced’ (Hickey et al., 2009). Based on these
similarities, it seems that this positivity could also reflect a component known as a dis-
tractor positivity (Pp, see also Burra & Kerzel, 2014; Sawaki & Luck, 2010, 2013). This
component could reflect how participants actively suppressed this salient onset in order to
maintain central fixation. Critically, however, despite the initial ‘distractor status’ of the
marker, this positive component still reversed into a sustained negativity that reflected a
CDA.

The neural responses elicited by the end marker of the first interval were largely
similar to those caused by its onset. Notably, the end marker resulted in a CDA-component
that lasted well into the delay period, qualitatively even seeming to persist into the second
interval. If the CDA is caused by the working memory processes involved in timing, this
raises the question why another CDA would arise after the ‘timing work’ is already done.
One possible explanation would be that this signature reflects maintenance of the relevant
duration during the delay interval. If this were the case, however, we would have anticipated
a CDA-difference between ‘Same’ and ‘Opposite’ trials, where the former trial type would
be much stronger associated with its location than the latter. Another explanation would be
that the delay period in itself is actually an interval that is being timed, so as to optimally
anticipate the start of the comparison interval.

Despite these lateralized neural signatures found during Interval 1, our results indi-
cate that the central markers of Interval 2 did not convey any information regarding the
preceding locations of Interval 1. One theoretical account that fits these results poses that
while time perception may result from distributed intrinsic circuits, these circuits might
subsequently project to more centralized ‘readout neurons’ that allow for the comparison of
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intervals across distributed clocks (Bakhurin et al., 2017; Laje & Buonomano, 2013; Paton &
Buonomano, 2018). Under this model, a more generic, stimulus-independent representation
of duration would be extracted at the offset of Interval 1, which is subsequently maintained
in memory and used for comparison. As such, the spatial code might be involved in the
initial perception of time, but not retained or retrieved when the interval is compared later
on.

Another, subtly different account would pose that perception- and comparison of du-
ration make use of different representations of the Interval 1 duration, and that transforming
one into the other is an active process. Such transformations of have been proposed to be
used for visual search (Myers et al., 2017), where multiple items can be perceived and stored
in working memory, after which only one relevant item is actively transformed into a ‘tem-
plate’ that guides attentional selection without interference from others (see also Chatham
et al., 2014; Olivers et al., 2011; Ort & Olivers, 2020). However, one key difference is that
for visual search there is strong evidence that transformed representations still make use
of the spatial code (de Vries et al., 2018; de Vries et al., 2017, 2019), whereas for tempo-
ral information this association appears to be absent. If temporal comparison uses such
a transformation, it may be the case that this only takes place after the memory delay,
which might account for the persistent lateralization observed throughout the memory de-
lay. However, it seems likely that such a transformation would take place before the end of
Interval 2, given the ample evidence that temporal discrimination judgments can be made
before the offset of the comparison interval (Balci & Simen, 2014; Bueno & Cravo, 2020;
Macar & Vidal, 2003).

As such, our results do not unequivocally support either dedicated or intrinsic clock
models. On the one hand, the dynamics observed during Interval 1 are in line with what
one would predict following intrinsic models of time perception. However, the observation
that the spatial code appears to be abandoned during comparison largely falls in line with
dedicated models. Of note, our behavioral data yielded unexpected support for intrinsic
clock models: the shift in perceived time between ‘Same’ and ‘Opposite’ blocks indicates
that a relatively subtle difference in the manner of presentation can have a profound impact
on the temporal percept (in line with Droit-Volet & Meck, 2007; Eagleman & Pariyadath,
2009; Johnston et al., 2006; Matthews, 2011). These results might align with how the
perception of time and space are closely intertwined, as has been argued before (Bueti &
Walsh, 2009; Burr et al., 2010; Dehaene & Brannon, 2010). This behavioral bias coincided
with ERP differences in response to the offset markers of ‘Same’ and ‘Opposite’ markers,
a finding that warrants more thorough exploration beyond the scope of the present study.
We discuss this observation in more detail in a companion article (Kruijne et al., 2020).

The mechanisms by which we perceive sensory events, and the experience of the tim-
ing of these events are intertwined by necessity. The present results offer new, important
insights into the interplay of stimulus representations and temporal representations dur-
ing perception, maintenance, and subsequent comparisons of interval durations. Despite
converging evidence that many features of visually presented stimuli are bound to spatial
information when encoded in working memory, we found no evidence that maintaining and
retrieving temporal information relied on such an associative link. These results offer criti-
cal constraints for models that not only aim to measure time, but also to subsequently use
that measurement in upcoming goal-directed behaviors. In other words, these findings offer


https://doi.org/10.1101/2020.07.31.230466

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.230466; this version posted January 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

WORKING MEMORY FOR TIME 20

important considerations for theories of temporal cognition beyond the perception of time.
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