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7058 CNRS-UPJV), Université de Picardie Jules Verne, 1 Rue des Louvels,30

80037 Amiens Cedex 1, France31

12 Department of Ecology and Evolutionary Biology, University of California-32

Los Angeles, Los Angeles, CA 90095, USA33

13 Global Mountain Biodiversity Assessment, University of Bern, Institute of34

Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland35

14 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak36

Grove Drive, Pasadena, CA 91009, USA37

15 The University of Adelaide, Environment Institute, Adelaide, South Aus-38

tralia, 5000, Australia39

16 State Herbarium of South Australia, Botanic Gardens and State Herbar-40

ium, Department for Environment and Water, GPO Box 1047, Adelaide, SA,41

5001, Australia42

17 CNR-IIA C/O Physics Department “M. Merlin” University of Bari, Via43

G. Amendola 173 - 70126 Bari, Italy44

18 Department of Environmental Biology, University of Rome “La Sapienza”,45

Rome 00185, Italy46

* authors equally contributed to the manuscript47

Abstract48

Aim: The majority of work done to gather information on Earth di-49

versity has been carried out by in-situ data, with known issues related50

to epistemology (e.g., species determination and taxonomy), spatial51

uncertainty, logistics (time and costs), among others. An alternative52

way to gather information about spatial ecosystem variability is the53

use of satellite remote sensing. It works as a powerful tool for attaining54

rapid and standardized information. Several metrics used to calculate55

remotely sensed diversity of ecosystems are based on Shannon’s In-56

formation Theory, namely on the differences in relative abundance of57

pixel reflectances in a certain area. Additional metrics like the Rao’s58

quadratic entropy allow the use of spectral distance beside abundance,59

but they are point descriptors of diversity, namely they can account60

only for a part of the whole diversity continuum. The aim of this61

paper is thus to generalize the Rao’s quadratic entropy by proposing62

its parameterization for the first time.63

Innovation: The parametric Rao’s quadratic entropy, coded in R, i)64
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allows to represent the whole continuum of potential diversity indices65

in one formula, and ii) starting from the Rao’s quadratic entropy, al-66

lows to explicitly make use of distances among pixel reflectance values,67

together with relative abundances.68

Main conclusions: The proposed unifying measure is an integra-69

tion between abundance- and distance-based algorithms to map the70

continuum of diversity given a satellite image at any spatial scale.71

Keywords: biodiversity; ecological informatics; modelling; remote sens-72

ing; satellite imagery.73

74
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1 Introduction75

Since Alexander von Humboldt (1769-1859), the spatial component of nature76

has played a relevant role in natural science. In the development of theoretical77

and empirical models in ecology, spatial structure represents a key concept to78

allow scientists to link ecological patterns to the generating processes and to79

the functional networking among organisms (Borcard and Legendre, 2002).80

The majority of the work done to gather information about Earth diver-81

sity has been carried out by in-situ data, with known issues related to epis-82

temology (e.g., species determination and taxonomy), spatial uncertainty,83

logistics (time and costs), among others (Rocchini et al., 2011).84

Using satellite remote sensing can at least help attaining rapid and stan-85

dardized information about Earth diversity (Gillespie, 2005; Rocchini et al.,86

2005). Furthermore, remote sensing can also be used to monitor some ecosys-87

tem functions and parameters such as temperatures, photosynthesis, vegeta-88

tion biomass production and precipitation (Schimel et al., 2019; Zellweger et89

al., 2019) that can be useful to define the different niches of in-situ species,90

following first Goodall (1970) ideas, who envisaged future diversity measures91

as those based on niche theory (Hutchinson, 1959). The free access to re-92

mote sensing data (see Zellweger et al., 2019) has opened new ways to study93

ecosystem diversity and biodiversity issues (Rocchini et al., 2013). The spec-94

tral data related to pixels, as operational geographical units, are descriptions95

of pieces of land that allow us to define a new kind of Earth “diversity”,96

which may complement in-situ biodiversity measurement.97

Diversity varies with area, thus investigating multiple spatial grains, until98

wide extents, is important to effectively monitor spatial diversity change in99

space and time (MacArthur et al., 1966). This is especially true in macroe-100

cology, where the primary aim is to model large-scale spatial patterns to infer101

the ecological processes which generated them, particularly considering the102

recent effect of global changes worldwide (Hobohm et al., 2019). In order to103

determine the horizontal distribution of diversity within a satellite image (i.e.104

which areas within the image are more diverse than others), diversity indices105

are usually spatially referenced by calculating the index within a moving106

window.107

Several metrics that measure diversity from satellites rely on the Shan-108

non’s theory of entropy (Shannon, 1948), with diversity being measured as109

H = −∑N
i=1 pi log pi, where pi is the proportion of the i-th pixel value (e.g.,110

digital number, DN) found within a moving window containing N pixels.111

Shannon’s H basically summarizes the partition of abundances (sensu Whit-112

taker, 1965) by taking into account both relative abundance and richness of113

DNs (Figure 1).114
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However, Shannon’s entropy is a point descriptor of (remotely sensed)115

diversity. As such, it shows only one part of the whole potential diversity116

spectrum at a glance. The use of generalized entropies has been advocated to117

face such problem. In this case, one single formula represents a parameterized118

version of a diversity index, thus providing a continuum of potential diversity119

indices. In the context of the measurement of diversity, the Rényi (1970)120

parametric entropy121

Hα =
1

1− α log
N∑

i=1

pαi (1)

122

with 0 ≤ α ≤ ∞ represents a powerful tool to account for the continuum123

of diversity (Figure 1).124

One particularly convenient property of Hα is that by varying the pa-125

rameter α there is a continuum of possible diversity measures, which differ126

in their sensitivity to rare and abundant DNs, becoming increasingly dom-127

inated by the most common DNs for increasing values of α. Note that for128

α → 1, H1 equals the Shannon’s entropy. A similar formulation was then129

proposed by Hill (1973) who expressed parametric diversity as the “numbers130

equivalent” of Rényi generalized entropy. Appendix S1 provides the original131

formulation.132

Rényi (and Hill) parametric functions summarize diversity by taking into133

account the pixel values of a satellite image and their relative abundances.134

However, they do not allow to explicitly consider the differences among these135

values. As an example, two arrays of 9 pixels with maximum richness and136

evenness (i.e. both containing 9 different DNs with relative abundances137

pi = 1
9
) but differing in their values will attain the same Shannon diversity138

irrespective of the values of the DNs in both arrays.139

By introducing a distance parameter dij among each pair of values i and140

j, Rao’s quadratic entropy (Rao , 1982)141

Q =
N∑

i,j=1

pipjdij (2)

142

explicitly considers the differences among the pixel values in the calcula-143

tion of diversity (Figure 1). Hence, two different pixels with values [2,3] will144

attain a lower diversity with respect to two pixels with values [0,100]. For145

instance, to make an ecological parallel, this is somewhat similar to the phy-146

logenetic distance between two species: the values [2,3] would be equivalent147
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to two sister species closely related on the tree of life while [1,100] would be148

equivalent to two very distant species on the tree of life.149

The aim of this paper is thus to propose, for the first time, a parameter-150

ization of Rao’s quadratic entropy in order to provide a generalized entropy151

which accounts for both relative abundances and distances among pixel val-152

ues. The proposed approach is now part of the rasterdiv R package, a153

package dedicated to diversity measures of spatial matrices, increasing its154

capability to discern among different diversity measures by a single formula.155

2 Spatio-parametric Rao’s quadratic entropy156

Inter-pixel spectral distances are directly related to landscape heterogeneity157

and they are capable of describing species habitats, starting with a satellite158

image (Rocchini et al., 2005). A satellite image can be viewed as a matrix of159

numbers describing Earth reflectance in different dimensions stored as pixels.160

A sensor per each light wavelength records the reflectance of a certain object161

in that wavelength which are stored into numbers in a certain range (e.g.,162

digital numbers in 8 bits, ranging from 0 to 255). In general, the higher the163

variability in the spectral space defined by the pixel reflectance values, the164

higher the diversity of the ecosystem under study.165

Consider a window of N pixels moving across the whole image to cal-166

culate a diversity index. Let i and j be two pixels randomly chosen with167

repetition within the moving window. Let dij be a symmetric measure of168

the (multi)spectral distance between i and j such that dij = dji and dii = 0.169

Rao’s Q (Rao , 1982) is defined as:170

Q =
N∑

i,j=1

pipjdij =
N∑

i,j=1

1

N
× 1

N
dij (3)

171

Therefore, Q measures the expected (i.e. mean) distance between two172

randomly chosen pixels and 1
N

is the probability to extract each pixel. Note173

that, unlike Hα or Kα the calculation of Rao’s quadratic entropy is not174

limited to single bands but can be extended to multispectral systems of any175

dimension. For the connection between quadratic entropy and variance, see176

Rocchini et al., 2019.177

Two parametric versions of quadratic entropy have been proposed by Ri-178

cotta and Szeidl (2006) and Leinster and Cobbold (2012). These parametric179

formulas were aimed at reconciling Rao’s Q with parametric entropies. How-180

ever, they have only been rarely used in practice.181
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A more direct approach for developing a parametric version of quadratic182

entropy stems from the work of Guiasu and Guiasu (2011). Let ωij = 1
N
× 1

N
183

be the combined probability of selecting pixels i and j in this order. Guiasu184

and Guiasu (2011) noted that Rao’s Q can be expressed as a linear function185

of the combined probabilities of all pairs of pixels:186

Q =
N∑

i,j=1

ωijdij =
N∑

i,j=1

1

N
× 1

N
dij =

N∑

i,j=1

1

N2
dij (4)

187

In practice, Rao’s Q is the arithmetic mean of the distances dij between188

all pairs of pixels i and j. Hence, in order to implement a parametric version189

of Rao’s Q, it seems natural to substitute the arithmetic mean in Equation190

4 with a generalized mean (Hardy et al., 1952):191

Qα =

(
N∑

i,j=1

ωijd
α
ij

) 1
α

=

(
N∑

i,j=1

1

N2
dαij

) 1
α

(5)

192

This operation connects Qα with other diversity metrics that are ex-193

pressed as generalized means, such as Hill’s (Hill, 1973) or Jost’s (Jost ,194

2006) numbers (Appendix S1) equivalents (see also Leinster and Cobbold,195

2012).196

The Rao’s Q, viewed as an arithmetic mean, is one of all the possible197

means in its generalized form Qα:198

Qα =





α→ 0, Q0 = N2
√∏N

i,j=1 dij

geometric

α = 1, Q1 = Q =
∑N

i,j=1
1
N2dij

arithmetic

α = 2, Q2 =
√∑N

i,j=1
1
N2d2ij

quadratic

α = 3, Q3 = 3

√∑N
i,j=1

1
N2d3ij

cubic

α→∞, Qα→∞ = max dij

maxd

(6)

199

The mathematical proof that i) for α→ 0Q0 corresponds to the geometric200

mean, and ii) for α→∞ Q∞ corresponds to the maximum distance between201

pixel values pairs is provided in Appendix S1.202

Each generalized mean always lies between the smallest and largest of its203

values. Increasing the parameter α will increase the weight of the highest204
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values of dij, thus providing a continuum of potential diversity indices (Figure205

1).206

3 The algorithm207

Starting from a satellite image, a spatial moving window might be used to
make the calculation on predefined extents of analysis. The grain (sensu
Dungan et al., 2002) will be the resolution of the image while the extent of
analysis will be the size of the moving window (Figure 2). The calculation is
based on a distance matrix of type:

Md =




dλ1,λ1 dλ1,λ2 dλ1,λ3 · · · dλ1,λn
dλ2,λ1 dλ2,λ2 dλ2,λ3 · · · dλ2,λn
dλ3,λ1 dλ3,λ2 dλ3,λ3 · · · dλ3,λn

...
...

...
. . .

...
dλn,λ1 dλn,λ2 dλn,λ3 · · · dλn,λn




(7)

208

among all the potential pairs of pixels inside the moving window. The209

diagonal terms of the matrix (which equal zero) will have no effect for α > 0210

(Equation 6), since they would enter the
∑

term. On the contrary, for211

α→ 0, they would enter the
∏

term by nullifying Q0.212

We coded the proposed parameterization of Rao’s quadratic entropy as an213

R function, implementing the previously developed rasterdiv package (Mar-214

cantonio et al. (2020), https://CRAN.R-project.org/package=rasterdiv).215

The calculation of different Qα by automatically changing the range of po-216

tential α values is done by the function paRao, as:217

1> paRao(x, alpha=c(0:4,Inf), method="classic",218

dist_m="euclidean", window=9, na.tolerance =0.5, simplify=3,219

3np=8, cluster.type="SOCK", diag=TRUE)220

where x is the input dataset which can be a RasterLayer or a matrix class221

object, alpha is the α parameter of Equation 5, which can be a single value222

or a vector of integers. In the example above, α is a vector of integers ranging223

from 0 to 4, plus Inf, which in the R language is a reserved word representing224

positive infinity (α→∞). The option method decides if paRao is calculated225

with 1 single layer (classic) or with more than one layer (multidimension).226

With method="multidimension" then x must be a list of objects. dist m227

is the type of distance considered in the calculation of the index, and can228

be set to any distance class implemented in the R package proxy, such as229

"euclidean", "canberra" or "manhattan". Moreover, dist m can also be230
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an user-defined matrix of distances. However, if method is set to "classic"231

(unidimensional paRao) all distance types reduce to the Euclidean distance.232

The argument window is the side length in cells of the moving window (in233

this case set to 9), whereas na.tolerance is the proportion (0-1) of NA’s234

cell allowed in a moving window: if the proportion of NA’s cells in a moving235

window exceeds na.tolerance then the value of the moving window cen-236

tral pixel will be NA. The option simplify allows to reduce the number of237

decimal places to ease the calculation by reducing the number of numerical238

categories, i.e., if simplify=3 only the first three digits of data will be con-239

sidered for the calculation of the index. np is the number of parallel processes240

used in the calculation. If np>1 then the doParallel package will be called241

for parallel calculation, and cluster.type will indicate the type of cluster242

to be opened (default is "SOCK", "MPI" and "FORK" are the alternatives).243

The diag argument refers to the diagonal term of Equation 7. It will have244

no effect on the function for α > 0, while it will nullify the value of Qα if set245

to TRUE, as previously explained in Equation 7.246

247

3.1 Global test of the parametric Rao’s Q variation248

over the planet249

We applied the algorithm to a Copernicus Proba-V NDVI (Normalized Dif-250

ference Vegetation Index) long term average image (June 21st 1999-2017) at251

5km grain, also provided in the rasterdiv package as a free Rasterlayer252

dataset which can be loaded by the function data() (Figure 2). The para-253

metric Rao algorithm can also be applied to multispectral data; in such a254

case distances are calculated in the multisystem created by the values of the255

pixels in each axis/band. The moving window passing throughout the whole256

image will return MQα matrices/layers where α is the value chosen in the R257

function paRao.258

With α → 0 the
∏

in Equation 6 leads to zeroes throughout the whole259

map (Figure 3). Increasing α will increase the weight of higher distances260

among different values until reaching the maximum distance value for α →261

∞. In this case the maximum turnover is reached and areas with maximum262

β-diversity will be apparent. In this case, a multitemporal set is used (long263

term average NDVI from June 21st 1999-2017). Hence, areas with the highest264

spatial and temporal turnover are enhanced, namely major mountain ridges.265

We expect that using single frame images would lead to the enhancement of266

the spatial component of diversity.267

Since the whole process is based on distances in a spectral space between268
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pairs of pixels in terms of their “spectral characters” or in the “spectral269

space”, it is important to notice some cornerstone aspects on the use of270

distances from satellite images, especially when comparing different images271

or the same image in different times. In satellite images, the measure of272

distances could be impacted by: ii) the use of different sensors with different273

radiometric resolutions, as an example an 8-bit (28 = 256 values) with respect274

to a 16-bit (216 = 65536 values) image, or ii) the radiometric calibration275

which has been performed, e.g. with a non-linear transform. Therefore,276

care should be taken when making use of distances in remote sensing data,277

explicitly taking into account how the vector of proportions between pixels278

belonging to some defined classes (e.g., digital numbers, DNs) was obtained.279

The complete code of the function can be directly seen in R by typing the280

paRao function name. Moreover, a complete R coding session, to perform281

the above described analysis is provided in Appendix S2.282

3.2 Local case study: the diversity of vegetation green-283

ness and the ecoregions of California284

A comparison between in-situ and remotely sensed diversity at worldwide285

scale might be difficult due to known biases in e.g. sampling effort, tax-286

onomies, spatial uncertainty (Rocchini et al., 2017). Hence, we decided to287

calculate the Rao’s Q index on a NDVI raster layer of California (USA) to288

be compared with data in the field on native plant species diversity provided289

in Thornhill et al. (2017) from Baldwin et al. (2017). We chose California as290

a case study due to its high ecological diversity as well as to the availability291

of plant species field-data for this region.292

In practice, we aimed at visualizing and describing differences in both293

diversity and structure of vegetation for the state of California, USA. First,294

an NDVI raster layer was derived from Copernicus Sentinel-2 data (European295

Space Agency, reference period: January 2017 to July 2018) and processed296

through Google Earth Engine to filter out cloud cover, select the greenest297

pixel of the time series and resample at 100 m pixel resolution. Then, the298

paRao R function was used to derive Rao’s Q index, considering both the299

original formulation of the Rao’s Q (α = 1, Equation 6) and the formulation300

with α → ∞ maximuzing β-diversity (Figure 3), with a moving window of301

9x9 pixels.302

A map of plant species richness was derived using the potential distribu-303

tion range of 5,222 native California vascular plants modelled by Thornhill304

et al. (2017). Moreover, a vector map reporting the ecoregions of California305

(level III) was downloaded from the United States Environmental Protection306
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Agency. In Figure 4, we showed NDVI, the Rao’s Q indices with α = 1307

and α → ∞ and plant species richness, reporting the boundaries of the dif-308

ferent ecoregions for California. This comparison revealed macro-ecological309

and bio-geographical patterns which can be better interpreted considering310

the information condensed in the Rao’s Q index.311

For example, the ecoregion “Coast range” (labelled with 1 in Figure 4)312

is composed by low mountains covered by highly productive, rain-drenched313

evergreen forests. As a result, this region showed very high NDVI values314

but a low Rao’s Q index (low vegetation structural diversity) and low to315

medium plant species richness. The adjacent “Klamath Mountain” ecoregion316

(2) is instead characterized by highly dissected ridges, foothills, and valleys.317

This region still showed high NDVI values but higher Rao’s values with318

respect to region 1, which resulted in a high plant species richness. The319

diverse flora of this region, a mosaic of both northern Californian and Pacific320

Northwestern conifers and hardwoods, is rich in endemic and relic species. A321

similar pattern, although caused by opposite factors, was recognizable for the322

“Central Valley” region of California (3), which is composed of flat, urbanized323

and intensively farmed plains. The extensive presence of irrigated crops324

intersected with urbanized areas caused medium to high NDVI values and325

a very high apparent structural diversity. However, the same factors caused326

a low native species richness, especially in the drier southern portion of the327

valley. Finally, very dry and warm broad basins and scattered mountains328

characterize the “Mohave and Sonora ranges” ecoregions (4) which showed329

very low NDVI and Rao’s Q values (with scattered higher values associated330

with local topographical variability) and low native plant species richness.331

Passing from the pure Rao’s Q index (α=1) to its parameterization with332

α → ∞ helped to increase the discrimination among areas, due to the fact333

that when α → ∞ the Rao’s Q corresponds to the maximum distance (β-334

diversity) among pixel values in a site. Very similar gradients of the spatial335

heterogeneity of California (including BIOMOD variables, NDVI, elevation)336

as well as environmental DNA (eDNA) data are found in Lin et al. (2020).337

4 Discussion338

In this paper, we provided a straightforward solution to: i) account for dis-339

tances in an Information Theory based metric, and ii) provide a generalized340

formula in order to avoid point description and account for the continuum of341

diversity. Diversity can be represented by different dimensions (Nakamura342

et al., 2020). Considering one single metric to account for the whole contin-343

uum of diversity metrics might be a powerful addition to the main framework.344

11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427872


On the contrary, fragmenting the concept of diversity when trying to capture345

single aspects of the whole spectrum could be counterproductive.346

The proposed unifying measure succeeded to integrate abundance- and347

distance-based algorithms over a wide variety of diversity metrics. We demon-348

strated that such integration is not only theoretical but also applicable to349

real spatial data, considering several dimensions of diversity at the same time.350

Being part of the rasterdiv R package, the proposed method is expected to351

ensure high robustness and reproducibility.352

Remote sensing is obviously not a panacea for all the organismic based353

diversities like taxonomic-, functional-, genetic-diversity but it can represent354

an important exploratory tool to detect diversity hotspots and their changes355

in space and time at the ecosystem level. First of all, it measures heterogene-356

ity of the environment with indirect links to the biodiversity of both plant357

and animal taxa, but also with potential discrepancies with species diversity,358

as in the presented case study of the native plant species diversity of Cali-359

fornia. This said, depending on the complexity and the resolution at which360

the proposed parameterized Rao’s Q is applied, it might allow finding new361

insights on the ecological processes acting in a certain ecosystem to shape its362

diversity. In this paper, the examples provided were based on a single NDVI363

layer since i) it is a valuable index of vegetation health and ii) it is freely364

available in the rasterdiv package to reproduce the code proposed in this365

paper. We are aware that NDVI has very limited capacity to track diversity366

in some habitats like dense forests, because it is saturated at dense vegeta-367

tion. From this point of view, imaging spectroscopy offers higher informa-368

tion content, also enabling plant functional trait retrievals (Jetz et al., 2016;369

Schneider et al., 2019) as well as structural traits by LiDAR data (Schneider370

et al., 2020). The application of the proposed algorithm to future spaceborne371

imaging spectroscopy is promising. In other words, the algorithm has been372

thought to be used with multiple layers, like a whole multispectral image or373

the most meaningful Principal Components (Peres-Neto et al., 2005), or land374

use classes probabilities derived from fuzzy set theory (Rocchini and Ricotta,375

2007; Feoli, 2018). This is even one of the major advantages of the Rao’s Q376

metric which allows considering both abundance and distance among pixel377

values, thus being applicable to any continuous raster layer, or to any matrix378

combination, even in a multiple spectral system.379

Creating a unique “umbrella” under which all of the potential metrics of380

diversity can be used is highly beneficial for e.g. monitoring the variation in381

time of biological systems considering two major axes: i) the α parameter in382

Equation 5 providing information about the type of diversity at time t0, ii)383

the temporal dimension from time t0 to time tn given the same α parameter.384

For the future, exploring such temporal dimension would allow gathering385
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information of ecosystem changes in different diversity types at a glance.386

Moreover, generalized entropy allows us to characterize the dimensionality387

of diversity (sensu Stevens and Tello, 2014) of different habitats/ecosystems.388

Those areas with a higher diversity dimensionality, namely a higher variabil-389

ity into the diversity spectrum would need a generalized measure to be fully390

undertaken. On the contrary, ecosystems with a lower dimensionality would391

have a lower difference among the different diversity measures with a flat392

curve of the diversity spectrum (Nakamura et al., 2020).393

From a functional point of view, when all indices of diversity are highly394

correlated to each other (low dimensionality), it is expected that the eco-395

logical processes underlying diversity are just a few. On the contrary, with396

a lower correlation among indices (higher dimensionality) there might be a397

higher number of axes of variation coming out from different processes shap-398

ing ecological heterogeneity in space (Stevens and Tello, 2014).399

There might be the possibility that a completely random matrix produces400

a pattern of diversity (Type I error). On the other side, a structured matrix401

could produce a very low diversity pattern (Type II error, Gotelli (2000)). In402

both cases, the parametric Rao’s Q could allow to determine, thanks to the403

use of a continuum of diversities, i) why a diversity pattern is still produced404

even in case of a random matrix, and ii) why a certain landscape shows a very405

low diversity in a certain point of the whole diversity spectrum. With point406

descriptors of diversity such inference cannot be done since the investigation407

is limited to a small window of the entire diversity spectrum, by basically408

relying on a single final number. In other words, the commonly asked ques-409

tion about what is the index which best describes diversity has no certain410

answer (Gorelick, 2011). Hence, the use of a trend of diversities will lead to411

the comprehension of hidden parts of the whole diversity dimensionality.412

Furthermore, it is expected that the ecological processes shaping diversity413

should act at defined spatial scales (Borcard and Legendre, 2002). Hence,414

different diversity types of the whole dimensionality spectrum are expected415

to show scale dependent patterns, being apparent only at certain scales and416

not at some others. The use of a continuum allows measuring the different417

diversity types altogether in a single step. Changing the extent of analysis418

by different moving windows would then allow to encompass different spatial419

structures at different scales.420

While geographic gradients of diversity over space are complex to catch in421

their very nature, biodiversity measurement has mainly relied in the past on422

few formulas which represented an hegemony (Stevens et al., 2013). In this423

paper, we demonstrated that diversity is actually multifaceted and should be424

necessarily approached through a generalized approach.425
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5 Conclusion426

In order to unfold the dimensionality of diversity methods to directly account427

for several aspects of diversity at a time are needed. From this point of view,428

generalized entropy undoubtedly represents a powerful approach for mapping429

the diversity continuum.430

Furthermore, it might be profitably used to plot multitemporal trends431

(see e.g. Dornelas et al., 2014) of diversity metrics and discover previously432

imperceptible differences when making use of single metrics (Figure 5).433

Metrics grounded in Information Theory ensure to make use of relative434

abundance of pixel values given the same richness in the moving window of435

analysis. However, distance metrics allow to also account for the relative436

dispersion in the spectral space of the cloud of pixels in a certain area (Lal-437

iberté et al., 2020). The proposed parameterization of the Rao’s Q explicitly438

considers the dispersion of pixel values in a spectral space (and their relative439

abundance) by allowing catching the whole dimensionality of diversity.440

6 Data availability441

The code and the data used in this paper are based on completely Free442

and Open Source Software, and they are available at the CRAN reposi-443

tory of the R package rasterdiv: https://CRAN.R-project.org/package=444

rasterdiv.445
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Figure 1: Grounding theory of this paper. Diversity measures can encompass
abundance-based as well as abundance-distance-based metrics (yellow and
green boxes, respectively). Abundance-distance-based metrics allow multiple
layers to be used. The black lines represent the theoretical flow of this paper,
with the thickness representing the complexity of each index, starting from
Shannon’s Information Theory (point descriptor) to Rényi’s Hα (generalized
entropy), which do not make use of distance. Distance enters the Rao’s Q
formula, but this is still a point descriptor of diversity. Finally, parametric
Rao’s Qα comprises the use of distances and the generalized entropy concept.
The red arrows represent the properties of the Rao’s Qα: i) it is grounded in
Information Theory starting from Shannon’s H, ii) it is a generalized entropy
like the Rényi Hα, and iii) it makes use of distances like the Rao’s Q.

21

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427872


−40

0

40

80

−100 0 100
Longitude

La
tit

ud
e

0

50

100

150

200

250
NDVI

(∑
Πdαij

) 1
α

Min =



λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn


 Min =



λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn






λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn






λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn




dist: dist:

alpha = 1 alpha = 2 alpha = 3

−100 0 100 −100 0 100 −100 0 100

−40

0

40

80

Longitude

La
tit

ud
e

50 100 150

MQ0
=



Q01 Q02 · · ·
· · · · · · · · ·
· · · · · · Q0n


 MQ... =



Q...1 Q...2 · · ·
· · · · · · · · ·
· · · · · · Q...n




MQ∞ =



Q∞1

Q∞2
· · ·

· · · · · · · · ·
· · · · · · Q∞n




Figure 2: Starting from Copernicus Proba-V NDVI (Normalized Difference
Vegetation Index) long term average image (June 21st 1999-2017) at 5km
grain, parametric Rao’s Q is calculated in a moving window. In this paper
NDVI was used as a single layer to calculate distances on one axis, but several
layers can be used as well. In this example, three layers (blue, green and red
matrices) are shown to calculate distances. The algorithm is based on a
moving window passing throughout the whole image, calculating the Rao’s
Qα and saving the output in the central pixel. In this example a moving
window of 5x5 pixels is passing (red arrow) from one position (orange) to
the other (green). The output is a stack of layers each of which represents a
different mean of the whole generalized mean spectrum of Equation 5.

22

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427872


alpha=4 alpha to infinity

alpha=2 alpha=3

alpha to 0 alpha=1

−100 0 100 −100 0 100

−40

0

40

80

−40

0

40

80

−40

0

40

80

Longitude

La
tit

ud
e

0 50 100 150 200

Figure 3: Output of the application of the algorithm shown in Figure 2,
achieved by applying different α values: from 0 to 4 until α → ∞. The
higher the value of the parameter α, the higher the weight of highest dis-
tances among pixel values, until reaching the maximum potential β-diversity
(maximum distance) at α→∞.
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Figure 4: Comparison between NDVI, Rao’s Q Index, native plant species
richness for the ecoregions of California. The NDVI values shown in the top-
left box (100 m resolution) were derived from the ESA Copernicus Sentinel-2
dataset then processed with Google Earth Engine and range between -0.26
(red) and 0.99 (green). The Rao’s Q index shown in the top-right box was
calculated from the NDVI map with alpha=1 and alpha to infinite and a
moving window of 9x9 pixels. High values are shown in dark green and
represent pixel whose sorrounding NDVI values are more “diverse” than pixel
reported in red. The map reporting the potential native plant species richness
of California (resolution: 810 m) was derived summing the binary potential
distribution range of 5,222 native plant species modelled by Thornhill et al.
(2017) and ranges between 134 (red) to 1029 (green) species per pixel (1 km2).
The ecoregions considered in this paper are overlapped to the NDVI image:
1) Coast range (low mountains covered by highly productive, rain-drenched
evergreen forests), 2) Klamath Mountain (highly dissected ridges, foothills,
and valleys), 3) Central Valley (flat, urbanized and intensively farmed plains),
4) Mohave and Sonora ranges (very dry and warm broad basins).
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Figure 5: A theoretical example of the power of using generalized entropy
for monitoring purposes. Given a landscape at times t0 (pink) and tn (blue),
calculating generalized entropy will allow the formation of a graph showing
the continuum of Rao’s Q values observed over a range of values for α.
The same landscape in different times might show an abrupt change (e.g.,
a catastrophic event) with an apparent diversity decrease (top). In this
case, point descriptors (e.g., single α values) of diversity may be sufficient
to describe this pattern. When the change in diversity is subtle (bottom),
using a point descriptor might fail to detect it but it becomes manifest in the
continuum of diversities based on generalized entropy. The complete code
for reproducing this theoretical example is available in Appendix S3.
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Appendix S1 - Mathematical dissertation on1

the proposed algorithms2

From zero to infinity: minimum to maximum3

diversity of the planet by spatio-parametric4

Rao’s quadratic entropy5

6

January 23, 20217
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1 Hill’s numbers and generalized entropy8

Hill (1973) expressed parametric diversity as the “numbers equivalent” of9

Rényi’s generalized entropy, as:10

Kα =
1(∑N

i=1 pi × p
α−1
i

) 1
α−1

(1)

11

where the numbers equivalent Kα is the theoretical number of equally-12

abundant DNs (i.e. all those with pi = 1
Kα

) that are needed in order that its13

diversity be Hα (?).14

Hill’s Kα has the form of the reciprocal of a generalized mean of order α−15

1. Jost (2006) further showed that, like for Hα, the numbers equivalents of all16

parametric and non-parametric measures of diversity that can be expressed as17

monotonic functions of
∑
pαi have the form of the reciprocal of a generalized18

mean of order α− 1 (for details, Jost , 2006).19

2 Mathematical proof: for α→ 0 Q0 is the ge-20

ometric mean among the generalized means,21

for α→∞ Q∞ is the maximum distance be-22

tween pixel values pairs23

We want to compute

lim
α→0

Qα where Qα =

(
N∑

i,j=1

1

N2
dαij

) 1
α

. (2)

By exp(log(x)) = x we can rewrite Qα as

Qα =

(
N∑

i,j=1

1

N2
dαij

) 1
α

= exp

(
log

(
N∑

i,j=1

1

N2
dαij

) 1
α
)

= exp

(
1

α
log

(
N∑

i,j=1

1

N2
dαij

))

reminding that if N > 1, there is at least one distance dij > 0. We use this24

last expression to calculate (2). We use the following two well known results.25

Theorem 1 (De l’Hôpital). Let f1, g1 : (a, b) 7→ R be two functions such that26

• limx→a f1(x) = limx→a g1(x) = 027

2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427872


• f1 and g1 are differentiable in (a, b) with g′1(x) 6= 0 for every x ∈ (a, b)28

• the limit limx→a
f ′1(x)

g′1(x)
= L with L ∈ R29

then

lim
x→a

f1(x)

g1(x)
= L.

Theorem 2 (Limit composition). Let f2 : (a, b) 7→ R and let g2 : (c, d) 7→ R30

be two functions such that the image set of g2 is contained in the domain of31

f2, i.e. Img(g2) ⊆ (a, b). Let x0 ∈ (c, d), if it holds that32

• limx→x0 g2(x) = y0 with g2(x) 6= y0 definitely for x→ x033

• limy→y0 f2(y) = l34

with a, b, c, d, x0, y0, l ∈ R ∪ ±∞ then

lim
x→x0

(f2 ◦ g2)(x) = l.

We apply Theorem (2) to calculate the limit (2) with f2(x) = exp(x) and

g2(α) =
1

α
log

(
N∑

i,j=1

1

N2
dαij

)
.

(all assumptions of the theorem hold). Setting x0 = 0, we have to compute

lim
α→0

g2(α). (3)

which will be accomplished using Theorem (1) by setting f1 : (0,+∞) 7→ R

f1(α) = log

(
N∑

i,j=1

1

N2
dαij

)

and g2 : (0,+∞) 7→ R, g2(α) = α. Then we have

f1(0) = lim
α→0

f1(α) = log(
1

N2

N∑
i,j=1

1) = log(1) = 0

as the limit exists and
g1(0) = lim

α→0
g1(α) = 0.

3
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Both functions f1 and g1 are differentiable. Lastly we observe that g′1(α) ≡ 1.
Since all the assumptions of Theorem 1 hold then

lim
α→0

f1(α)

g1(α)
= lim

α→0

f ′1(α)

g′1(α)
= lim

α→0

( 1
N2

∑N
i,j=1 d

α
ij)
−1( 1

N2

∑N
i,j=1 d

α
ij log dij)

1

=
1

N2

N∑
i,j=1

log dij =
N∑

i,j=1

log(dij)
1
N2 =

N∏
i,j=1

log(d
1
N2

ij )

(4)

By Equation (4) we have the expression of Equation 3. Let

y0 =
N∏

i,j=1

log(d
1
N2

ij )

and we conclude by observing

lim
y→y0

exp(y) = exp

(
N∏

i,j=1

log(d
1
N2

ij )

)
=

N∏
i,j=1

exp(log(d
1
N2

ij )) =
N∏

i,j=1

d
1
N2

ij = N2

√√√√ N∏
i,j=1

dij.

Now we want to compute

lim
α→+∞

Qα where Qα =

(
N∑

i,j=1

1

N2
dαij

) 1
α

We define d = max{dij|i, j ∈ {1, . . . , N}} and we rewrite Qα as

Qα =

(
N∑

i,j=1

1

N2
dαij

) 1
α

=

(
N∑

i,j=1

1

N2
dα
(
dij
d

)α) 1
α

= d

(
N∑

i,j=1

1

N2

(
dij
d

)α) 1
α

Next we observe that
dij
d
≤ 1

by construction and there exist a pair (i, j) such that
di,j
d

= 1. Therefore it
follows that

N∑
i,j=1

1

N2

(
dij
d

)α
=

1

N2

N∑
i,j=1

(
dij
d

)α
=

1

N2

(
1 +

N∑
i,j=1

(i,j) 6=(i,j)

(
dij
d

)α)
≤ 1

for every α > 1. And the limit in (4) is

lim
α→+∞

d

(
N∑

i,j=1

1

N2

(
dij
d

)α) 1
α

= d = max
i,j

dij.
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Appendix S2 - Code1

From zero to infinity: minimum to maximum2

diversity of the planet by spatio-parametric3

Rao’s quadratic entropy4

5

January 23, 20216
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+7

1 paRao function8

1function (x, dist_m = "euclidean", window = 9, alpha = 1,9

method = "classic",10

rasterOut = TRUE , lambda = 0, na.tolerance = 0, rescale =11

FALSE ,12

3diag = TRUE , simplify = 3, np = 1, cluster.type = "SOCK",13

debugging = FALSE)14

5{15

is.wholenumber <- function(x, tol = .Machine$double.eps16

^0.5) abs(x -17

7round(x)) < tol18

if (!(is(x, "matrix") | is(x, "SpatialGridDataFrame") |19

is(x,20

9"RasterLayer") | is(x, "list"))) {21

stop("\nNot a valid x object.")22

11}23

if (is(x, "SpatialGridDataFrame")) {24

13x <- raster(x)25

}26

15else if (is(x, "matrix") | is(x, "RasterLayer")) {27

rasterm <- x28

17}29

else if (is(x, "list")) {30

19rasterm <- x[[1]]31

}32

21if (na.tolerance > 1 | na.tolerance < 0) {33

stop("na.tolerance must be in the [0-1] interval.34

Exiting ...")35

23}36

if (any(!is.numeric(alpha))) {37

25stop("alpha must be a numeric vector. Exiting ...")38

}39

27if (any(alpha < 0)) {40

stop("alphas must be only positive numbers. Exiting41

...")42

29}43

if (method == "classic" & is(x, "RasterLayer")) {44

31isfloat <- FALSE45

if (!is.wholenumber(rasterm@data@min) | !is.46

wholenumber(rasterm@data@max) |47

33is.infinite(rasterm@data@min) | !is.wholenumber(48

median(getValues(rasterm),49

na.rm = T))) {50

2
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35message("Input data are float numbers. Converting51

x data in an integer matrix ...")52

isfloat <- TRUE53

37mfactor <- 100^ simplify54

rasterm <- getValues(rasterm) * mfactor55

39rasterm <- as.integer(rasterm)56

rasterm <- matrix(rasterm , nrow(x), ncol(x),57

byrow = TRUE)58

41gc()59

}60

43else {61

rasterm <- matrix(getValues(rasterm), ncol = ncol62

(x),63

45nrow = nrow(x), byrow = TRUE)64

}65

47message("Matrix check OK: \nParametric Rao output66

matrix will be returned")67

}68

49else if (method == "classic" & (is(x, "matrix") | is(x, "69

list"))) {70

isfloat <- FALSE71

51if (!is.integer(rasterm)) {72

message("Input data are float numbers. Converting73

x in an integer matrix ...")74

53isfloat <- TRUE75

mfactor <- 100^ simplify76

55rasterm <- as.integer(rasterm * mfactor)77

rasterm <- matrix(rasterm , nrow(x), ncol(x),78

byrow = TRUE)79

57gc()80

}81

59else {82

rasterm <- as.matrix(rasterm)83

61}84

message("Matrix check OK: \nParametric Rao output85

matrix will be returned")86

63}87

else ("The class of x is not recognized. Exiting ...")88

65if (window %%2 == 1) {89

w <- (window - 1)/290

67}91

else {92

69stop("The size of the moving window must be an odd93

number. Exiting ...")94

}95

71if (np == 1) {96

if (method == "classic") {97

73out <- lapply(alpha , paRaoS , rasterm = rasterm , w98

= w,99

3
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dist_m = dist_m, na.tolerance = na.tolerance ,100

75diag = diag , debugging = debugging , isfloat =101

isfloat ,102

mfactor = mfactor)103

77}104

else if (method == "multidimension") {105

79out <- lapply(alpha , mpaRaoS , x = x, rasterm =106

rasterm ,107

w = w, dist_m = dist_m, na.tolerance = na.108

tolerance ,109

81rescale = rescale , lambda = lambda , diag =110

diag ,111

debugging = debugging)112

83}113

if (rasterOut == T & class(x) == "RasterLayer") {114

85outR <- lapply(out , raster , template = x)115

return(outR)116

87}117

else {118

89return(out)119

}120

91}121

else if (np > 1) {122

93if (method == "multidimension") {123

stop("Multidimensional paRao not yet implemented ,124

set ’np=1’. Exiting ...")125

95}126

else {127

97message("\n##################### Starting128

parallel calculation #######################")129

if (debugging) {130

99cat("#check: Before parallel function.")131

}132

101if (cluster.type == "SOCK" || cluster.type == "133

FORK") {134

cls <- makeCluster(np , type = cluster.type ,135

outfile = "",136

103useXDR = FALSE , methods = FALSE , output = "137

")138

}139

105else if (cluster.type == "MPI") {140

cls <- makeCluster(np , outfile = "", useXDR =141

FALSE ,142

107methods = FALSE , output = "")143

}144

109else {145

message("Wrong definition for ’cluster.type ’.146

Exiting ...")147

111}148

4
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doParallel :: registerDoParallel(cls)149

113on.exit(stopCluster(cls))150

gc()151

115out <- lapply(alpha , paRaoP , rasterm = rasterm , w152

= w,153

dist_m = dist_m, na.tolerance = na.tolerance ,154

117diag = diag , debugging = debugging , isfloat =155

isfloat ,156

mfactor = mfactor)157

119if (rasterOut == T & class(x) == "RasterLayer") {158

outR <- lapply(out , raster , template = x)159

121return(outR)160

}161

123else {162

return(out)163

125}164

}165

127}166

}167

2 Application of the paRao function to a syn-168

thetic set169

# install standalone rastediv170

2install.packages(’rasterdiv_0.2 -0. tar.gz’, repos = NULL , type171

= "source")172

173

4library(raster)174

library(rasterdiv)175

6176

# generate matrix177

8synth <- raster(ncol = 8, nrow = 8, xmn = 1, xmx = 6, ymn =178

1, ymx = 6)179

values(synth) <- rpois(ncell(synth), lambda =3)180

10181

# paRao function , using the code in the manuscript182

12synth.parao <- paRao(synth , alpha = c(0:4 ,30^9) , dist_m = "183

euclidean", window = 9, na.tolerance = 0.5, simplify = 3,184

diag = T, rasterOut = T)185

3 Application of the paRao function to the186

8bit copNDVI dataset187

5
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1library(rasterdiv)188

189

3st <- paRao(copNDVI , alpha = c(0:4,Inf),190

dist_m = "euclidean", window = 9, na.tolerance = 0.5,191

simplify = 3, diag = TRUE , rasterOut = TRUE)192

4 Output plot193

library(raster)194

2library(ggplot2)195

library(rasterVis)196

4library(RColorBrewer)197

198

6var.labs=c("layer.1" = "alpha to 0", "layer.2" = "alpha=1", "199

layer .3" = "alpha =2", "layer .4" = "alpha =3", "layer .5" = "200

alpha =4", "layer .6" = "alpha to infinity")201

202

8gplot(st, maxpixels =500000) +203

geom_raster(aes(fill = value), color = "black") +204

10labs(x="Longitude",y="Latitude", fill="")+205

scale_fill_gradientn(colors=rainbow (100)) +206

12coord_equal ()+207

theme_light ()+208

14facet_wrap(~ variable , ncol = 2, labeller = labeller(209

variable = var.labs))+210

theme(legend.position = "bottom") +211

16NULL212

6
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Appendix S3 - Code for Figure 41

From zero to infinity: minimum to maximum2

diversity of the planet by spatio-parametric3

Rao’s quadratic entropy4

5

January 23, 20216
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7

1library(ggplot2)8

library(rasterdiv)9

3x1 <- matrix(c(255, 128, 1, 255, 128, 1, 255, 128, 1),ncol =3)10

x2 <- matrix(c(10, 10, 10, 10, 50, 50, 50, 50, 50),ncol =3)11

5p1 <- paRao(x1,window=3,np=1,na.tolerance =0.1, dist_m="12

euclidean",alpha =2)13

p2 <- paRao(x2,window=3,np=1,na.tolerance =0.1, dist_m="14

euclidean",alpha =2)15

7alphas <- seq(0,30,1)16

out1 <- paRao(x1 ,window=3,np=1,na.tolerance =0.1, dist_m="17

euclidean",alpha=alphas)18

9out2 <- paRao(x2 ,window=3,np=1,na.tolerance =0.1, dist_m="19

euclidean",alpha=alphas)20

r1 <- sapply(out1 , function(y) {y[2 ,2]})21

11r2 <- sapply(out2 , function(y) {y[2 ,2]})22

ggp <- rbind.data.frame(23

13cbind.data.frame(raop=r1,alphas ,"Time frames"=rep("t0",length24

(alphas))),25

cbind.data.frame(raop=r2,alphas ,"Time frames"=rep("tn",length26

(alphas))))27

1528

pdf("landscapes.pdf")29

17ggplot(ggp , aes(x=alphas , y=raop ,col=‘Time frames ‘)) +30

geom_line(size=2,alpha =0.6) +31

19geom_point(cex=3,pch =21) +32

theme_bw() +33

21xlab("alpha") +34

ylab("Parametric Rao") +35

23theme(axis.text.x = element_text(size =14), axis.text.y =36

element_text(size =14)) +37

theme(axis.title.x = element_text(size =16), axis.title.y38

= element_text(size =16))+39

25theme(legend.position="top",legend.title=element_text(40

size =14),legend.text=element_text(size =14))41

dev.off()42

2743

44

2945

######################################46

3147

#### Second graph48

3349

library(raster)50

35library(rasterdiv)51

library(ggplot2)52

3753

x1 <- matrix(c(255, 128, 1, 255, 128, 1, 255, 128, 1),ncol =3)54

39x2 <- matrix(c(10, 10, 10, 10, 50, 50, 50, 50, 50),ncol =3)55
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x3 <- matrix(c(rep (20 ,3),rep (250 ,6)),ncol =3)56

41alphas <- seq(0,30,1)57

out1 <- paRao(x1 ,window=3,np=1,na.tolerance =0.1, dist_m="58

euclidean",alpha=alphas)59

43out2 <- paRao(x2 ,window=3,np=1,na.tolerance =0.1, dist_m="60

euclidean",alpha=alphas)61

out3 <- paRao(x3 ,window=3,np=1,na.tolerance =0.1, dist_m="62

euclidean",alpha=alphas)63

45r1 <- sapply(out1 , function(y) {y[2 ,2]})64

r2 <- sapply(out2 , function(y) {y[2 ,2]})65

47r3 <- sapply(out3 , function(y) {y[2 ,2]})66

ggp <- rbind.data.frame(67

49cbind.data.frame(raop=r1,alphas ,"Time frames"=rep("t0",length68

(alphas))),69

cbind.data.frame(raop=r3,alphas ,"Time frames"=rep("tn",length70

(alphas))))71

5172

pdf("landscapes2.pdf")73

53ggplot(ggp , aes(x=alphas , y=raop ,col=‘Time frames ‘)) +74

geom_line(size=2,alpha =0.6) +75

55geom_point(cex=3,pch =21) +76

theme_bw() +77

57xlab("alpha") +78

ylab("Parametric Rao") +79

59theme(axis.text.x = element_text(size =14), axis.text.y =80

element_text(size =14)) +81

theme(axis.title.x = element_text(size =16), axis.title.y82

= element_text(size =16))+83

61theme(legend.position="top",legend.title=element_text(84

size =14),legend.text=element_text(size =14))85

ggsave("~/paRao_comparison1.png",dpi=600, scale =0.5, width86

=10, height =10)87

63dev.off()88
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