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35 Abstract

36 We present NOMIS (https://github.com/medicslab/NOMIS), a comprehensive open MRI tool to 

37 assess morphometric deviation from normality in the adult human brain. Based on MR 

38 anatomical images from 6,909 cognitively healthy individuals aged 18-100 years, we modeled 

39 1,344 measures computed using the open access FreeSurfer pipeline, taking into account 

40 personal characteristics (age, sex, head size), scanner characteristics (manufacturer and magnetic 

41 field strength), and image quality, providing expected values for any new individual. Then, for 

42 each measure, the NOMIS tool was built to generate Z-score effect sizes denoting the extent of 

43 deviation from the normative sample. Depending on the user need, NOMIS offers four versions 

44 of Z-score adjusted on different sets of variables. While all versions take into account head size, 

45 image quality and scanner characteristics, they can also incorporate age and/or sex, thereby 

46 facilitating multi-site neuromorphometric research across adulthood.

47
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48 Introduction

49 Despite the popularity of magnetic resonance imaging (MRI) to examine abnormalities in brain 

50 morphometry, tools quantifying normality are lacking. While age, sex and intracranial volume are 

51 well-known to influence brain volume and shape[1, 2] the determination of whether an 

52 individual’s brain region measurements are within normality faces multiple major challenges 

53 such as the lack of normative data across appropriate age groups, the influence of the MRI 

54 processing pipeline, the variety in neuroanatomical atlases used for parcellation and the quality 

55 of the image itself[3, 4]. We made previous attempts[5-8] to produce such normative data in 

56 adulthood based on FreeSurfer, an open-access and fully automated segmentation software 

57 (http://freesurfer.net), for two specific brain atlases, namely Desikan-Killiany[9] (DK) and 

58 Desikan-Killiany-Tourville[10] (DKT). This initial foray allowed for the quantification of the extent 

59 of deviation from normality for a given individual, according to personal characteristics such as 

60 age, sex and estimated intracranial volume (eTIV), while controlling for scanner magnetic field 

61 strength (MFS) and scanner manufacturer (OEM). Although this work has already gathered more 

62 than a hundred citations in the last three years, several researchers solicited the expansion of 

63 the  norms to include other brain regions, as well as different atlases; as well as the production 

64 of variants, for example, of only adjusting for head size and scanner characteristics. For the latter, 

65 it became clear to us that we also needed to control for image quality. Further, we recognized 

66 the need to increase the size of our normative sample to ensure better representation of middle 

67 age.

68 Leveraging this prior work, we offer a comprehensive tool called NOMIS (NOrmative 

69 Morphometry Image Statistics; https://github.com/medicslab/NOMIS). NOMIS can be used for 
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70 new adult individuals, healthy or otherwise. Using this individual’s T1-weighted MRI, processed 

71 via the FreeSurfer 6.0 toolkit, one can derive Z-score effect sizes denoting the extent of deviation 

72 from the normative sample according to the individual’s characteristics (age, sex, and eTIV), while 

73 taking into account scanner information (MFS, OEM) and now voxel size (resolution) and image 

74 quality (contrast-to-noise ratio (CNR) and holes in surface reconstruction). Our model takes into 

75 account 1,344 brain measures generated by FreeSurfer on 6,909 healthy individuals aged 18 to 

76 100 years (mean  sd: 55.0  20.0; 56.8% female). The normative data includes as before the 

77 DK[9] and DKT[10] atlases, as well as the Destrieux (a2009s)[11] neocortical atlas; neocortical pial 

78 and white surface areas, volumes and thicknesses; FreeSurfer’s default subcortical atlas[12], 

79 hippocampal subfields, brainstem subregions; its ex vivo-based labeling protocol atlas[13]; and 

80 the subcortical white matter parcellation according to the adjacent neocortical areas. 

81 Furthermore, to fulfill specific needs from researchers, we propose four versions of Z-score 

82 adjusted on different sets of variables. While all versions are adjusted for head size, image quality 

83 and scanner characteristics, the full version includes both age and sex whereas the three other 

84 versions are without age, without sex and without age and sex. Thus, a research group working 

85 on aging aiming at removing the variance of hippocampal volumes due to head size, sex, scanner, 

86 and image quality could use the version without age, which preserves the variance due to aging. 

87 Materials and methods

88 Normative sample

89 The norms are based on a cross-sectional sample of 6,909 (initial sample: 7,399) cognitively 

90 healthy individuals aged 18 to 100 years, (mean sd; 55.0 20.0; 56.8% female), gathered from 
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91 27 different datasets (Table 1; Acknowledgments). Scans were acquired from one of the three 

92 leading OEM (e.g. Siemens Healthcare (Erlangen, Germany); Philips Medical Systems (Best, 

93 Netherlands); or GE Healthcare (Milwaukee, WI)) at MFS of either 1.5 or 3 Tesla. For each dataset, 

94 approval from the local ethics board and informed consent of the participants were obtained.

95 Table 1. Datasets included in the normative sample

Dataset n

Autism Brain Imaging Data Exchange (ABIDE)[14] 183
Alzheimer's Disease Neuroimaging Initiative (ADNI)[15] 672
Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL)[16] 157
Berlin Mind and Brain (Margulies, Villringer) CoRR sample (BMB)[17, 18] 50
Cambridge Centre for Ageing and Neuroscience (CamCAN)[19, 20] 630
Center of Biomedical Research Excellence (COBRE)[21] 70
Cleveland CCF[22] 30
Consortium for the Early Identification of Alzheimer's Disease (CIMA-Q)[23] 29
Dallas Lifespan Brain Study (DLBS)[24] 304
FIND lab sample (FIND) Lab[25] 13
Functional Biomedical Informatics Research Network (FBIRN)[26] 33
Lifespan Human Connectome Project in Aging (HCP-Aging)[27] 612
International Consortium for Brain Mapping (ICBM) - MNI[28] 147
Information eXtraction from Images (IXI)[29] 554
F.M. Kirby Research Center neuroimaging reproducibility data (KIRBY-21)[30] 20
Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD)[31] 21
National Alzheimer's Coordinating Center (NACC)[32] 1562
National Database for Autism Research (NDAR)[33] 56
Nathan Kline Institute Rockland (NKI-RS)[34] 138
Nathan Kline Institute Rockland (NKI-RS) Enhanced[34] 436
Open Access Series of Imaging Studies (OASIS)[35] 288
POWER Neuroimage sample (POWER)[36] 26
Parkinson's Progression Markers Initiative (PPMI)[37] 158
Southwest University Adult Lifespan Dataset (SALD)[38] 490
University of Wisconsin (Birn, Prabhakaran, Meyerand) CoRR sample (UWM)[17] 25
Wayne State EF Dataset[39] 108
Yale Low-Resolution Controls Dataset[40] 97

Total 6909
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96

97 Among the datasets are the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Australian 

98 Imaging, Biomarkers and Lifestyle study of aging (AIBL) and the Consortium pour l’identification 

99 précoce de la maladie Alzheimer - Québec (CIMA-Q) datasets. The ADNI (adni.loni.usc.edu) was 

100 launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

101 MD. (www.adni-info.org). The AIBL data was collected by the AIBL study group and AIBL study 

102 methodology has been reported previously by Ellis et al. (2009). For each dataset, approval from 

103 the local ethics board and informed consent of the participants were obtained. Founded in 2013 

104 with a $2,500,000 grant from the Fonds d’Innovation Pfizer - Fond de Recherche Québec – Santé 

105 sur la maladie d’Alzheimer et les maladies apparentées, the main objective of CIMA-Q is to build 

106 a cohort of participants characterized in terms of cognition, neuroimaging and clinical outcomes 

107 in order to acquire biological samples allowing (1) to establish early diagnoses of Alzheimer’s 

108 disease, (2) to provide a well characterized cohort and (3) to identify new therapeutic targets. 

109 The principal investigator and director of CIMA-Q is Dr Sylvie Belleville from the Centre de 

110 recherche de l’Institut universitaire de gériatrie de Montréal, CIUSSS Centre-sud-de-l’Île-de-

111 Montréal. CIMA-Q represent a common effort of several researchers from Québec affiliated to 

112 Université Laval, Université McGill, Université de Montréal, et Université de Sherbrooke. CIMA-

113 Q recruited 350 cognitively healthy participants, with subjective cognitive impairment, mild 

114 cognitive impairment, or Alzheimer’s disease, between 2013–2016. Volunteers were recruited 

115 from memory clinics, through advertisements posted in the community and amongst participants 

116 from the NuAge population study. 
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117 From all the samples mentioned, only cognitively healthy (control) participants were 

118 included. For the Nathan Kline Institute samples, which were projects recruiting in the general 

119 population, we excluded participants with history of schizophrenia or other psychotic disorders, 

120 bipolar disorders, major depressive disorders (recurrent), posttraumatic stress disorder, 

121 substance abuse/dependence disorders, neurodegenerative and neurological disorders, head 

122 injury with loss of consciousness/amnesia, and lead poisoning. Moreover, for the Parkinson's 

123 Progression Markers Initiative dataset, we excluded participants with a Geriatric Depression 

124 Scale[41] score of more than 5.

125 Brain segmentation

126 Brain segmentation was conducted using FreeSurfer version 6.0, a widely used and freely 

127 available automated processing pipeline that quantifies brain anatomy (http://freesurfer.net). 

128 All raw T1-weighted images were processed using the "recon-all -all" FreeSurfer command with 

129 the fully-automated directive parameters (no manual intervention or expert flag options) on the 

130 CBRAIN platform[42]. Normative data were computed for volumes, neocortical thicknesses and 

131 white and pial surfaces areas for all atlases comprised in FreeSurfer 6.0: the default subcortical 

132 atlas[12] (aseg.stats), the Desikan-Killiany atlas[9] (DK, aparc.stats file), the Desikan-Killiany-

133 Tourville atlas[10] (DKT, aparc.DKT.stats file), the Destrieux atlas[11] (aparc.a2009s.stats file), the 

134 ex vivo atlas,[43] including entorhinal and perirhinal cortices, the brainstem sub-regions 

135 atlas[44], the Brodmann area maps which includes somatosensory areas, several motor and 

136 visual areas, as well as the hippocampal subfields atlas[45]. 

137 The technical details of FreeSurfer’s procedures are described in prior publications. 

138 Briefly, this processing includes motion correction, removal of non-brain tissue using a hybrid 
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139 watershed/surface deformation procedure, automated Talairach transformation, intensity 

140 normalization, tessellation of the gray matter white matter boundary, automated topology 

141 correction, and surface deformation following intensity gradients to optimally place the 

142 gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in 

143 intensity defines the transition to the other tissue class. Once the cortical models are complete, 

144 a number of deformable procedures can be performed for further data processing and analysis 

145 including surface inflation, registration to a spherical atlas which is based on individual cortical 

146 folding patterns to match cortical geometry across subjects and parcellation of the cerebral 

147 cortex into units with respect to gyral and sulcal structure. This method uses both intensity and 

148 continuity information from the entire three-dimensional MRI volume in segmentation and 

149 deformation procedures to produce representations of cortical thickness, calculated as the 

150 closest distance from the gray/white boundary to the gray/CSF boundary at each vertex on the 

151 tessellated surface. The maps are created using spatial intensity gradients across tissue classes 

152 and are therefore not simply reliant on absolute signal intensity. Procedures for the 

153 measurement of cortical thickness have been validated against histological analysis [46] and 

154 manual measurements[47, 48]. Estimated intracranial volume[49] was taken from the aseg.stats 

155 FreeSurfer output file. We added the total ventricle volume (labeled as “ventricles”) using the 

156 sum of all ventricles and the corpus callosum (labeled as “cc”) using the sum of all corpus 

157 callosum segments.

158 Quality control and sample selection

159 A flow chart detailing the final analysis sample is shown in Fig 1. From an initial pool of 7,399 

160 MRIs, nine images failed the FreeSurfer pipeline. Following processing, each of the remaining 
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161 7,390 brain segmentations was visually inspected through at least 20 evenly distributed coronal 

162 sections. After quality control, 445 images (6.0%) were removed from further analyses due to 

163 segmentation problems, the main reason being that parts of the brain were not completely 

164 segmented (e.g. temporal and occipital poles). During visual inspection, 26 brains were found to 

165 have clear significant brain lesions and were excluded. In addition to visual inspection, we 

166 excluded participants if at least one of the 1,344 brain region measures was missing (n=10). In 

167 fine, the analysis sample was composed of 6,909 individual MRIs.

168

169 Fig 1. Flow chart of the images.

170

171 Training, validation and test sample

172 We randomly selected 10% of the whole sample (n=691) to test the models in an 

173 independent sample (age: 55.1 ±20.1, range 18-100; 58.5% female). This test sample was not 

174 used to build the models predicting normative values. The remaining 90% was used as training 

175 sample (age: 54.9 ±20.0, range 18-100; 56.7% female) to build and validate the models. Leave-

176 10%-out cross-validation was used to validate the model in the training sample.

177 Clinical samples evaluations

178 We evaluated the usefulness of normative values using clinical samples of individuals with 

179 schizophrenia (n=72; Age: 38.2 ±13.9, range 18-65; 19% female) from the COBRE dataset, as well 

180 as participants with clinically ascertained mild Alzheimer's disease (n=157 Age: 74.8 ±8.1, range 

181 55-90; 43% female) from the baseline ADNI-2 dataset.

182
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183 Scanner-related predictors

184 Scanner-related predictors included manufacturer (OEM), magnetic field strength (MFS), and 

185 voxel size (resolution).

186 Image quality predictors

187 Image quality can have an effect on brain segmentation quality[50, 51]. We therefore included 

188 in the prediction models contrast-to-noise ratio (CNR) for each area as well as the total number 

189 of holes in surface reconstruction prior to fixing, since this measure is correlated with visual 

190 assessment of brain segmentation[50]. Defect holes – topological errors in the cortical surface 

191 reconstructions – were extracted from the aseg.stats FreeSurfer output file and CNR was assessed 

192 after FreeSurfer preprocessing using the brain.mgz file with gray matter (GM) and cerebral white 

193 matter (WM) voxel intensities for each area with the following formula:

194 𝐶𝑁𝑅 =  
(𝐺𝑀 𝑚𝑒𝑎𝑛 ―  𝑊𝑀 𝑚𝑒𝑎𝑛 )2 

(𝐺𝑀 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 +  𝑊𝑀 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)   

195

196 Regression models and statistical analyses

197 Linear regression models predicting each measure were built using age, sex, eTIV, MFS, OEM, 

198 voxel size, surface defect holes and the CNR of the region as predictors. To obtain normal 

199 distributions, surface holes and ventricles (except the 4th) were log transformed. For ventricles 

200 and white matter regions, CNR of the total brain gray matter was used while for the brainstem 

201 subregions and hippocampal subfields, CNR from the whole brainstem and whole hippocampus 

202 were used, respectively. Quadratic and cubic terms for age, eTIV, and surface holes were 

203 included, as well as the following interactions: age X sex, age X eTIV, sex X eTIV, eTIV X MFS and 

204 MFS X OEM. Feature selection was conducted with a 10-fold cross-validation[52] backward 
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205 elimination procedure, retaining the model with the subset of predictors that produced the 

206 lowest predicted residual sum of squares. For each selected final model, the fit of the data was 

207 assessed using R2 coefficient of determination:

208 𝑅2 =  1 ―  
∑

𝑖 (𝑌𝑖 ― ƒ𝑖)2

∑
𝑖 (𝑌𝑖 ― 𝑌)2  

209 where the numerator is the residual sum of squares (Y is the value of the variable to be predicted 

210 and f is the predicted value) and the denominator is the total sum of squares (𝑌 is the mean). To 

211 assess the unique contribution of each predictor, we used the lmg metric in the R package[53] 

212 relaimpo[54]. This metric is a R2 partitioned by averaging sequential sums of squares over all 

213 orderings of the predictors.

214 For each brain measure, in order to exclude potential abnormalities, outliers with Z scores higher 

215 than 3.29 (p < .001) were removed to compute the statistical model. This was done in proportion 

216 to eTIV for volumes and surfaces and on raw values for cortical thicknesses. The number of 

217 outliers was below 1% for all regions (mean sd of all atlases: 0.45% 0.10%) except the right 

218 long insular gyrus and central sulcus of the insula white surface (1.1%) and pericallosal sulcus 

219 volume (1.1%) of the Destrieux atlas. Detailed results can be found in the supplementary 

220 material. Brain figures were made using the ggseg R package[55]. 

221 The models were verified by examining the difference between CV-10 R2 of the training sample 

222 and R2 of the independent test sample of healthy controls. We then examined the validity of the 

223 normative values to show expected patterns of normality deviations using the Z score effect sizes 

224 in the validation samples of healthy individuals and of individuals with AD and SZ. 

225 𝑍𝑂𝑃 =  
𝑌𝑜 ―  𝑌
𝑅𝑀𝑆𝐸
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226 Z score effect sizes (ZOP) were obtained by subtracting the Predicted value (𝑌) from the Observed 

227 value (Yo) divided by the root mean square error (RMSE) of the model predicting the value [56].

228 Results

229 Total variance explained by the models

230 The cross-validation 10-fold (CV-10) R2 for the overall explanatory variance of the models 

231 ranged between 0.02 to 0.84, with a mean  sd of 0.37  0.10. The highest R2 were observed in 

232 the largest regions (total brain volume 0.84, neocortex volume 0.82, pial surface 0.80, and white 

233 surface 0.79). The inferior occipital gyrus and sulcus (0.02) and the anterior transverse collateral 

234 sulcus thicknesses in the Destrieux atlas (0.02), as well as the DK and DKT left parahippocampal 

235 thickness (0.02) had the lowest R2. As examples, figures in this report display subcortical and DK 

236 neocortical atlases results. Full detailed results for all atlases are provided as supplementary 

237 information. Fig 2 illustrates the total R2 for neocortical volumes and thicknesses of the DK atlas 

238 parcellation, as well as subcortical volumes. As shown, a higher amount of variance was generally 

239 explained for volumes compared to cortical thicknesses.

240 Independent test

241 The models predicting normative values were tested in an independent, healthy adults 

242 randomly chosen 10% sample. Nearly all models showed equivalent or higher R2 on the test set 

243 than on the training set by CV-10 (difference for all atlases: 0.01 ±0.016). The lowest test 

244 differences were in the Destrieux atlas where 37 measures out of 592 were below -0.05, the 

245 worse being the fronto-marginal gyrus (of Wernicke) and sulcus (0.11), the superior occipital 

246 gyrus (0.10) and the superior temporal sulcus (0.10) pial surface areas. Fig 2 displays the R2 

247 difference between training and test sets for the DK atlas. Few minimal worse test values were 
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248 observed for some cortical and subcortical volumes while all cortical thicknesses and most other 

249 volumes had equivalent or better R2 prediction values.

250

251 Fig 2. Top: R2 from 10-fold cross-validation (10-fold CV) for cortical volumes and thicknesses 

252 from the DK atlas and subcortical volumes. Bottom: Difference between R2 from the training 

253 set (10-fold CV) and the independent test set. Worse prediction from the test set are shown 

254 in green while better prediction are grayed.

255

256 Variance explained by each predictor

257 Figs 3 and 4 show variances due to biological and MRI factors. As expected, effects differ 

258 highly from one region to another, however, globally, age and eTIV had the largest effects on 

259 volumes, while age was the essential factor on neocortical thickness. Scanner, as well as image 

260 quality had statistically significant, but smaller effects on morphometric measures. Fig 5 

261 illustrates the effect of age and sex on the four different NOMIS Z scores versions on the 

262 independent healthy test set. While the age effect is clearly apparent on the sex and the version 

263 without age and sex, it is null on the age and sex and age Z scores versions. The sex effect is also 

264 affected, but is relatively small.

265

266 Fig 3. Effects of age, sex, and estimated total intra-cranial volume (eTIV) on cortical volumes 

267 and thicknesses from the DK atlas and subcortical volumes. 

268 Fig 4. Effects of scanner and image quality on cortical volumes and thicknesses from the DK 

269 atlas and subcortical volumes.
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270 Fig 5. Age and sex effects on the left cortical thickness across the four NOMIS Z scores 

271 alternatives. 

272

273 Clinical validation

274 We validated the normative values in individuals with clinically ascertained mild 

275 Alzheimer's disease and schizophrenia, which showed expected patterns of deviations from 

276 otherwise cognitively/behaviorally healthy individuals (Fig 6). In the Alzheimer’s disease group, 

277 deviations from normality covered the frontal, temporal and parietal cortices with enlarged 

278 ventricles, but were especially more pronounced in the hippocampus and entorhinal cortex. In 

279 schizophrenia, atrophy was widespread to nearly all of the cortex. 

280

281 Fig 6. Mean normative Z scores on cortical volumes and thicknesses from the DK atlas and 

282 subcortical volumes of participants with mild Alzheimer’s disease and with schizophrenia.

283

284 Discussion

285 NOMIS strengths and limits

286 Prior normative data[5-7] were relatively limited in terms of atlases and sample size. With 

287 nearly seven thousand participants and 1,344 brain measures, NOMIS offers a comprehensive 

288 neuromorphometric normative tool based on a very large sample. In addition, an innovation of 

289 NOMIS is its flexibility. Depending on the user need, it has four versions of Z-score adjusted on 

290 different sets of variables. All versions include head size, image quality and scanner 

291 characteristics, but can also take into account age and/or sex or without age and sex. Therefore, 
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292 research groups looking for traditional norms, as well as others wanting to lower the variance 

293 due to head size and image quality/scanner characteristics while preserving age and/or sex 

294 variances can take advantage of NOMIS. Another strength of NOMIS is that the normative values 

295 were created on a various amalgam of cognitively healthy participants from multiple countries, 

296 with data acquired from a wide variety of MRI scanners and image quality, maximizing its 

297 generalizability. A novelty to prior existing normative data, is the addition of the image quality 

298 impact on the morphometry measures. Figure 4 shows that its effect is not trivial on cortical 

299 volume and thickness. Thus, our new normative data should help to remove some noise due to 

300 image quality.

301 Despite these strengths, users should keep in mind that before using NOMIS, it is 

302 mandatory to verify FreeSurfer segmentations and that while it will remove parts of variance due 

303 to the scanner and image quality, it won’t correct for segmentation errors or image artefacts. 

304 Moreover, the normative sample, comprised essentially of research volunteers in academic-led 

305 environments, was recruited using a non-probability sampling method and may not be 

306 representative of the targeted population by the user.

307 Using NOMIS

308 The NOMIS tool is a user-friendly automated script in Python, freely accessible 

309 (https://github.com/medicslab/NOMIS). Users only need to pre-process their images with 

310 FreeSurfer 6.0 using automated directive parameters, then specify the individuals’ characteristics 

311 to the script, which will automatically compute Z-scores based on the FreeSurfer output. One can 

312 choose the version of the Z-score by including in the csv file, only the variables that needs to be 

313 adjusted and the script automatically selects the appropriate version of predictors. The predictive 
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314 models and all statistical parameters are provided along with the script. We anticipate that this 

315 tool will be of broad interest to the neuroscientific community.
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