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Abstract

In light of the low signal-to-noise nature of many large biological data sets, we
propose a novel method to learn the structure of association networks using
Gaussian graphical models combined with prior knowledge. Our strategy in-
cludes two parts. In the first part, we propose a model selection criterion called
structural Bayesian information criterion (SBIC), in which the prior structure
is modeled and incorporated into Bayesian information criterion (BIC). It is
shown that the popular extended BIC (EBIC) is a special case of SBIC. In
the second part, we propose a two-step algorithm to construct the candidate
model pool. The algorithm is data-driven and the prior structure is embed-
ded into the candidate model automatically. Theoretical investigation shows
that under some mild conditions SBIC is a consistent model selection criterion
for high-dimensional Gaussian graphical model. Simulation studies validate the
superiority of the proposed algorithm over the existing ones and show the ro-
bustness to the model misspecification. Application to relative concentration
data from infant feces collected from subjects enrolled in a large molecular epi-
demiological cohort study validates that metabolic pathway involvement is a
statistically significant factor for the conditional dependence between metabo-
lites. Furthermore, new relationships among metabolites are discovered which
can not be identified by the conventional methods of pathway analysis. Some
of them have been widely recognized in biological literature.
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1. Introduction

Modern ’omics technology can easily generate thousands of measurements in
a single run which provides an opportunity for researchers to explore complex
relationships in biology. However, it has been widely recognized that biological
measurements are usually accompanied by a low signal-to-noise ratio making5

detection of effect challenging and final conclusions unreliable. As reported in
Ideker et al [31], prior knowledge can play a pivotal role in deciphering this
kind of complexity. For example, Segre et al [67] drew on the prior knowledge
on mitochondrial genes sets to investigate whether mitochondrial dysfunction
is a cause of the common form of diabetes. Roach et al [64] identified the gene10

that causes Miller syndrome based on the human genome reference map. For
more work on the application of prior biological knowledge, see Boluki et al
[7], Imoto et al [32], Ma et al [48]. The studies in this paper are motivated by
the metabolite pathway information that are available in many public biological
databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG). As far15

as we know, such information have not been well utilized in literature to improve
the statistical analysis of metabolites.

Biological network, such as microbe-microbe interaction networks, metabo-
lite association networks and gene regulation networks, have received much at-
tention in recent years. Probabilistic graphical models are typically employed in20

literature to study such biological networks (Lauritzen and Sheehan [42], Zhang
et al [86], Stingo et al [72], Dobra et al [19]). The edges in graphical model
represent the conditional dependence among the vertices, which stand for the
objects of interest such as microbes, metabolites or genes. In some cases, i.e.,
causal inference, the directionality of edge, which is indispensable for the com-25

putation of casual effects, also has to be considered. Nevertheless, in this paper
we only consider association network which can be characterized by undirected
graphical model. The identification of the structure of association network is
our primary interest. Many algorithms have been proposed in literature in this
respect. In particular, for tree and forest, Chow and Liu [17], Edwards et al [21]30

and Kirshner et al [38] proposed and studied the classic Chow-Liu algorithm
and its extensions. Heuristic algorithms such as the hill-climbing algorithm are
studied in Hojsgaard et al [30], Jalali et al [36], Lauritzen [41] and Ray et al [62].
Cheng et al [15], Friedman et al [22], Meinshansen and Buhlmann [49], Raviku-
mar et al [61] and Wainwright and Jordan [79] investigated the L1-penalized35

likelihood method for the identification of Gaussian and Ising graphical models.
In order to deal with the prior structure of network, Bayesian methods is the

typical choice in literature (Dobra et al [19], Jones et al [35], Scott and Berger
[66]). As for Gaussian graphical model (GGM), the most popular Bayesian
method is based on the direct modeling of prior distribution of precision ma-40

trix, e.g, conjugate G-wishart distribution (Mohammadi and Wit [52]), or spike-
slab distribution (Mohammadi [53]) et al. In these situations, though there
exist MCMC sampling algorithms for the decomposable graph, the computa-
tion becomes challenging for the general non-decomposable graph (Carvalho
et al [11], Dobra and Lenkoski [20], Mitsakakis et al [51], Roverato [65], Wang45
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[80], Wang and Carvalho [81]). Recently, an efficient sampling-free Bayesian
method is proposed in Leday and Richardson [43] for high-dimensional GGM ,
which employs hypothesis testing to determine the existence of each individual
edge based on Bayes factor. There are also several algorithms to deal with the
prior information within frequentist framework. For example, the Chow-Liu50

algorithm can learn the structure when the graph is a tree (Chow and Liu [17]);
Chow-Liu algorithm is extended in Edwards et al [21] to deal with the forest;
conditional Chow-Liu algorithm is proposed in Kirshner et al [38] to include
a given set of edges in the graph. In extended Bayesian information criterion
(EBIC) for high-dimensional Gaussian graphical model (Foygel and Drton [26]),55

as will be shown in Section 3, empty graph is adopted as the prior graph. If
a sufficient large weight is assigned to the prior structure, the algorithm will
end up with an empty graph. Ma et al [48] focus on the deterministic prior
structure; when the random structure is involved in prior graph, they propose
an algorithm to construct the model pool.60

In this paper we propose a novel method to learn the structure of Gaussian
graphical models based on a given prior structure. We first propose a model
selection criterion called structural Bayesian information criterion (SBIC) to
incorporates the prior structure into BIC. Numerous criteria have been proposed
in literature for model selection, e.g., Akaike information criterion (AIC, Akaike65

[1]), Bayesian information criterion (BIC, Schwarz [69]), extended BIC (EBIC,
Bogdan et al [4, 5, 6], Chen and Chen [13, 14]), cross-validation method (CV,
Stone [75]), generalized CV method (GCV, Geisser [28], Burman [10], Shao
[70], Zhang [83]), risk inflation criterion (RIC, Foster and George [25], Zhang and
Shen [85]) among many others. In particular, generalized information criterion70

(GIC) proposed in Shao [71], Kim et al [37] provided a unified framework for
many of these criteria in the context of linear regression model, such as AIC,
BIC, EBIC and RIC et al. As for the network selection, Foygel and Drton
[26] studied the consistency of EBIC for GGM selection. The criterion SBIC
proposed in this paper can be regarded as a generalization of the EBIC of75

Foygel and Drton [26]. Compared with the EBIC, SBIC provides a more flexible
framework; in fact, SBIC just reduces to EBIC when the prior graph is an empty
graph. As a theoretical basis, for high-dimensional sparse Gaussian graphical
models, it is shown that SBIC is a consistent criterion for model selection under
mild conditions. Based on the prior structure, we then propose a data-driven80

two-step algorithm to build the model pool, in which the graph is enriched
in the first step and pruned in the second step. Such two-step algorithm can
be readily implemented based on the R packages such as glmnet (Friedman
et al [22]) or glasso (Friedman et al [24]). Recall that the well-known greedy
equivalence search (GES) algorithm for structure learning of directed acyclic85

graph also consists of similar edge addition and removal steps aiming to optimize
the score function. For decomposable graph, GES algorithm converges to the
global optimum in probability as n→∞ (Chickering et al [16]).

Through simulation studies, it is shown that the combination of the proposed
SBIC and two-step algorithm is a robust structure-learning strategy for high-90

dimensional Gaussian graphical model and outperforms many existing popular
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structure learning algorithms under the given conditions. As an application, we
studied 1H NMR-based metabolite data profiled in infant feces collected as part
of the New Hampshire Birth Cohort Study (NHBCS), a large prospective cohort
study of mothers and their children born in New Hampshire (Madan et al [46]).95

The prior structure for these metabolites is constructed based on the related
pathway information from KEGG. Our results show that pathway is a statis-
tically significant factor for the conditional dependence between metabolites,
i.e., the strength of conditional dependence between two metabolites increases
if the proportion of shared pathways increases. Furthermore, the identified net-100

work discovers new relationship between metabolites that can not be identified
through the conventional methods of pathway analysis, many of which have
been validated in biological literature.

The paper is organized as follows. Section 2 briefly reviews the undirected
Gaussian graphical model and extended BIC. A new formulation of extended105

BIC is introduced. In Section 3, we present our main algorithm, in which Section
3.1 introduces structural BIC and its implications; Section 3.2 describes the two-
step algorithm for building the candidate model pool. Theoretical investigation
of SBIC is given in Section 4. In Section 5, the algorithm is evaluated through
simulated data. In Section 6 we use the algorithm to investigate the pathway110

and metabolomic data from NHBCS. Section 7 concludes with a brief comment.

2. Gaussian Graphical Model and EBIC

2.1. A brief review of EBIC for Gaussian graphical model

For a given p-dimensional multi-normal random vector, X = (X1, X2, · · · , Xp)
T ∼115

N(µp,Σp×p), an undirected graph G = (V,E) is used to represent the condi-
tional dependence relationship between X, where the vertex set V indexes the
variables and the edge set E encodes the conditional independence. The pre-
cision matrix is defined as Ωp×p = (ωij) = Σ−1. It turns out that for multi-
normal distribution the precision matrix can completely specify the structure120

of G. Given n i.i.d. observations, X̃ = (x(1), · · · ,x(n))
T , our aim is to learn

the structure of G, i.e., to identify the nonzero components in p̃
4
= p(p − 1)/2

off-diagonal entries in Ω. In its general form, Bayesian information criterion
(BIC) can be stated as follows. Let E be the model space under consideration
with π(E) the prior probability for E ∈ E . Let θ denote the unknown parameter125

in E with prior distribution p(θ). With θ in hand, let the conditional density
function for X̃ be f(X̃|θ), then the marginal density function for observations
X̃ can be expressed as f(X̃|E) =

∫
f(X̃|θ)p(θ|E)dθ. Therefore, the posterior

distribution of model E can be expressed as

p(E|X̃) =
f(X̃|E)π(E)∑
E∈E f(X̃|E)π(E)

. (1)
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Through Laplace’s method of integration, the following approximation can be130

obtained for −2 log p(E|X̃),

−2 log p(E|X̃) = −2 log f(X̃|θ) + |E| log n− |E| log(2π)− 2 log p(θ|E) (2)

+ log det(M)− 2 log π(E) + c,

where M is the expected information matrix for single observation, |E| the
degree of freedom of model E and c a constant. By omitting the last five terms
which do not involve the sample size n, we get the standard Bayesian information
criterion, BIC(E) = −2ln(E) + |E| log n with ln(E) = log f(X̃|θ). For the high-135

dimensional regression model, the extended BIC (EBIC) is proposed in Bogdan
et al [4], Bogdan et al [5], Bogdan et al [6], Chen and Chen [13], Chen and
Chen [14], which puts more weight on sparse model than standard BIC. EBIC
is further generalized to the Gaussian graphical model in Foygel and Drton [26],
which has the following form,140

EBICλ = −2ln(Ω(E)) + |E| log n+ 4|E|λ log p, (3)

where Ω(E) is the precision matrix associated with model E. Tuning parameter
0 ≤ λ ≤ 1 controls the model complexity. When λ = 0, EBIC reduces to the
standard BIC. As λ increases, (3) will put more weight on the sparse model.
The log-likelihood function ln(Ω(E)) in (3) for the Gaussian graphical model
has the following form,145

ln(Ω) =
n

2
[log det(Ω)− trace(SΩ)], (4)

where S is the empirical covariance matrix. It is proved in Foygel and Drton
[26] that EBICλ (3) is a consistent model selection criterion for high-dimensional
GGM under some mild conditions.

Although EBIC has been widely used in literature for high-dimensional
model selection, several limitations have not been addressed adequately. In150

particular, EBIC does not take prior information into consideration. Typically,
prior information is integrated with data through Bayesian method; however,
as we have mentioned in previous section, the complicated forms of posterior
distribution for non-decomposable graphs have undermined the popularity of
Bayesian method in practice. In this context, incorporating prior information155

into BIC is a natural choice. On the other hand, given such model selection
criterion, an appropriate candidate model pool is indispensable since the ex-
haustive search within the whole model space is impossible for high-dimensional
graphical model. With these motivations in mind, in the following section we
propose a new strategy for the selection of Gaussian graphical model when the160

prior structure is available. Though we focus on Gaussian graphical model in
this paper, the algorithm can be easily adapted to accommodate more general
undirected graphical model, e.g., Ising model.

2.2. A new interpretation of EBIC

In this section, we introduce a different way to interpret EBIC which will165

facilitate the introduction of prior structure in Section 3. For any given pair of
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vertices, (Xi, Xj), define the edge variable Zij equal to one if there exists an
edge between Xi and Xj and zero otherwise, i.e., Zij is the indicator variable
for the existence of the edge between nodes Xi and Xj . Due to the symmetry
of undirected graph, we have Zij = Zji (1 ≤ i < j ≤ p). Then we define a170

p̃-dimensional random vector Z = (Z12, Z13, · · · , Z(p−1)p/2)T
4
= (Z1, · · · , Zp̃)T .

The prior information about the structure of E can be completely specified
by the probability distribution of Z. The following Boltzmann distribution is
employed to model the distribution of Z,

Pr(Z = z) ∝ exp

(
−ε(z)

KT

)
, (5)

where ε(·) ≥ 0 is called energy function, T the temperature parameter, and175

K the Boltzmann constant. Note that there is a one-to-one correspondence
between Z = z and model E so that (5) amounts to defining a prior distribution
π(E) for E. Without loss of generality, K = 2 is always assumed in the following
discussion. Substitution of (5) into (2) yields the following approximation to
(2) for Gaussian graphical model,180

BICT,ε(z) = −2ln(Ω(z)) + |z| log n+ ε(z)/T, (6)

where |z| denotes the number of nonzero components in z. The third to fifth
terms and the constant c in (2) have been omitted here since neither sample
size n nor model dimensionality p is involved in these terms. In order to use (6)
in practice, we consider the following simple yet flexible quadratic specification
of ε(·),185

BICT,W (z) = −2ln(Ω(z)) + |z| log n+ zTWz/T, (7)

for some given positive semi-definite matrix W . In (7), the energy function
can be regarded as the squared weighted Euclidean distance between the given
state, z, and the origin state, 0. It is obvious that both BIC and EBIC are the
special cases of (7). In fact, if W = 0, (7) is the standard BIC; if T = 1/(4λ)
and W = (log p)Ip̃ with Ip̃ the p̃ × p̃ identity matrix, then (7) reduces to the190

EBIC (3)-(4). With such a specification of W in EBIC, it is straightforward
to show that the components of Z are independent Bernoulli variables with
nonzero probability 1

1+p2λ
. Such probabilistic interpretation can guide us to

choose a proper tuning parameter λ involved in EBIC (3). For example, for
λ = 0.5, or equivalently T = 0.5, which is often recommended in literature195

(Foygel and Drton [26]), it implies that the prior mean number of total edges is
p̃/(1+p) ≈ (p−1)/2. More generally, we have P (Zi = 1) < 0.5 whenever T > 0
and P (Zi) > 0.5 whenever T < 0. So for the sparse graph with E|Z| < p̃/2,
T > 0 is a plausible choice.

In some circumstances, prior information comprise both the mean and vari-200

ance of the total edges, which can also be modeled through BICT,W . Specifically,
consider the following form of W for BICT,W ,

W (ρ) = DTR(ρ)D (8)
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in which D = diag(
√

log p, · · · ,
√

log p) and R = ρJp̃+(1−ρ)Ip̃ for some 0 ≤ ρ <
1. Here, Jp̃ is the p̃ × p̃ matrix with all the entries being 1. There is a one-to-
one correspondence between (ρ, T ) and (µ, σ2), the mean and variance of total205

edges. The details about the formulas are given in Supplementary Materials.
So for any specification of (µ, σ2), the corresponding parameter (T, ρ) can be
easily determined which in turn can be used in BICT,W for model selection.

3. Incorporation of Prior Structure into Model Selection

3.1. Prior structure enhanced BIC for Gaussian graphical model210

In Section 2.2, it is shown that the third term in EBIC is the squared distance
between a given state z and the origin state 0, or in other words, the squared dis-
tance between the given graph and the empty graph. Now let us adapt BICT,W
(7) to accommodate the prior structure of graph. For X ∼ N(µ,Σ), suppose
that graph G̃ = (V, Ẽ) represents the prior structure (e.g., constructed based215

on some biological theory), and our aim is to learn the underlying true struc-
ture based on G̃ and the observations on X. First, we intruduce the concept
of difference graph. For two graphs G̃ = (V, Ṽ ) and G = (V,E), the difference
graph of G̃ and G is defined as the graph which has the same vertex set V as
G̃ and G while the edge set is Ē = Ẽ4E. Here 4 stands for the symmet-220

rical difference operator between two sets. Let the difference graph denoted

by Ḡ = G̃4G 4
= (V, Ē). For a given prior edge set Ẽ, there is a one-to-one

correspondence between Ē and E. Equivalently, there is a one-to-one corre-
spondence between their edge vector, Z̄ = I(Z̃ − Z) and Z. Replacing z in
the third term of BICT,W with z̄, we obtain the following structural Bayesian225

information criterion (SBIC),

SBICT,W (z) = −2ln(Ω(z)) + |z| log n+ z̄TW z̄/T, (9)

in which the first term measures the fitness between model and data, the second
term measures the model complexity and the third term measures the deviation
of the model from the prior structure. Minimization of (9) will lead to solutions
that achieve balance between these terms. Essentially, we have assumed that Z̄230

in (9) has Boltzmann distribution,

P (Z̄ = z̄) ∝ exp

(
− z̄TW z̄

2T

)
. (10)

If we set W = diag(log p, · · · , log p) just like EBIC, then (9) reduces to

SBICT (z) = −2ln(Ω(z)) + |z| log n+ |z̄| log p/T, (11)

which will be used in the numerical studies in Section 5 and 6.
Remarks. (i) If z̃ = 0, i.e., the prior structure is empty graph, then SBIC

in (11) reduces to EBIC in (3), i.e., EBIC is a special case of SBIC. (ii) If T235

is large enough, then the model selected by SBIC is the same as that selected
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by standard BIC; if T is small enough, then the model selected by SBIC is just
the prior graph. For other T , the model selected by SBIC will be a compromise
of these two extreme cases. (iii) The choice of T in (11) relies on the expected
error rate of prior structure. The expected error rate is defined as r = E|Z̄0|/p̃,240

where Z̄0 is the edge vector of the difference graph between true and prior

structure. It is straightforward to show that r = E(m1)+E(m2)
p̃ , where m1 is the

number of true edges that have been omitted by prior structure while m2 is the
number of edges that have been mistakenly included in the prior structure. In
many cases, r is more intuitive than T . On the other hand, we have from (10),245

E|Z̄|0 = p̃
1+p1/(2T ) , from which we have T = log p

2 log(1/r−1) . Given such one-to-one

correspondence between T and r, the intuitive interpretation of r can guide us
to determine the appropriate value for T . Particularly, if r = 0.5, then T =∞,
which yields the standard BIC. (iv) The knowledge about the expected error
rate r may be derived from domain knowledge, as we did for the metabolite250

data in Section 6. In case that such information is not available, Bogdan et al
[4, 5, 6] recommended a tuning parameter in the context of regression model
with which the family wise error rate (FWER) is shown to be approximately
8% for the dataset with the sample size n ≥ 200 and the number of variables
p ≥ 30. Similar strategy can also be employed in the context of GGM model to255

control the FWER when no prior information about r is available.
The generalization of (11) is possible. For example, it has been implicitly

assumed that the probability of adding an edge to the prior graph, p1, and the
probability of removing an edge from the prior graph, p2, is equal. In some
cases, compared with pruning edges, we may be more inclined to add edges to260

the prior graph, i.e., p1 > p2. The following simple generalization of (11) can
accommodate such situation,

SBICT1,T2
(z̄) = −2ln(Ω(z)) + |z| log n+ |z̄1| log p/T1

+|z̄2| log p/T2, (12)

where z̄1 is the indicator vector of whether the entries of (z̃− z) are 1, while z̄2

is the indicator vector for -1. Different combination of T1 and T2 reflects our
different belief about the prior structure. For example, a small T1 and a large265

T2 indicate that we have higher confidence about the edges than the non-edges
in prior structure. The cost of such flexibility is that we have to specify the
values for both T1 and T2 which may be challenging in some circumstances.

As has been mentioned in Section 1, there are already several different ways
to model the prior structure of network in Bayesian methods, see, e.g., Moham-270

madi and Wit [52], Mohammadi [53], Mukherjee and Speed [56]. In particular,
the concordance function proposed in Mukherjee and Speed [56] plays the sim-
ilar role as the energy function (5) in this paper. They demonstrated how
different type of prior structures can be integrated into the prior distribution of
the network. The network structure can then be inferred based on the samples275

from the posterior distribution. Note that the size of the model space for net-
work grows super-exponentially as the number of vertices increases. Given this
fact, Leday and Richardson [43] pointed out that the MCMC-based strategy
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for model selection of network can hardly get sufficient qualified samples that
can represent the real posterior distribution, which will eventually compromise280

the reliability of the final estimates of network. The proposed model selection
criterion (9) combined with the candidate model pool detailed in the next sec-
tion provides an alternative yet feasible way to deal with these problems and
demonstrates its superiority in the simulation studies compared with Bayesian
network selection.285

3.2. Construction of model pool based on prior structure

With p variables, the size of the model space for graphical model is 2p̃.
If p = 10, then the size of model space is 245. So as p increases, it quickly
becomes intractable to find the optimal model by searching the whole model
space. There are two ways in literature to deal with this problem. One is290

to use the heuristic algorithm, including greedy or stepwise forward/backward
search, to find the optimum of score function (Chickering et al [16]). The other
is to select a subset of the model space as the candidate model pool and then
use the model in this model pool which minimize the score function as our
selected model (Friedman et al [22]). In this paper, we focus on the second295

method. A common practice for the construction of candidate model pool for
graphical model is to use the solution path of graphical lasso (Friedman et al
[22]). The disadvantage of graphical lasso is that it does not integrate prior
structure when building the model pool. Even with SBIC in hand, we may
still end up with a poor model choice. It is necessary to incorporate the prior300

structure into the construction of model pool. For example, in addition to the
solution path of graphical lasso, we may simply include random samples from the
Boltzmann distribution (10) corresponding to the prior structure as a part of the
model pool. This method turns out to be inefficient for high-dimensional model
given the huge size of model space. Alternatively, we can carefully devise the305

penalty term in graphical lasso so that the solution path can relate to the prior
structure automatically. This method usually involves complex optimization
algorithm that can not be easily solved based on the existing software. In the
following, we propose an intuitive algorithm to build the model pool based
on the prior structure, which can be easily implemented using the popular R310

package such as glasso (Friedman et al [22]) or glmnet (Friedman et al [24]). This
algorithm bears some similarities to the well-known greedy equivalence search
(GES) algorithm while the latter aims to learn the structure of directed acyclic
graphical model (Chickering et al [16], Ramsey et al [59]). Recall that GES
algorithm optimizes the given score function by an edge addition or removal in315

each step until the algorithm converges. If the true model is decomposable, it
is proved that GES algorithm can consistently select the true model as sample
size tends to infinity (Chickering et al [16]). Though our algorithm also involves
edge addition and removal, the present objective is to construct the model pool
instead of searching the optimum of score function. Specifically, the algorithm320

consists of the following two steps.
Step 1 (Edge enrichment): Since some edges may have been omitted by the

prior graph, in this step we consider how to pick up the omitted edges. To this
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end, for a given increasing sequence of λ, 0 ≤ λ
(1)
1 < · · · < λ

(1)
m1 , we solve the

following optimization problems for i = 1, · · · ,m1,325

arg minΩ:Ẽ⊆E(Ω)

{
trace(SΩ)− log det(Ω) + λ

(1)
i ‖Ω‖1

}
, (13)

where E(Ω) is the edge set of graph corresponding to Ω, ‖Ω‖1 =
∑

1≤i<j≤p |ωij |.
In (13) we fix the edges in prior structure and consider how to enrich it by
selecting the edges from the rest edges. This step leaves us m1 graphs denoted
by G(i) for i = 1, · · · ,m1 respectively.

Step 2 (Edge pruning): Each G(i) (i = 1, · · · ,m1) from the first step contains330

the prior structure. Since some redundant edges may have been mistakenly
included in the prior structure, we aim to prune these edges from these graphs
in this step. To this end, for a given G(i) (1 ≤ i ≤ m1), we solve the following

m2 optimization problems for an increasing sequence 0 ≤ λ(2)
1 < · · · < λ

(2)
m2 ,

arg minΩ:E(Ω)⊆Ei

{
trace(SΩ)− log det(Ω) + λ

(2)
j ‖Ω‖1

}
, (14)

where Ei is the edge set of graph G(i). In (14), for a given graphical model G(i),335

we consider how to prune the false edges that have been included in the prior
structure. This step leaves us graphs G(ij) for i = 1, · · · ,m1 and j = 1, · · · ,m2.
Thus there are total m1m2 candidate models in the final model pool.

Remarks. (1) If the prior structure is an empty graph, then only edge en-
richment step is involved to build the model pool; if the prior structure is a340

complete graph, then only edge pruning step is involved. The model pools for
these two extreme cases turn out to be the same as that from the standard
lasso. (2) The two-step algorithm above is implemented through the graphical
lasso (Friedman et al [23]); nevertheless, the algorithm can also be equivalently
implemented through the neighborhood method (Meinshansen and Buhlmann345

[49]). The consistency of neighborhood method is guaranteed by the property
of lasso for high-dimensional regression model (Zhao and Yu [87]). When neigh-
borhood method is used, the R package glmnet (Friedman et al [24]) can be
employed to facilitate the computation.

A concern raised by the reviewers is about the performance of the proposed350

algorithm when there exists big discrepancy between the prior and true network.
Firstly, we note that the proposed two-step algorithm always includes the solu-
tion path of lasso as a part of the model pool; consequently, the model pool can
cover the true model if the sample size n is reasonably large with respect to the
number of vertices p. As far as SBIC is concerned, this issue essentially is about355

how to select the temperature parameter T . If we have a good estimate of the
discrepancy between prior and true network, or equivalently the average error
rate r, then an appropriate T can be selected. In that case, a bad prior network
will make the last term in SBIC relatively small and the model selection will be
mainly determined by other terms in SBIC. However, if we mistakenly assume a360

small r for an actually large discrepancy, that will have a negative effect on the
model selection. In that situation, sensitivity analysis of the result with respect
to the tuning parameter T is recommended, based on which tuning parameter
can be chosen to ensure a robust network selection, see section 5.1 for details.
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4. Consistency of SBIC365

In this section we investigate the theoretical properties of SBIC. It is proved
that under the given assumptions SBIC can consistently select the underlying
model for high-dimensional Gaussian graphical model, where the number of
vertices may increase as sample size increases.

First let us introduce some notations for ease of exposition. Recall that370

z is the p̃-dimensional edge vector indicating whether or not there is an edge
between two given vertices. Define |z| =

∑p̃
i=1 zi and let z0 be the edge vector

corresponding to the true graph E0 under consideration. Let Eq denote the graph
set with no more than q edges and Zq ⊂ Rp̃ the corresponding edge vector
set. Let σ2

max denote the largest diagonal component of the true covariance375

matrix Σ0 while λmax denote the largest eigenvalue of true precision matrix Θ0.
For a given positive semi-definite matrix W , let τmax and τmin be the largest
and smallest eigenvalue of W respectively. With these notations in hand, the
consistency for BICT,W (7) and SBIC (11) are proved in Theorem 1 and 2
respectively. For BICT,W , the following assumptions are involved.380

Assumption 1. E0 ∈ Eq is decomposable;
Assumption 2. p = O(nκ) for some 0 < κ < 1;
Assumption 3. ∃ constant C > 0 such that σ2

maxλmax ≤ C and θ0 =
mine∈E0

|(Θ0)e| > 0
Assumption 4. ∃ε > 0 such that 0 < 2T (4 + ε− 1

2κ ) log p ≤ τmin ≤ τmax =385

o(p).
Theorem 1. Under Assumptions 1-4, the model selection procedure based

on BICT,W given in (7) is consistent, i.e., as n→∞ we have

z0 = arg min
z∈Zq

BICT,W (z) (15)

in probability.
Now let us consider SBIC (11) in which prior structure is available for the390

underlying graphical model. Recall that G̃ = (V, Ẽ) is the prior structure,
Ḡ = (V, Ē) is the difference graph between G̃ and G and Ḡ0 is the difference
graph of prior graph G̃ and true graph G0. Here we have assumed G̃ and G0

have the same vertex set. In order to prove the consistency of SBIC (11) ,
Assumptions 1 and 4 have to be replaced by the following Assumptions 1

′
and395

4
′
.

Assumption 1
′
Ẽ ∈ Eq1 , Ē0 ∈ Eq2 for some integers q1 and q2 and E0 is

decomposable.
Assumption 4

′
For κ0 = 1

κ−γ > 0, ∃ ε > 0, 0 < τ < 1 such that τκ0 > 4+ε.

Assumption 1
′

says that z̄0 has at most q2 nonzero components which means400

that we can reach the true edge set E0 by adding or deleting at most q2 edges
from the prior edge set Ẽ and so E0 ∈ Eq1+q2 . Given the observations X̃ =
(x(1), · · · ,x(n)), we have the following result.

Theorem 2. Under Assumption 1
′

and 2, 3 and 4
′
, SBIC (11) can consis-

tently select the true graph structure G0, i.e., as n→∞, we have405

z0 = arg minz∈Zq1+q2
SBICT (z) (16)

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2021. ; https://doi.org/10.1101/815423doi: bioRxiv preprint 

https://doi.org/10.1101/815423
http://creativecommons.org/licenses/by-nc-nd/4.0/


in probability.
The details of the proof for Theorem 1 and 2 are provided in Supplementary

Materials. It should be noted that, in order to facilitate the proof, we have
imposed strong assumptions on the dimensionality and the underlying graphical
structure such as decomposability. It is possible that the results still hold if some410

of these assumptions are relaxed. In particular, both the evaluation of SBIC and
implementation of two-step algorithm do not depend on the decomposability of
the underlying graph.

It also should be pointed out that we only discussed the problem of model
selection for GGM in this study and did not investigate the problem of its415

statistical inference. It is implicitly assumed that the statistical inference can
be reasonably conducted after the model is selected, though this is not always the
case in practice. Additional assumptions including irrepresentability and beta-
min condition have been suggested in literature to ensure the consistency of such
estimate (Bühlmann et al [9]). Recently, several novel methods that integrated420

the model selection and the statistical inference have been proposed for GGM.
For example, Ren et al [63] employed a two-dimensional regression model to
estimate each entry of precision matrix and the asymptotical distribution is
shown to be normal. Jankova and van de Geer [33] adapted the neighborhood
method of Meinshansen and Buhlmann [49] based on the Karush-Kuhn-Tucker425

(KKT) conditions and proposed an estimator for each entry of precision matrix
which is shown to converge asymptotically to the normal distribution. R package
SILGGM has been developed to implement the statistical inference for GGM
using these new methods (Zhang et al [84]).

5. Simulation Studies430

In this section the proposed algorithm is evaluated based on simulated data.
In the first example, we consider a tree graph. For tree graphs, the well-known
Chow-Liu algorithm can optimally and efficiently learn the structure (Chow
and Liu [17], Edwards et al [21], Kirshner et al [38]). We will compare the
performance of our method with Chow-Liu algorithm. In addition, there is a435

temperature parameter T involved in SBIC. Though ideally T should be de-
termined based on the prior information, e.g., expected error rate, in practice
prior information are often biased to some extent. So we also perform sensitivity
analyses to evaluate the robustness of our method with respect to the misspeci-
fication of T . In the second example, we go beyond the tree model and consider440

the randomly generated graphs which may be non-decomposable. Based on
the simulated data from these graphs, we compare the proposed algorithm with
other popular model selection methods in literature. It is demonstrated that the
proposed algorithm can outperform these existing algorithms under the given
scenarios in terms of two indices, true positive rate (TPR) and false positive445

rate (FPR), which are defined as

TPR =
#{identified true edges}

#{all true edges}
, FPR =

#{falsely identified edges}
#{all null edges}

, (17)
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Figure 1: The graphs involved in Section 5.1. The left one is used as the prior graph while
the right one is the true graph.

for which a higher TPR and lower FPR indicate a better model selection.

5.1. Sensitivity analysis based on tree model

Consider a Gaussian graphical model with fixed tree structure. Specifically,
let X = (X1, · · · , X40) be a random vector with X1 ∼ N(0, 1). For i = 2, 3, 4,450

we have Xi = αX1 +εi with εi ∼ N(0, 1). For i = 5, 6, 7, we have Xi = αX2 +εi
with εi ∼ N(0, 1). For i = 8, 9, 10, we have Xi = αX3 + εi with εi ∼ N(0, 1).
In the same fashion, all the variables can be generated. The structure of X is
shown in the right plot in Figure 1. The left graph in Figure 1 is used as the
prior structure.455

Two plots in Figure 2 present TPR and FPR as the function of α respectively.
In each plot two curves are drawn in which the solid curve corresponds to the
model pool constructed from standard lasso while the dashed curve corresponds
to the model pool constructed from two-step algorithm. In both cases SBIC is
employed to select the model in which temperature parameter is set based on460

true error rate r = 9/780. Here the replication is N = 100; the sample size
is n = 60. The difference in each plot reflects the difference between the two
model pools. From Figure 2 it is obvious that TPR from two-step algorithm
is higher than that from standard lasso while FPR from to-step algorithm is
lower than that from standard lasso. In particular, the difference becomes more465

prominent when the association among the variables is weak.
Table 1 lists the results for multiple specifications of T and Chow-Liu algo-

rithm under different scenarios. Specifically, the sample sizes are n = 50, 100;
the number of replication is N = 100. Three choices of association strength
are α = 0.3, 0.4, 0.5. As for temperature parameter T , five choices for expected470

error rate, r = 3/780, 9/780, 18/780, 27/780, 36/780, are considered, from which
T can be derived based on the formula in Section 3.1. For example, the value
of T in SBIC1 corresponding to r = 3/780 can be shown to be 0.332.

From Table 1 it can be seen that: (1) For the combination of SBIC and
two-step algorithm, in most cases both TPR and FPR increase if T increases.475

For the rows with the error rate other than the true value r = 9/780, the
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Figure 2: The left plot is the TPR versus association strength α and the right plot is the FPR
versus α. The solid lines correspond to the model pool constructed based on lasso while the
dashed lines correspond to the model pool constructed based on two-step algorithm.

moderate deviation of r from the true value does not have big impact on the
final results; (2) The combination of BIC and lasso yields large false positive
rates which explains the popularity of EBIC; the combination of BIC and two-
step algorithm yields better results, i.e., higher TPR and lower FPR, especially480

when the association strength α is low and sample size is small; (3) In most cases
the combination of SBIC and two-steep algorithm yields higher TPR and lower
FPR than Chow-Liu algorithm. Nevertheless, compared to the combination of
BIC and lasso, Chow-Liu algorithm yields comparable TPR and lower FPR.

In summary, if prior structure is available for graphical model, then both485

model selection criterion and candidate model should incorporate such informa-
tion. The results from the proposed procedure also demonstrate robustness to
the misspecification of temperature parameter.

5.2. Comparison with other model selection strategies based on general graphical
model490

In this section, we extend the tree graph considered in Section 5.1 to the
randomly generated graph with up to 200 vertices. The proposed model se-
lection algorithm is compared with four popular model selection methods in
literature, including (1) Bayesian method; (2) CV(cross validation)+Lasso; (3)
EBIC+Lasso; (4) BIC+rLasso. For Bayesian method, independent edge inclu-495

sion indicator variables are assumed for the edges set. The same Bernoulli prior
is assumed for all indicator variables. With a given network structure, we then
use the G-Wishart distribution as the prior distribution of precision matrix,
which is known to be conjugate distribution for the normally distributed data.
For second method CV+Lasso, model selection criterion is CV while model pool500

is built by lasso. No prior information is involved here. For EBIC+Lasso, model
selection criterion is EBIC while model pool is built by lasso. Prior structure
is used in EBIC in the same way as SBIC; however, the tuning parameter in
(3) is set to be fixed at λ = 0.5 as commonly suggested in literature. Method
4 is proposed in Ma et al [48] where rLasso stands for residual lasso. Prior505
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information is used in rLasso to construct the model pool. Specifically, when a
part of the structure is known a priori with certainty, Ma et al [48] proposed
to use lasso to construct the model pool based on the residuals from the linear
regression of each variable on its known neighbors. Given such model pool,
they then employed BIC to select graphical model. Such method to build the510

model pool, however, will be biased when the prior structure involves random-
ness. The two-step algorithm proposed in this paper takes all the vertices into
consideration in the enrichment step which theoretically leads to a less biased
model pool than that from rLasso. Furthermore, since the model pool can not
fully reflect the randomness information in prior structure, the combination of515

SBIC and the proposed model pool should have better performance if the prior
information have been reasonably specified .

Specifically, we first randomly generate a p× p adjacency matrix M1 as the
true structure, in which the number of edges, i.e., the number of 1’s among
the off-diagonal entries of M1, is set to be 100. The adjacency matrix of prior520

structure M2 is generated by randomly changing 100α percent of the 1’s entries
of M1 to 0 and the same number of 0’s entries to 1. Given M1, a symmetrical
matrix with 1’s on its diagonal is generated which has the same edge set as M1.
Each of nonzero entries in this matrix is generated from N(0, 1) distribution.
By tuning the diagonal element 1 to some value β, we can always get a positive525

definite matrix K, which will be used as the precision matrix in this study.
Here we choose β = 1.1 − λmin(A) in which λmin(A) denotes the minimum
eigenvalue of matrix A. For p = 100, 200, α = 0.7, 0.5, 0.3, 0.1, and sample
size n = 100, 200, Table 2 lists the results of TPR and FPR in each scenario
for all the five model selection strategies. For Bayesian method, the inclusion530

probability for each edge is set to be θ = 200/p(p− 1), which means that we do
not assume any specific structure for the graph in its prior distribution other
than the sparsity. For the prior G-Wishart distribution of precision matrix,
WG(b,D), we set b = 3 and D the p × p identity matrix. The burn-in for
sampling from the posterior distribution is set to be 5000. For a given vertex535

pair (Xi, Xj), if 50% precision matrix samples have nonzero (i, j)th entries, then
we define an edge between Xi and Xj ; Otherwise, no edge is defined between Xi

and Xj . As for methods 2 to 5, the number of tuning parameters to build the
model pool is set to be 100. The temperature parameter in SBIC is set based on
the discrepancy rate between real and prior networks, i.e., α = 0.7, 0.5, 0.3, 0.1.540

Note since method CV+Lasso does not involve any prior information, so it has
the same TPR’s and FPR’s in all the four discrepancy situations in Table 2. It
can be seen that the performance of Bayesian method is sensitive to the prior
information. It should be noted that Bayesian method, which is implemented
through the R package BDgraph (Mohammadi and Wit [52]), is much more545

time-consuming than the other four methods; CV+Lasso tends to select the
graphs with too many false edges; EBIC+Lasso tends to omit too many true
edges. Though BIC+rLasso has a better performance than CV+Lasso and
EBIC+Lasso, in most cases, it still has a high probability to omit the true
edges and select the false edges. As for our proposed strategy, it works well and550

reaches a good balance between TPR and FPR, and compared to other four
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Figure 3: A realization of the real and prior networks in simulation studies in Section 5.2.
Dots indicate the nonzero conditional associations between vertices. The five plots in the
first row are for network with p = 100 vertices. The first one is the true network, and
the discrepancy between the other four networks and true network are, from left to right,
α = 70%, 50%, 30%, 10% respectively. These networks are used as prior networks respectively.
Similar explanation applies to the networks in second row which have p = 200 vertices.

methods, yields higher TPR while lower FPR in most cases, especially when
the discrepancy between prior structure and true structure becomes smaller.
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6. Metabolite Network in Human Gut

Metabolites in human body are intrinsically related with different diseases.555

Understanding the relationship between metabolites are helpful to design ap-
propriate treatment. To this end, multiple methods have been proposed in liter-
ature to identify the structure of metabolite networks . For example, Gao et al
[27], Karnovsky et al [40] used the biochemical domain knowledge to construct
the metabolite network. Barupal et al [3], Grapov et al [29] constructed the net-560

work based on structural similarity and mass spectral similarity of metabolites.
The metabolite prior networks in this paper are constructed using the similar
method to that in Gao et al [27], Karnovsky et al [40].

The dataset involved comes from the New Hampshire Birth Cohort Study,
an ongoing prospective cohort study of women and their young children Madan565

et al [46]. The dataset was obtained from metabolomics characterizations of
stool samples collected from infants at approximately six weeks to one year of
age. Sample preparation (with some modifications), 1H NMR data acquisition,
and metabolites profiling procedures have been previously described in Banerjee
et al [2], Brim et al [8], Pathmasiri et al [57], Sumner et al [73, 74]. Chenomx570

NMR Suite 8.4 Professional software (Edmonton, Alberta, Canada) was used
to determine relative concentration (Weljie et al [82]) of selected metabolites
from a curation of list of metabolites that are associated with host-microbiome
metabolism, see Li et al [44], Paul et al [58]. This resulted in a total of 882 obser-
vations for 36 metabolites in this data set. All the observations for metabolites575

were standardized so that they have zero mean and unit standard error, see van
den Berg [78]. In the following, we consider how to learn the structure of the
network among these metabolites using the algorithm proposed in Section 3.

Specifically, we use pathway analysis to construct the prior structure. These
pathway information are obtained from biological database Kyoto Encyclope-580

dia of Genes and Genomes (KEGG) which provides state-of-the-art informa-
tion about the metabolites and their pathways. Note that each of the targeted
metabolites is listed with its associated KEGG Compound ID. Compound infor-
mation for small molecules in the KEGG database can be retrieved using KEG-
GREST, a client API written for R (Dan Tenenbaum (2018). KEGGREST:585

Client-side REST access to KEGG. R package version 1.22.0). Using functions
in the KEGGREST library, the database resource was queried in the R lan-
guage to retrieve the list of one or more pathways associated with each metabo-
lite. With the pathway information in hand, for two given metabolites Xi and
Xj , let the pathways associated with Xi and Xj be Zi = {Zi1, · · · , Zimi} and590

Zj = {Zj1, · · · , Zjmj} respectively. Denote the common pathways of Xi and Xj

by Zij = Zi ∩ Zj and let

sij =
|Zij |

min{|Zi|, |Zj |}
.

If sij ≥ 0.8, then we define an edge between Xi and Xj in the prior graph. With
threshold equal to 0.8, there are 27 edges in the prior graph. With threshold
equal to 0.6, there are 117 edges in the prior graph. We use the difference of595
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Figure 4: The edges that appear in the final network while have not been included in prior
network.

these two number as the expected number of edges in difference graph between
the prior and true network which in turn implies that the value of temperature
parameter involved in SBIC is T = 1. As for the construction of model pool,
we set m1 = m2 = 200 with λmax/λmin = 0.01 in (13) and (14), where λmax

represents the minimal λ at which the graph has no edge. Then based on SBIC600

(11) and two-step algorithm, we obtain the final network. Comparison of the
prior and the final network reveals that there are 153 edges added to and 3
edges removed from the prior network. Figure 4 shows the added edges. The
three removed edges are (Methionine, Tryptophan), (Glutamate, Histidine),
(Asparagine, Valine) respectively.605

A primary question here is that whether the edges that are defined by path-
way reflect the association between metabolites. If a pathway does not contain
any information about association between metabolites, then such prior net-
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Figure 5: The proportion of the added edges in prior network Es as a function of threshold
s. The bottom dashed line corresponds to the line under the null hypothesis.

work can be regarded as built just randomly. Then the probability p1 that an
edge is removed from and the probability p2 that an edge is added to the prior610

network should be equal. Thus we can consider the following hypothesis testing
problem, H0 : p1 = p2. The test statistic involved is U = p̂1−p̂2

(var(p̂1)+var(p̂2))1/2

where p̂1 and p̂2 are the maximum likelihood of p1 and p2 respectively. In light
of central limit theorem, it can be shown that the p-value for the hypothesis
above is 0.0234. With such a p-value, we can tentatively assert that pathways615

have statistically significant effect on the association between metabolites.
One potential concern about the previous analysis is that the conclusion

may be biased by the prior structure. However, we still can use the following
method to validate this conclusion. Specifically, we just consider the added
edges in Figure 4 which are not involved in prior structure. For any given620

0 < s < 0.8, we construct the prior network Es by using the same procedure as
above, i.e, add an edge for (Xi, Xj) if sij ≥ s otherwise not. Note for s = 0.8
there are 153 added edges among total 603 edges, apart from the 27 prior edges,
that have been selected by the proposed method. Imagine that if pathways have
no impact on the association of metabolites, then the proportion of 153 added625

edges in Es should be the same as for s = 0.8, i.e., p0 = 153
603 = 0.2537. Define ps

the probability of the edges in Figure 4 falling into Es, then the null hypothesis
is H0 : ps = p0. For s = 0.1, 0.2, · · · , 0.6, the estimate p̂s can be shown to be
(0.2578, 0.2596, 0.2800, 0.3300, 0.3630, 0.4111) and the corresponding p-value for
the hypothesis H0 are (0.3959, 0.3658, 0.1287, 0.0059, 0.0011, 0.0003). Based on630

these results, we can say that pathway does contain the association information
between metabolites. The more pathways two metabolites share, the more likely
their concentrations are related. Figure 5 shows the empirical probability of
nonzero association as a function of threshold.

It should be stressed that the discussion above does not mean that prior635

network must have to share some common information with the data. If a prior
network is theoretically sound, such prior network is also feasible. However, if
a prior network can find the support from both the theory and data, in our
view, it is more advantageous than the one with support just from theory or
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Table 3: Edges in Figure 4 that can not be covered by conventional pathway analysis

Malonate Asparagine, Cholate, Isobutyrate,
Tryptophan, Phenylalanine, Propionate,
Succinate, Lysine

Propylene glycol Butyrate, Formate, Methionine,
Fumarate, Histidine, Isoleucine,
Maltose, Fucose

π.Methylhistidine Asparagine, Maltose, Nicotinate,
Tryptophan

subjective belief.640

We have confirmed that part of the association among metabolites can be
attributed to pathway. The next question we aim to address is that whether
all the association among metabolites can be explained solely by pathway. To
try to answer this question, first we define a densest prior structure among
metabolites based on pathway. Specifically, whenever two metabolites have any645

pathway in common, we define an edge between them and no edge otherwise.
By comparing the network in Figure 4 to this prior structure, we found that
there are 20 edges which are not covered by the prior structure. In other words,
pathway cannot explain all the association between metabolites.

These 20 edges are listed in Table 3. Among these 20 edges, 8 edges are re-650

lated with malonate, 8 edges are related with propylene glycol and the rest are
related with π-Methylhistidine. Malonate is a well-known competitive inhibitor
of succinate dehydrogenase (SDH) while SDH is a complex of four polypeptides
(SDH A–D) that catalyzes the conversion of succinate to fumarate and func-
tions in mitochondrial energy generation, oxygen sensing and tumor suppression.655

Propylene glycol is a widely used drug vehicle with serious side effects reported
in clinical studies and recognized toxicity (Morshed et al [54, 55]). In light of
these existing studies, it is not surprising to find out their wide connections with
other metabolites even they do not share any pathway.

In summary, metabolic pathway can explain part of the association between660

the metabolites but not completely. This may be explained by the fact that con-
ventional metabolic pathway datasets only focus on the endogenous reactions
occurring within the cell. It is possible that some important reactions may be
omitted by conventional pathway analysis. However, by appropriately combin-
ing prior knowledge with empirical data analysis, the proposed algorithm can665

discover these omitted associations efficiently.

7. Conclusion

We develop a novel method to select the high-dimensional Gaussian graph-
ical model with the aid of prior structure. Such prior structure is often the
result of biological knowledge. The algorithm consists of two parts. In the first670
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part, we propose a novel model selection criterion called structural BIC which
is a generalization of extended BIC. In second part, we propose a two-step al-
gorithm to construct the candidate model pool which incorporates the prior
structure into the candidate model through edge enrichment and pruning. It
is proved that under some mild conditions the structural BIC is a consistent675

criterion for graphical model selection. Simulation results validate the efficacy
and robustness of the algorithm.

We apply the proposed algorithm to the concentration data of metabolite
in human gut for which the prior network is constructed through the pathways
shared by metabolites. It is shown that pathway is a statistically significant680

factor for the association between metabolites. As the network based on the
pathway analysis have been widely used in many fields, these findings pro-
vide statistical basis for such practice. We also find new relationships between
metabolites that can be omitted by conventional pathway analysis.

It is possible to use other types of prior network for metabolites, e.g, the685

structural similarity based prior network. Other biological network such as gene
regulation network or microbial interaction network can also be analyzed based
on our method if the prior structure can be properly defined. The algorithm
can be adapted for the binary data such as Ising model. It is known that model
selection with prior structure for Ising model is complex and little work has690

been done in this respect. Our method provides a possible solution to this issue
and deserves further investigation in the future.
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[9] Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional735

data. Springer.

[10] Burman, P. (1989). A comparative study of ordinary cross-validation, v-
fold cross-validation and the repeated learning-testing methods. Biometrika
76, 503-514.

[11] Carvalho, C. M., Massam, H., and West, M. (2007). Simulation of Hyperin-740

verse Wishart Distributions in Graphical Models. Biometrika, 94(3): 647–659.
MR2410014. doi: http://dx.doi.org/10.1093/biomet/asm056.

[12] Chen I., Yogeshwar D. Kelkar., Yu Gu., Jie Zhou., Xing Qiu., Hulin Wu.
(2017) High-dimensional linear state space models for dynamic microbial in-
teraction networks. PlOS ONE, 15: 1-20.745

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2021. ; https://doi.org/10.1101/815423doi: bioRxiv preprint 

https://doi.org/10.1101/815423
http://creativecommons.org/licenses/by-nc-nd/4.0/


[13] Chen J and Chen Z. (2008). Extended Bayesian information criterion for
model selection with larger model space. Biometrika, 94, 759-771.

[14] Chen J and Chen Z. (2012). Extended BIC for small-n-large-p sparse GLM.
Statistics Sinica, 22, 555-574.

[15] Cheng J., Levina E., Wang P., Zhu J. (2014) Sparse Ising model with750

covariates. Biometrics, 70, 943-953.

[16] Chickering DM. (2002) Optimal structure identification with greedy search.
Journal of Machine Learning Research, 3: 507-554.

[17] Chow C K., Liu C N. (1968) Approximating discrete probability distribu-
tion with dependence tress. IEEE Trans Inf Theory, 14, 462-467.755

[18] Christine Peterson, Francesco Stingo., Marina Vannucci (2015) Bayesian
Inference of Multiple Gaussian Graphical Models, Journal of the American
Statistical Association, 110(509), 159–174.

[19] Dobra, A., Hans, C., Jones, B., Nevins, J. R., and West, M.
(2004). Sparse graphical models for exploring gene expression data.760

Journal of Multivariate Analysis, 90: 196– 212. MR2064941. doi:
http://dx.doi.org/10.1016/j.jmva.2004.02.009.

[20] Dobra, A. and Lenkoski, A. (2011). Copula Gaussian Graphical
Models and Their Application to Modeling Functional Disability Data.
The Annals of Applied Statistics, 5(2A): 969–993. MR2840183. doi:765

http://dx.doi.org/10.1214/10-AOAS397.

[21] Edwards D., de Abreu GCG., Labouriau R. (2010) Selecting high-
dimensional mixed graphical models using minimal AIC or BIC forests. BMC
Bioinform, 11: 18.

[22] Friedman J., Hastie T., Tibshirani R. (2008) R package glasso, URL:770

http://www-stat.stanford.edu/tibs/glasso, Version: 1.11.

[23] Friedman J., Hastie T., Tibshirani R. (2008) Sparse inverse covariance es-
timation with the graphical lasso. Biostatistics, 9(3):432-41.

[24] Friedman J., Hastie T., Tibshirani R., Narasimhan B., Simon N., Qian J
(2019), R package: glmnet, URL: https://glmnet.stanford.edu, Version 3.0-2.775

[25] D. P. Foster and E. I. George. The risk inflation criterion for multiple
regression. The Annals of Statistics, 22:1947–1975, 1994.

[26] Foygel Rina., Drton Mathias. (2010). Extended Bayesian information cri-
teria for Gaussian graphical models, NIPS.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2021. ; https://doi.org/10.1101/815423doi: bioRxiv preprint 

https://doi.org/10.1101/815423
http://creativecommons.org/licenses/by-nc-nd/4.0/


[27] Gao J, Tarcea V G, Karnovsky A, Mirel B R, Weymouth T E, Beecher C780

W, Cavalcoli J D, Athey B D, Omenn G S, Burant C F, Jagadish H V (2010).
Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic
data in the context of human metabolic networks. Bioinformatics, 26(7): 971-
3. doi: 10.1093/bioinformatics/ btq048.

[28] Geisser, S. (1975). The predictive sample reuse method with applications.785

J. Amer. Statist. Assoc. 70, 320-328.

[29] Grapov D, Wanichthanarak K, Fiehn O. MetaMapR: pathway indepen-
dent metabolomic network analysis incorporating unknowns. Bioinformatics,
31(16):2757-60. doi: 10.1093/bioinformatics/btv194.

[30] Hojsgaad S., Edwards D., Lauritzen S. (2012) Graphical Models with R.790

New York: Springer.

[31] Ideker T., Dutkowski J., Hood L. (2011) Boosting signal-to-noise in com-
plex biology, prior knowledge is power. Cell, 144(6): 860–863.

[32] Imoto S., Higuchi T., Goto T., Tashiro K., Kuhara S., Miyano S. (2004)
Combining microarrays and biological knowledge for estimating gene net-795

works via Bayesian networks. Proceedings of the 2003 IEEE Bioinformatics
Conference. CSB2003.
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