Leaf shape and size variation in bur oaks: An empirical study and simulation of sampling strategies

Sara C. Desmond,1,* Mira Garner,1,2 Seamus Flannery,1,3,4 Alan T. Whittemore5 and Andrew L. Hipp1,6,7,*

1 The Morton Arboretum, Center for Tree Science, 4100 Illinois Route 53, Lisle, IL 60532, USA
2 Current address: The University of British Columbia, UBC Faculty of Forestry, Vancouver, BC Canada V6T 1Z4
3 The University of Chicago Laboratory Schools, 1362 East 59th St., Chicago, IL 60637, USA
4 Current address: Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
5 U.S. National Arboretum, 3501 New York Ave NE, Washington, DC 20002, USA
6 The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
7 Author for correspondence (email: ahipp@mortonarb.org)
* These authors contributed equally to writing and data analysis for this paper.

ABSTRACT

PREMISE: Leaf shape and size figure strongly in trees’ adaptation to their environments. Oaks are notoriously variable in leaf morphology. Our study examines the degree to which within-tree, among-tree, and among-site variation contribute to latitudinal variation in leaf shape and size of bur oak (Quercus macrocarpa: Fagaceae), one of North America’s most geographically widespread oak species.
METHODS: Samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and eight ratios based on these traits was partitioned into tree, population, and latitude components. We then parameterized a series of leaf collection simulations using empirical covariance among leaves on trees and trees at sites. We used the simulations to assess the efficiency of different collecting strategies for estimating among-population differences in leaf shape and size.

KEY RESULTS: Leaf size measurements were highly responsive to latitude. Site contributed more than tree to total variation in leaf morphology. Simulations suggest that power to detect among-site variance in leaf shape and size can be estimated most efficiently with increases in either leaves per tree (10-11 leaves from each of 5 trees) or trees per site (5 leaves from each of 10+ trees).

CONCLUSIONS: Our study demonstrates the utility of simulating sampling and controlling for variance in sampling for leaf morphology, whether the questions being addressed are ecological, evolutionary, or taxonomic. Simulation code is provided as an R package (traitsPopSim) to help researchers plan morphological sampling strategies.

Keywords: adaptation; climatic gradients; ecological field sampling; latitudinal variation; leaf morphometrics; population-level variation

Running head: Leaf morphological variation in bur oak

Manuscript received _______; revision accepted _______.
INTRODUCTION

Leaf morphology variation strongly influences species’ ability to compete and survive in different environments (Givnish, 1987). The site-level correlation between temperature and the proportion of species exhibiting leaf dissection and toothing, for example, has been used for more than a century to model temperature changes in paleobotanical studies (Bailey and Sinnott, 1915, 1916; Greenwood et al., 2004; Royer and Wilf, 2006). Leaf size also has a well demonstrated correlation with temperature and resource availability (Bragg and Westoby, 2002; Peppe et al., 2011; McKee and Royer, 2017; Wright et al., 2017; Li et al., 2020), and traits such as compounding and phyllotaxy, leaf base and apex morphology, leaf lobing and circularity, and epidermal pigmentation vary along gradients of light availability, nutrient availability, soil moisture, temperature, and combinations of these (Givnish, 1987; Schmerler et al., 2012). In a global field study from 92 sites (Peppe et al., 2011), multiple regressions of climate (both precipitation and temperature) on leaf area, tooth number, and percent of species at the site with toothing showed relatively high predictive ability, inferred from the low standard error of the models (±4°). However, while the sign of this correlation—more toothing and lobing in cooler areas—is convergent across clades and geographic regions, the slope of the relationship between climate and leaf morphology varies among species (McKee et al., 2019), geographic regions (Greenwood et al., 2004; Aizen and Ezcurra, 2008), and phylogenetic lineages (Little et al., 2010; Burnham and Tonkovich, 2011; Walls, 2011).

Many of these traits vary both among and within species, and correlations between community-weighted mean trait values at the site level are mirrored within species on short time scales. Toothing and leaf lobing are, for example, correlated with cooler temperatures in most species studied as well as across communities (McKee and Royer, 2017; McKee et al., 2019).

Moreover, the morphology of leaves can vary highly within communities (Givnish, 1987). Within forest trees in particular, leaves shape and size vary in response to leaf position on the
tree (Blue and Jensen, 1988; McCarthy and Mason-Gamer, 2019), light availability (Abrams and Kubiske, 1990; Ducrey, 1992), and drought (Abrams, 1994; Abrams et al., 1994). Variation among leaves on a single tree is sometimes as great as the variation observed among named species (e.g., McCarthy and Mason-Gamer, 2019). Variation on a single tree is typically plastic, and much of the variation among trees at a site may be due to plasticity as well, but tree leaf morphology also varies in response to genetic differences among trees within species (Abrams, 1994; Ramírez-Valiente et al., 2017). While sampling of a small number of leaves per population has been argued to be sufficient for detecting site level patterns in climate based in paleobotanical studies (Royer et al., 2005; Peppe et al., 2011), the relative contribution of within-tree, among-tree within-population, and among-population variation to total leaf morphological variation is not known in many tree species.

Oaks exhibit highly variable morphology among leaves on a single tree, among trees of a single population, and among populations of a single species. Detailed studies of oak leaf morphology have utilized either linear measurements (Baranski, 1975; Blue and Jensen, 1988; Bruschi et al., 2003) or landmark approaches (Jensen, 1990). Both approaches have demonstrated that while variation among positions on a tree (e.g., high or low on the tree and disposed toward the edges or inside of the canopy) in leaf shape and size may exceed variation among sites, overall variance is generally greater among sites (Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). Understanding these sources of variance in leaf shape and size is one key to understanding how introgression, adaptation, and neutral variation influence leaf morphology both among and within species (Jensen et al., 1984; Howard et al., 1997; Kremer et al., 2002; González-Rodríguez et al., 2004; González-Rodríguez and Oyama, 2005) and the balancing act that trees face in maximizing photosynthetic efficiency while minimizing
the risks of drought, freezing, herbivory and other stresses (Wright et al., 2004). However, it is not clear what sampling strategy (number of leaves per individual, number of individuals per population, number of populations) is most efficient for estimating among-population differences in leaf size and shape. Whereas simulation tools exist for planning sampling strategies for population genetics (Hoban et al., 2013; Hoban, 2014) and conservation of genetic diversity (Hoban, 2019; Hoban et al., 2020), morphological simulation strategies that take into account covariance among leaves on a tree, among trees in a population, and among traits measured are lacking. Given that resources for sampling are limited, tools to help plan sampling strategies would make it possible to answer questions about functional plant diversity more definitively with the same amount of field work. The tools for planning morphometric sampling have not caught up with the tools for planning population genetic studies.

We sampled leaves across a broad geographic range of bur oak (*Quercus macrocarpa* L.), one of North America’s most geographically widespread oak species, which ranges from Manitoba to the Gulf of Mexico (Fig. 1). We measured leaf size and shape of numerous leaves per individual tree and per population to (1) quantify the relative contributions of within-tree, among-tree, and among-site variation to the total variation in leaf morphology in bur oak; (2) parameterize simulations of how much sampling is required to detect among-site differences in leaf morphology; and (3) test the support for our observations in field and herbarium that leaf size and leaf-lobing increase from north to south in bur oak. Bur oak serves as an excellent model species for this study because it has exceptionally high morphological variation (Hamerlynck and Knapp, 1994; Koenig et al., 2009) and an extensive distribution, ranging from Manitoba to the Gulf of Mexico (Little, 1971; Stein et al., 2003). The species also exhibits high within-population molecular genetic variation (Schnabel and Hamrick, 1990; Garner et al., 2019;
Hipp et al., 2019). Our investigation of bur oak leaf morphological variation among vs within sites lays a foundation for our ongoing studies of what environmental factors contribute to functional variation in bur oak.

MATERIALS AND METHODS

Collections and site attributes—During the summer and fall of 2017, samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range (Fig. 1). Sites were selected in conjunction with sampling for population genetic studies of *Quercus macrocarpa* (Garner et al., 2019; Hipp et al., 2019) with the criteria that (1) preliminary collections suggested they would have numerous bur oaks, and (2) additional white oaks were present at the site or nearby. Most were forested, but some (e.g. The Morton Arboretum, Prairie Moon Nursery) were savannas. The northern sites sampled were located in Manitoba, Canada (Assiniboine Park, Whiteshell Provincial Park, and Spruce Woods Provincial Park) and Minnesota, U.S.A. (The University of Minnesota – Twin Cities). The central sites sampled were located in Illinois (The Morton Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie Moon Nursery). The southern sites sampled were located in Oklahoma (Tallgrass Prairie Preserve, Mohawk Park, Red Rock Canyon State Park) and Missouri (Buttin Rock Access). Trees selected at each site were mature, full-size trees; where possible, trees at a given site were located a minimum of 100 feet from each other. For each site, latitude and longitude were recorded to a precision of 5 decimal places (Table 1). We extracted 19 bioclim variables from the WorldClim database (resolution = 1 km²) and linked them to our dataset in R v. 3.4.4 (R Core Team, 2018) using raster v 2.6-7 (Hijmans, 2017) and sp_1.4-2
(Pebesma and Bivand, 2005; Bivand et al., 2013) packages. The map of collection sites was made using maps 3.3.0 (Becker et al., 2018).

Three bur oak trees were sampled from each site using a pole pruner at two or four meters in height, based on tree height. For each sample, a terminal branch was cut down from each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost branches were sampled. Two endmost leaves were removed from each branch and immediately pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were highly damaged, the next leaves in from the end were selected. Leaves that were highly misshapen or broken were excluded from analyses (see ‘use’ field in dataset archived in GitHub repository [https://github.com/andrew-hipp/oak-morph-2020; https://doi.org/10.5281/zenodo.4458090], which indicates which leaves were excluded from analysis; all references to code and data in this paper are referable to the same GitHub repository). Leaves were dried in a standard herbarium drier prior to measuring, then redried at 49°C for a minimum of 48 hours and weighed on a PB303 Delta Range scale to obtain dry mass.

Morphological Measurements—Ten size measurements (mm) were made on each leaf using ImageJ (Schneider et al., 2012): blade length (bladeL), blade width (bladeW), width of blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width (petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base angle (bladeBaseAngle), and leaf area (area) (Table 2, Fig. 2). Seven ratios were also calculated from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and Oyama, 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (sinusRatio); bladeL /
bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW);

bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the
deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area
(SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant
regressions was created using the R core functions and gridExtra 2.3 (Auguie, 2017).

To investigate lobedness, black and white silhouettes of each leaf image were created
using ImageJ and converted into jpeg files, with petioles whited out manually. The jpeg files
were then imported into R and converted into outlines using the R package Momocs v 1.3.2
(Bonhomme et al., 2014). An additional set of 40 leaves that did not import well into Momocs or
had leaf outlines that did not impair manual measurements but that were badly non-
representative of typical leaf form were deleted at this stage (see scripts 05a and 05b in the
GitHub repository for enumeration of these). We initially investigated shape variation using
elliptical Fourier analysis (EFA), which generates shape-representative variables that are
independent of size (Crampton, 1995) and is well suited to comparing complex outlines that vary
in shape and lobedness (Tracey et al., 2006). For these analyses, we normalized the outlines
using four landmarks placed on the top, bottom, left, and right of each outline and analyzed the
leaf outlines using 17 harmonics (the default setting). However, even with landmarks, the leaf
shapes were sufficiently complicated that the EFA did not yield useful results; they are
consequently presented briefly in the paper; all data, code, and results are provided in the online
supplement.

To further investigate lobedness and complexity of the leaf outline, we used Momocs to
measure circularity (square of perimeter divided by area) (Rosin, 2005) and Haralick’s
circularity (mean distance from the leaf centroid to perimeter pixels divided by standard
deviation of those distances) (Haralick, 1974). Haralick’s circularity is less sensitive to shape
raggedness than the standard measure of circularity and increases with increasing circularity;
standard circularity decreases with increasing circularity. We aggregated both circularity
measures to individual and then individuals to site to examine site-level effects of latitude on leaf
circularity using simple least-squares regressions.

Statistical Analysis—All statistical analyses were conducted in R. Least squares
regressions were performed on all leaf linear measurements using the lm function to assess
which leaf traits were most responsive to latitude at the site level, aggregating leaf traits first to
tree, then tree mean trait values to site. An additional regression was performed of Haralick
circularity on latitude, at the site level. Data were visualized using ggplot2 3.3.2 (Wickham,
2009). In addition to simple regressions, we corrected for size by conducting multiple
regressions for all of our leaf traits using the lm function and including blade length (bladeL) as a
covariate. We used data scaled to a mean of zero and unit variance so that regression coefficients
estimate standardized effect sizes.

We performed a principal component analysis (PCAMORPH) on all scalar measurements
and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis
because it significantly skewed the ordination. Two-dimensional nonmetric multidimensional
scaling on a Euclidean distance matrix based on principal component axes was used to visualize
the data. The scaling type was ‘centering’ with PC rotation. We used the ordiellipse function in
vegan 2.4-5 (Oksanen et al., 2017) to plot bounding ellipses on our ordination. The resulting axes
of the PCA are referred to hereafter in the paper as PC1MORPH and PC2MORPH.
Two-way ANOVA was used to assess the relative contributions of site and tree to the total variation in bladeL, SLA, PC1MORPH and PC2MORPH. ANOVA was conducted on the linear model of bladeL, SLA, PC1MORPH, and PC2MORPH regressed against site and tree. We chose PC1MORPH and PC2MORPH for this analysis because together they accounted for 52.5% of the variance.

Simulations of sampling strategies—We assessed the effectiveness of alternative sampling scenarios at distinguishing differences in leaf shape and size among populations by using our empirical data to parameterize simulations of morphological datasets collected from 20 populations, ranging from three to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using a hierarchical simulation strategy. For each replicate, site-level means for all 10 traits were drawn from the multivariate normal distribution with trait means and covariance C_{site} estimated from empirical site means for all traits; C_{site} is thus based on variance within and covariance among traits that we observed, averaged for each site. Tree-level means were then drawn from the multivariate normal distribution with the simulated site-level means and the covariance matrix C_{tree} estimated from tree means at each site and averaged across sites. Tree-level means were assumed to have a constant variance and covariance among sites, though this assumption could be relaxed. Finally, individual leaf measurements for each tree were drawn from the multivariate normal distribution with means from the second simulation stage and covariance matrix C_{leaf} estimated from the leaf measurements for each tree separately, then averaged across trees.
The simulated data matrices ranged from 180 to 2,880 simulated leaves, with trait covariance and variance among leaves within trees, among trees within populations, and among populations modeled according the measurements we made for this project. Because leaf size showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + tree, combined with Tukey’s Honest Significant Different (HSD) method to assess the number of populations that could be differentiated from one another in each simulated data matrix. The number of letters needed for a compact letter display using Tukey’s HSD at $\alpha = 0.05$ was used as a proxy for the number of groups that could be distinguished for each simulated dataset. Both the average number of groups distinguished for each simulated dataset and the percent of simulations that distinguish at least 50% of populations (at least 10 groups distinguished from the 20 populations simulated) are reported as estimates of statistical power. All simulations were conducted in R using mvtnorm v 1.0-11 (Genz and Bretz, 2009; Genz et al., 2019) (Genz et al. 2017), and code for performing simulations is archived in GitHub and Zenodo (https://github.com/andrew-hipp/oak-morph-2020; https://doi.org/10.5281/zenodo.4458090). The simulation code can be installed as package ‘traitsPopSim’ from GitHub (https://github.com/andrew-hipp/traitsPopSim) and run using multivariate traits collected in a similarly structured design (measurements nested within individuals nested within sites; sample data included in the package are from the current study).

RESULTS

Analysis of empirical data—Among the size characters, bladeL, bladeW, BL.PL, petioleW, and area all showed significant variation in response to latitude (Table 3, Fig. 3). Petiole width was the size trait that was the most significant ($P < 0.001$). Petiole length, sinusMinL, sinusNextL,
and blade base angle were not significantly predicted by latitude (Table 3). Two ratios were

significantly correlated with latitude: SLA ($r^2 = 0.466, P = 0.015$) and the ratio of sinus depth to

leaf width (sinus.v.width, a proxy for lobedness; $r^2 = 0.415, P = 0.024$) (Table 3). In regressions

that include bladeL as a covariate, sinusNextL ($P = 0.021$), petioleW ($P = 0.017$), and SLA ($P = 0.011$) were the only traits significantly affected by latitude (Table 3; Fig. 3). Biplots with fitted

lines for all traits measured, significant or not, are presented in the supplement (Appendix S1;

see the Supplementary Data with this article). Standard circularity (perimeter squared over area)

was strongly correlated with latitude ($r^2 = 0.593, P = 0.0034$; Fig. 4). Haralick circularity (mean

distance from leaf centroid to boundary pixels over the standard deviation of these distances) was

weakly correlated with latitude ($r^2 = 0.256, P = 0.0936$; Fig. 4). Under both measures, southern

leaves exhibited stronger lobing, northern leaves exhibited greater circularity.

PCA on the EFA yielded very high loading on PC1 (58%), very low on PC2 (8%), and a

strong curvilinear relationship between PC1 and PC2 (Appendix S2). This non-independence

between PC1 and PC2 can arise because variation is broad, such that the ends of the PC cloud

have little in common, or because the variation is dominated by a single variable (Minchin,

1987). In our study, PC1 was dominated by size (Pearson’s product moment [$r = 0.251$ for blade

width, 0.227 for blade area) and latitude ($r = -0.213$), and PC2 was more strongly associated

with shape ($r = 0.395$ for the ratio of blade length to blade width, -0.375 for width of the sinus

distal to the deepest sinus, 0.348 for the ratio of the width of the blade in the deepest sinus width

of the blade in the second-deepest sinus), and to a lesser extent leaf blade width ($r = -0.240$).

The effects of site and tree on bladeL, SLA, and the first two axes of the morphological

(non-EFA) ordination (Appendix S3) were significant based on ANOVA ($P << 0.001$; Table 4).

Although site and tree both had significant effects, site contributed more than tree to the total
variation in leaf morphology (F-values for site range from 30.38–41.76, while F-values for tree
range from 5.83–12.4). Mean annual temperature among our sites ranged from 2.1–15.3°C, and
mean annual precipitation from 460 – 1121 mm. On average, bladeL averaged 34.0 mm shorter
and SLA 50.39 mm²/g greater for each increase of 10 degrees in latitude (northward).

Regressions of individual traits on site-level temperature and moisture conditions inferred
from BioClim closely matched regressions of those same traits on latitude. The latitudinal
gradient in our study correlated tightly with climate: increases in latitude correlated with
decreases in mean annual precipitation (Bio12; \(R^2 = 0.6803, p < 0.01 \)) and temperature (Bio1;
\(r^2 = 0.99, p << 0.01 \)), and an increase in temperature seasonality (Bio4; \(R^2 = 0.97, p << 0.01 \))
(Fig. 5). As a consequence, climate is not considered further in this study, but only latitude.

Analysis of simulated data—The mean number of groups distinguished in our
simulations ranged from 5.49 to 10.41, and the probability of distinguishing 50% (10 / 20) of the
populations based on blade length ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we
implemented for this study, 3 trees per site, 8 leaves per tree, had a power of only 38% to
identify a number of groups equal to 50% of the sites sampled. Increasing power to at least 50%
would entail increasing sampling to 11–12 leaves from each of 5 trees, 5 leaves from each of 10–
11 trees, or any of a number of scenarios intermediate between these extremes.

DISCUSSION

Our study has three important findings. First, among-tree and among-site variation
contribute significantly to leaf shape and size variation in bur oaks. Consequently, within-
individual and within-population sampling are both important components of a sampling strategy
aimed at characterizing among-population variation in oak morphology. This complements observations of high variance in temperate tree leaf morphology (Bruschi et al., 2003; Apostol et al., 2017; McCarthy and Mason-Gamer, 2019): among-site variation generally contributes most strongly to total leaf variation, but within-site and within-tree sampling are important to detecting among-site variation in leaf shape and size. Second, we implement a general parametric simulation method and use it to demonstrate that our sampling strategy, which included 8 leaves from different positions on each of 3 trees per site, was not optimal for resolving among-site variation, even if it was sufficient to demonstrate the relationship between morphology and latitudinal gradients. This simulation approach and the R package provided (traitsPopSim; https://github.com/andrew-hipp/traitsPopSim) can serve as tools to guide morphological sampling in similar hierarchical studies, where sites are composed of multiple individuals and individuals are each represented by multiple measurements. Finally, our study demonstrates that leaf size and lobing decrease from south to north in bur oak, while specific leaf area increases. In cross-species comparisons, leaf size and SLA generally covary, suggesting that adaptive leaf variation in bur oak may rest in part on a tradeoff between leaf size and lobing. Our study of one of North America’s most widespread oak species is thus a jumping-off point for understanding adaptive leaf variation across the oaks of the Americas.

Leaf size and shape are influenced by population and individual—Our results show that among-site variance for all traits investigated ($F_{11,236} = 30.38–41.76$) contributes more to total variance in leaf morphology than among-tree variance ($F_{11,236} = 5.83–12.42$), though both variance components are significant ($P << 0.001$; Table 4). This ability to distinguish among sites is important in relating leaf variation to latitude or climatic predictors and measuring the
slope of the relationship resulting from selective pressures along climatic gradients (Wright et al., 2004). Moreover, our results demonstrate that sampling three trees per site and eight leaves per tree is sufficient to correlate shape and size to latitude and climate. However, while among-site variance is higher than among-tree variance within sites (Table 4), the variance we observe among leaves within a single tree is still quite high. A previous study (Bruschi et al., 2003) found that among-leaf morphological variance on a tree was higher than among-tree variance for most traits investigated and reported that this was in accord with findings from earlier work (Baranski, 1975; Blue and Jensen, 1988). However, in Bruschi (2003), leaves were sampled from both inner and outer positions on the branch to maximize variance. In our study, we deliberately minimized this source of variance by sampling leaves at a relatively constant height and all from the outer branch position, and we further selected the endmost leaves from each branch sampled. Unless researchers are interested in characterizing variation among leaves on single trees, we recommend minimizing within-tree variance by standardizing the position(s) on the tree from which leaves are collected.

Simulating sampling strategies—The simulations we conducted of alternative sampling strategies suggest that the strategy we selected of three trees per site and eight leaves per tree has only a 38% probability of distinguishing 50% of the 20 populations we simulated. This is based on variances and covariances among trees within sites, leaves within trees, and covariances among the traits we measured, estimated from our empirical data. Based on the variance observed in leaf length alone, achieving a 50% probability of distinguishing 50% of populations would require 11–12 leaves from each of 5 trees per site, 5–6 leaves from each of 11–12 trees per site, or something in between (Fig. 6).
Our simulations suggest two recommendations for others conducting similar studies. First, researchers are recommended to minimize the high within-individual variance observed in previous studies (Blue and Jensen, 1988; Bruschi et al., 2003; McCarthy and Mason-Gamer, 2019) by sampling leaves of a common age / developmental stage, in the same position on the twig, and from twigs with comparable positions on the plants. Second, simulating alternative sampling strategies will help maximize the ability to distinguish among populations, given limited time and resources. Researchers can use preliminary data to simulate alternative sampling strategies and estimate their power will be to distinguish populations under different scenarios. The simulation tool implemented in traitsPopSim requires only a matrix of traits and assignment of those traits to populations and individuals to perform the simulations we describe above. We hope that its use will facilitate planning of sampling designs for similar projects.

Leaf size, lobing, and SLA are predicted by latitude—The measurements for each of our leaves were well predicted by their latitude of origin: leaves were thicker, larger, and had deeper lobes at southern latitudes, where leaves are exposed to warmer temperatures and higher precipitation and have longer growing seasons; and leaves were smaller, thinner, and had shallower lobes at northern latitudes, where growing seasons are shorter and cool temperatures reduce drought stress. This is in line with previous studies demonstrating that leaf area covaries positively with temperature (Moles et al., 2014; Wright et al., 2017) while SLA covaries negatively (Moles et al., 2014), and that leaf circularity tends to increase in more northern or cooler environments (Halloy and Mark, 1996; Schmerler et al., 2012). Our results also parallel previous work in Quercus ilex, which exhibited a similar leaf size gradient from north to south in the western Mediterranean basin, where southern regions were likewise warmer and had higher amounts of precipitation than northern regions (García Nogales et al., 2016).
Our findings suggest a possible compensatory relationship between larger size and lobing in bur oak. Community-level studies tend to show a higher frequency of lobed leaves in cooler temperatures (Royer et al., 2005). These responses are individualistic, however, and among-population responses in some species show no response or greater lobing in warmer temperatures (Royer et al., 2008; McKee and Royer, 2017; McKee et al., 2019). Leaves that are deeply lobed may be better adapted to warmer climates, because deeply lobed and narrow leaves have a thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 1987; McDonald et al., 2003). In our study, the ratio of sinus depth to leaf width (sinus.v.width) shows a weak negative correlation with latitude ($b = 0.013$, $P = 0.024$), but only in simple regression. Moreover, this result is strongly affected by one site, Red Rock Canyon, which had an exceptionally low value. When this outlier is removed, the correlation is no longer significant ($b = 0.007$, $P = 0.054$). In multiple regressions with scaled data and bladeL as a covariate, however, depth of the sinus immediately above the deepest sinus (sinusNextL) was significantly influenced by latitude ($b = 0.893$, $P = 0.021$), even with the outlier removed ($b = 0.926$, $P = 0.023$). Our whole-leaf estimates of shape (circularity and Haralick circularity) similarly both showed increased circularity northward, but their sensitivity to the latitudinal gradient is different. This may be a consequence to the relative insensitivity of Haralick circularity to leaf toothing (Haralick, 1974), which manifests in bur oak as differences in crenulation. We did not quantify this effect directly, but leave it to future studies.

The hypothesis that leaf lobing increases southward in response to increased drought stress is supported by the specific leaf area (SLA) data. With leaf length as a covariate, SLA increases northward ($b = 0.987$, $P = 0.011$), even as leaf size decreases. Leaves that are low in SLA have higher water use efficiency (Mooney and Dunn, 1970; Marron et al., 2003; Liu et al.,...
and SLA has been shown to vary within oaks according to drought stress (Ramírez-Valiente and Cavender-Bares, 2017; Ramírez-Valiente et al., 2017). However, leaf area in cross-species oak comparisons covaries with SLA (Ramírez-Valiente et al., 2020), and leaf area and SLA both decrease on average with increased water stress in cross-species comparisons (Kaproth and Cavender-Bares, 2016; Ramírez-Valiente et al., 2020). Our finding of larger leaf areas with lower SLA in bur oak, but with an increase in lobing, shows the opposite correlation. We hypothesize that among populations within bur oak, leaf lobing compensates for increased size as a response to drought stress and temperature.

The immense success of oaks (Quercus) in the Americas (Rodríguez-Correa et al., 2015; Hipp et al., 2018; Cavender-Bares, 2019) has been attributed in part to oaks’ ability to cross the temperate-tropical divide. Bur oak is exceptional in its climatic range, extending from near the boreal zone in the north to the great plains and the humid subtropics. Our inference that leaf lobing, SLA, and leaf size may compensate for one another along climatic gradients in bur oak may be echoed in other species. The work presented here consequently has the potential to inform studies of adaptive variation across oaks and temperate tree species more generally.

ACKNOWLEDGMENTS

This study was funded by The Morton Arboretum Center for Tree Science and USDA Project 8020-21000-070-03S, a non-assistance cooperative agreement between U.S. National Arboretum and The Morton Arboretum. We would like to thank Marlene Hahn for assisting with curation of herbarium and leaf samples and Matthew Kaproth for advice on measurement of SLA. Ricardo Kriebel provided particularly detailed advice on morphometric analysis, including code to assist in generating landmarks and excellent feedback on interpretation of our results;
and Associate Editor Dylan Schwilk, with an anonymous reviewer and Kriebel, provided editorial feedback that substantially improved the manuscript.

AUTHOR CONTRIBUTIONS

A.L.H., A.T.W. and S.C.D. conceptualized and designed the project. S.C.D., M.G., and S.F. collected specimens and data. S.C.D. and A.L.H. conducted data analyses. S.C.D. wrote the first draft of the manuscript, and A.L.H. revised the manuscript in response to reviewers. A.L.H. coded and analyzed simulations and contributed to data analysis. All authors contributed to writing and revisions; A.L.H. and S.C.D. contributed equally to analysis and writing.

DATA ACCESSIBILITY

Data and scripts used to conduct the statistical analysis are archived in GitHub (https://github.com/andrew-hipp/oak-morph-2020) and released through Zenodo (https://doi.org/10.5281/zenodo.4458090). Simulations are packaged for R in the traitsPopSim package, published on GitHub (code and installation instructions at https://github.com/andrew-hipp/traitsPopSim) and released through Zenodo (https://doi.org/10.5281/zenodo.4457926). Supplemental figures are available in the GitHub repository and in the online Supplement.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information section at the end of the article.

Appendix S1. Biplots of all simple regressions
Appendix S2. PCA based on eFourier analysis of leaf outlines

Appendix S3. Non-metric multidimensional scaling ordination of leaf measurements
REFERENCES CITED

Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks

Ducrey, M. 1992. Variation in leaf morphology and branching pattern of some tropical rain forest species
from Guadeloupe (French West Indies) under semi-controlled light conditions. Annales des
Sciences Forestières 49: 553–570.

in life-history phenotypes: spatiotemporal plasticity across the latitudinal gradient of the

Garner, M., K. K. Pham, A. T. Whittemore, J. Cavender-Bares, P. F. Gugger, P. S. Manos, I. S. Pearse,
and A. L. Hipp. 2019. From Manitoba to Texas: A study of the population genetic structure of bur
oak (Quercus macrocarpa). International Oaks: The Journal of the International Oak Society 30:
131–138.

Heidelberg.

laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society

Halloy, S. R. P., and A. F. Mark. 1996. Comparative leaf morphology spectra of plant communities in
New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand 26:
41–78.

Hamerlynck, E. P., and A. K. Knapp. 1994. Leaf-level responses to light and temperature in two co-
occurring Quercus (Fagaceae) species: implications for tree distribution patterns. Forest Ecology
and Management 68: 149–159.

Hipp, A. L., P. S. Manos, A. González-Rodríguez, M. Hahn, M. Kaproth, J. D. McVay, S. V. Avalos, and
J. Cavender-Bares. 2018. Sympatric parallel diversification of major oak clades in the Americas

the Missouri Botanical Garden 104: 455–477.

Hoban, S. 2019. New guidance for ex situ gene conservation: Sampling realistic population systems and

similarity does not predict necessary sample size for ex situ conservation: a comparison among

and population Genetics (SPOTG): a software for choosing the appropriate number of markers

Howard, D., R. Preszler, J. Williams, S. Fenchel, and W. Boecklen. 1997. How discrete are oak species?
Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51: 747–
755.

Kaproth, M. A., and J. Cavender-Bares. 2016. Drought tolerance and climatic distributions of the

size in bur oak (Quercus macrocarpa) is due to environmental constraints, not avian dispersal.
Botany 87: 349–356.

morphological differentiation between Quercus robur and Quercus petraea is stable across

Li, Y., P. B. Reich, B. Schmid, N. Shrestha, X. Feng, T. Lyu, B. S. Maitner, et al. 2020. Leaf size of

of Agriculture, Forest Service, Washington, D.C.:

Little, S. A., S. W. Kembel, and P. Wilf. 2010. Paleotemperature Proxies from Leaf Fossils Reinterpreted
in Light of Evolutionary History. PLOS ONE 5: e15161.

Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees C); Bio12 = mean annual precipitation (in mm).

<table>
<thead>
<tr>
<th>Site</th>
<th>Bio1, Bio12</th>
<th>Tree</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Lvs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whiteshell Provincial Park</td>
<td>2.07, 566</td>
<td>MB-SD004</td>
<td>49.4249</td>
<td>-95.1436</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-SD005</td>
<td>49.71279</td>
<td>-95.2444</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-MG513</td>
<td>49.71209</td>
<td>-95.24496</td>
<td>8</td>
</tr>
<tr>
<td>Spruce Woods Provincial Park</td>
<td>2.50, 460</td>
<td>MB-MG516</td>
<td>49.76104</td>
<td>-99.15971</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-MG517</td>
<td>49.76095</td>
<td>-99.15983</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-MG518</td>
<td>49.76061</td>
<td>-99.15928</td>
<td>8</td>
</tr>
<tr>
<td>Assiniboine Forest</td>
<td>2.10, 519</td>
<td>MB-MG528</td>
<td>49.85778</td>
<td>-97.24848</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-MG529</td>
<td>49.85423</td>
<td>-97.24828</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB-MG530</td>
<td>49.85392</td>
<td>-97.24828</td>
<td>8</td>
</tr>
<tr>
<td>University of Minnesota Campus</td>
<td>7.10, 738</td>
<td>MN-MG788</td>
<td>44.97882</td>
<td>-93.23768</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN-MG789</td>
<td>44.97739</td>
<td>-93.23761</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN-MG790</td>
<td>44.97771</td>
<td>-93.23801</td>
<td>7</td>
</tr>
<tr>
<td>Cherokee Park Trail</td>
<td>9.20, 879</td>
<td>IA-MG243</td>
<td>41.97454</td>
<td>-91.72161</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA-MG244</td>
<td>41.97367</td>
<td>-91.72547</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA-MG245</td>
<td>41.97362</td>
<td>-91.72565</td>
<td>6</td>
</tr>
<tr>
<td>The Morton Arboretum</td>
<td>9.50, 932</td>
<td>IL-SF001</td>
<td>41.81696</td>
<td>-88.0808</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-SF002</td>
<td>41.81331</td>
<td>-88.08266</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL-SF003</td>
<td>41.81588</td>
<td>-88.07994</td>
<td>8</td>
</tr>
<tr>
<td>Prairie Moon Nursery</td>
<td>6.80, 837</td>
<td>MN-SD001</td>
<td>43.89117</td>
<td>-91.64684</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN-SD002</td>
<td>43.89804</td>
<td>-91.648</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN-SD003</td>
<td>43.89088</td>
<td>-91.64689</td>
<td>2</td>
</tr>
<tr>
<td>Burr Oak Woods</td>
<td>9.80, 943</td>
<td>IN-MG631</td>
<td>41.53273</td>
<td>-87.2948</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN-MG636</td>
<td>41.5345</td>
<td>-87.29279</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN-MG638</td>
<td>41.53253</td>
<td>-87.29661</td>
<td>8</td>
</tr>
<tr>
<td>Red Rock Canyon State Park</td>
<td>15.3, 756</td>
<td>OK-MG369</td>
<td>35.43874</td>
<td>-98.35495</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG370</td>
<td>35.43851</td>
<td>-98.35503</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG371</td>
<td>35.43854</td>
<td>-98.35497</td>
<td>8</td>
</tr>
<tr>
<td>Mohawk Park</td>
<td>15.3, 987</td>
<td>OK-MG347</td>
<td>36.21066</td>
<td>-95.89467</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG349</td>
<td>36.2204</td>
<td>-95.89845</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG350</td>
<td>36.22064</td>
<td>-95.89877</td>
<td>8</td>
</tr>
<tr>
<td>Tallgrass Prairie Preserve</td>
<td>14.3, 939</td>
<td>OK-MG282</td>
<td>36.84504</td>
<td>-96.42526</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG283</td>
<td>36.84485</td>
<td>-96.42479</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK-MG284</td>
<td>36.84501</td>
<td>-96.42553</td>
<td>3</td>
</tr>
<tr>
<td>Buttin Rock Access</td>
<td>13.1, 1121</td>
<td>MO-MG402</td>
<td>37.15687</td>
<td>-91.36471</td>
<td>8</td>
</tr>
<tr>
<td>Code</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO-MG403</td>
<td>37.15686</td>
<td>-91.36501</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO-MG404</td>
<td>37.15726</td>
<td>-91.36518</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Descriptions of the leaf traits measured

<table>
<thead>
<tr>
<th>Trait</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade length (mm)</td>
<td>bladeL</td>
<td>Straight line distance measured from intersection of leaf and petiole to tip of the leaf at its point of intersection with the midvein</td>
</tr>
<tr>
<td>Blade width (mm)</td>
<td>bladeW</td>
<td>The longest possible perpendicular line drawn from one edge of the blade to the other; vein position used to identify the leaves opposite one another</td>
</tr>
<tr>
<td>Width of blade between deepest pair of sinuses (mm)</td>
<td>sinusMinL</td>
<td>The shortest distance that separates the deepest sinus from its corresponding sinus. (The deepest sinus is defined as the sinus that has the longest distance from the most interior point of the sinus to the line that connects the two most exterior points of that sinus)</td>
</tr>
<tr>
<td>Width of blade between sinuses just above the deepest pair (mm)</td>
<td>sinusNextL</td>
<td>The width between the sinuses that are immediately distal to the deepest sinuses (as defined in sinusMinL)</td>
</tr>
<tr>
<td>Petiole length (mm)</td>
<td>petioleL</td>
<td>Measured from the base of the blade as defined by bladeL to the base of the petiole, defined as the line of intersection between petiole and branch, upper surface of the petiole</td>
</tr>
<tr>
<td>Petiole width (mm)</td>
<td>petioleW</td>
<td>Measured at the point of intersection between the blade and the petiole, where blade is not visible</td>
</tr>
<tr>
<td>Length of lamina from base to widest point (mm)</td>
<td>bladeLtoWidestPoint</td>
<td>Measured from the base of the blade to the point of intersection between the midvein and the line used to measure leaf blade width</td>
</tr>
<tr>
<td>Blade base angle (degrees)</td>
<td>bladeBaseAngle</td>
<td>Measured using the lines that define the widest angle between the base and either edge of the leaf</td>
</tr>
<tr>
<td>Total length (mm)</td>
<td>BL.PL</td>
<td>Total length is the blade length added to the petiole length</td>
</tr>
<tr>
<td>Leaf area (mm²)</td>
<td>area</td>
<td>Calculated in imageJ.</td>
</tr>
<tr>
<td>Ratio</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Ratios</td>
<td>The petiole length divided by the total length</td>
<td></td>
</tr>
<tr>
<td>Petiole length / Total length</td>
<td>PL.TL</td>
<td></td>
</tr>
<tr>
<td>Sinus ratio</td>
<td>sinusRatio</td>
<td></td>
</tr>
<tr>
<td>The width of the blade between the deepest pair of sinuses divided by the width of the blade between the pair of sinuses just above the deepest pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade length / Blade width</td>
<td>BL.BW</td>
<td></td>
</tr>
<tr>
<td>The blade length divided by the blade width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petiole length / Petiole width</td>
<td>PL.PW</td>
<td></td>
</tr>
<tr>
<td>The petiole length divided by the petiole width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade length / Blade length to widest point</td>
<td>BL.BLWP</td>
<td></td>
</tr>
<tr>
<td>The blade length divided by the length of the blade from the base to the widest point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Leaf size to petiole length</td>
<td>BL.BW.over.PL.PW</td>
<td></td>
</tr>
<tr>
<td>The blade length divided by the blade width divided by the petiole length divided by the petiole width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific leaf area</td>
<td>SLA</td>
<td></td>
</tr>
<tr>
<td>Leaf area divided by the mass of the leaf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobedness</td>
<td>sinus.v.width</td>
<td></td>
</tr>
<tr>
<td>The width of the blade between the deepest pair of sinuses divided by the blade width</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Simple and multiple regressions for all leaf traits. The p-value and r^2 columns indicate the simple regression of each trait on latitude; the columns labelled Blade length and Latitude represent the regression coefficient and p-value for a multiple regression with each leaf trait regressed against Blade length and Latitude, R^2 indicates the multiple coefficient of determination. Note that Bonferroni correction for multiple tests, not shown here, would render all p-values non-significant except the regression of blade length on latitude + petiole width.
Table 4. ANOVA for bladeL, SLA, PC1, PC2

<table>
<thead>
<tr>
<th>Leaf trait</th>
<th>p-value</th>
<th>r^2</th>
<th>Blade length</th>
<th>Latitude</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bladeL</td>
<td>0.012</td>
<td>0.486</td>
<td>-0.697, $p = 0.012$</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>bladeW</td>
<td>0.014</td>
<td>0.469</td>
<td>0.926, $p < .001$</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>sinusMinL</td>
<td>0.208</td>
<td>0.153</td>
<td>-0.069, $p = 0.874$</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>sinusNextL</td>
<td>0.492</td>
<td>0.048</td>
<td>0.966, $p = 0.014$</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>petioleL</td>
<td>0.262</td>
<td>0.124</td>
<td>0.812, $p = 0.041$</td>
<td>0.463</td>
<td></td>
</tr>
<tr>
<td>petioleW</td>
<td>$p < 0.001$</td>
<td>0.692</td>
<td>0.119, $p = 0.649$</td>
<td>0.699</td>
<td></td>
</tr>
<tr>
<td>bladeLtoWidestPoint</td>
<td>0.011</td>
<td>0.494</td>
<td>0.920, $p < .001$</td>
<td>0.929</td>
<td></td>
</tr>
<tr>
<td>bladeBaseAngle</td>
<td>0.151</td>
<td>0.195</td>
<td>-0.363, $p = 0.386$</td>
<td>0.263</td>
<td></td>
</tr>
<tr>
<td>TotalL.PL.BL</td>
<td>0.019</td>
<td>0.438</td>
<td>1.03, $p < 0.001$</td>
<td>0.979</td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>0.014</td>
<td>0.469</td>
<td>0.949, $p < 0.001$</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>SLA</td>
<td>0.015</td>
<td>0.466</td>
<td>0.438, $p = 0.188$</td>
<td>0.564</td>
<td></td>
</tr>
<tr>
<td>PL.TL</td>
<td>0.945</td>
<td>$r^2 < 0.001$</td>
<td>0.347, $p = 0.461$</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>sinusRatio</td>
<td>0.425</td>
<td>0.065</td>
<td>-0.253, $p = 0.580$</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>BL.BW</td>
<td>0.313</td>
<td>0.101</td>
<td>-0.367, $p = 0.408$</td>
<td>0.171</td>
<td></td>
</tr>
<tr>
<td>BL.BLWP</td>
<td>0.834</td>
<td>0.005</td>
<td>0.183, $p = 0.699$</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>sinus.v.width</td>
<td>0.024</td>
<td>0.415</td>
<td>-0.551, $p = 0.103$</td>
<td>0.571</td>
<td></td>
</tr>
<tr>
<td>sinus.v.width (no spruce woods)</td>
<td>0.054</td>
<td>0.352</td>
<td>-0.296, $p = 0.152$</td>
<td>0.507</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. ANOVA for bladeL, SLA, PC1, PC2

<table>
<thead>
<tr>
<th>Response</th>
<th>Df</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F-value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bladeL</td>
<td>site</td>
<td>11</td>
<td>177345</td>
<td>16122.3</td>
<td>38.9996</td>
</tr>
<tr>
<td></td>
<td>tree</td>
<td>24</td>
<td>83159</td>
<td>3465.0</td>
<td>8.3817</td>
</tr>
<tr>
<td></td>
<td>residuals</td>
<td>236</td>
<td>97562</td>
<td>413.4</td>
<td></td>
</tr>
<tr>
<td>SLA</td>
<td>site</td>
<td>11</td>
<td>1017054857</td>
<td>92459532</td>
<td>30.3766</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>tree</td>
<td>24</td>
<td>703085034</td>
<td>29295210</td>
<td>9.6246</td>
<td>< 2.2e-16</td>
</tr>
<tr>
<td>residuals</td>
<td>236</td>
<td>718331913</td>
<td>3043779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>site</td>
<td>11</td>
<td>984.70</td>
<td>89.519</td>
<td>41.7620</td>
</tr>
<tr>
<td>tree</td>
<td>24</td>
<td>300.10</td>
<td>12.504</td>
<td>5.8335</td>
<td>8.101e-14</td>
</tr>
<tr>
<td>residuals</td>
<td>236</td>
<td>505.88</td>
<td>2.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC2</td>
<td>site</td>
<td>11</td>
<td>400.34</td>
<td>36.394</td>
<td>34.042</td>
</tr>
<tr>
<td>tree</td>
<td>24</td>
<td>318.70</td>
<td>13.279</td>
<td>12.421</td>
<td><2e-16</td>
</tr>
<tr>
<td>residuals</td>
<td>236</td>
<td>252.30</td>
<td>1.069</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Locations of sampling sites for this study as well as mean annual temperature across the bur oak range. WorldClim temperature data are scaled to a factor of 10. Specific information about site, name, location, and number of samples collected can be found in Table 1.

Figure 2. Leaf trait measurements used in this study. All measurements used in this study were linear measurements or ratios of linear measurements, plus one angle. Details and definitions are found in Table 4.

Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. P-values are not corrected for multiple tests; a total of seventeen regressions were performed (Table 3).

Figure 4. Simple regressions of circularity on latitude.

Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single predictor of leaf morphology in the current study, as it integrates over both day length and several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation), bio 4 (mean temperature seasonality).
Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among
traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two
estimates of power are reported: the number of groups of sites recognized as distinct from each
other using Tukey’s HSD at $\alpha = 0.05$; and the probability of recognizing at least 50% of sites as
distinct from each other. Colors scale from darker as a higher number of groups are recognized,
lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of
distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the
simulation.
P = 0.014, \(r^2 = 0.47 \)

Leaf area (mm²)

Latitude (degrees, all plots)

P = 0.012, \(r^2 = 0.49 \)

Leaf blade length (mm)

Latitude (degrees, all plots)

P = 0.015, \(r^2 = 0.47 \)

Specific leaf area

Latitude (degrees, all plots)

P = 0.024, \(r^2 = 0.41 \)

Sinus depth / leaf width

Latitude (degrees, all plots)