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Abstract

We propose TWO-SIGMA-G, a competitive gene set test designed for scRNA-seq data. TWO-

SIGMA-G uses the mixed-effects regression modelling approach of our previously published TWO-SIGMA

to test for differential expression at the gene-level. This regression-based approach can analyze complex

designs while accommodating zero-inflated and overdispersed counts and within-sample cell-cell correla-

tion. TWO-SIGMA-G uses a novel approach to adjust for inter-gene-correlation (IGC) at the set-level,

which can inflate type-I error when ignored. Simulations demonstrate that TWO-SIGMA-G preserves

type-I error and increases power in the presence of IGC compared to other methods designed for bulk

and single-cell RNA-seq data. Application to two real datasets of HIV infection in mice and Alzheimer’s

disease progression in humans reveal biologically meaningful results. TWO-SIGMA-G is available at

https://github.com/edvanburen/twosigma.

1 Background

In the past decade and a half, gene set tests utilizing pre-constructed gene sets [1] have been used to contex-

tualize gene-level differential expression analyses and identify both important pathways and real biological

mechanisms [12, 16, 23, 11] by connecting expression datasets in microarray data and bulk RNA-seq data

[25, 33]. Gene set tests are used to determine whether predefined sets of genes exhibit differential expression

(DE). These tests improve statistical power and reduce spurious associations as compared to gene-level DE

testing [5, 9]. This further increases reproducibility across experiments, which is often lower than desired

due to biological and technical variability in the data [5, 9]. Therefore, set-level tests constitute an essential

step in performing differential expression (DE) based analyses for bulk RNA-seq data.

It is now common to distinguish between the two primary types of gene set tests, “competitive” and

“self-contained,” based on the null hypotheses of interest [10]. Self-contained tests compare a candidate gene

set to a fixed standard (usually the case of no DE) and do not incorporate information from genes not in the

set [32]. Competitive tests compare the evidence of differential expression of a gene set to the evidence in a

reference set of genes [14, 28, 5, 22]. Competitive tests use a battery of gene sets to rank which sets are the

most important for a given phenotype. In contrast, self-contained tests are commonly used to compare the

similarity of gene expression patterns between different data sets. Because of interpretability and method

availability, competitive tests are far more common in the literature today [33, 10].

The first step of gene set tests is to produce gene-level test statistics for DE. Then, these statistics are

aggregated into a set-level summary statistic and corresponding p-value. Competitive tests usually permute

genes or use parametric assumptions to construct a distribution of these summary statistics under the null

hypothesis, often assuming that genes are independent of each other [33, 32, 10, 7]. Previous studies show
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that methods which assume independence often suffer from inflated type-I error [33, 10, 7]. This is because

genes within a given gene set tend to have a positive inter-gene correlation (IGC). Ignoring this IGC under-

estimates the variance of set-level summary statistics and can dramatically inflate type-I error through

inducing a correlation in the marginal gene-level statistics [2, 8, 33, 5]. Therefore, it is essential that any

competitive gene set test adequately accounts for IGC to provide statistically rigorous set-level p-values.

Several gene set testing methods have been developed for bulk RNA-seq and microarray data, including

GSEA [25] and related extension sigPathway, CAMERA [33], and PAGE [14]. GSEA has proven incredibly

popular, as seen by its over 19,000 citations. However, one weakness of GSEA is that the null hypothesis being

tested is not straightforward to precisely define because it is a hybrid of the self-contained and competitive

null hypothesis. Larger gene sets can often be more significant, even if additional genes represent noise,

and other gene sets not being tested can influence results in counterintuitive ways [4, 28]. sigPathway and

PAGE sometimes suffer from inflated type-I error [27, 33]. CAMERA does not suffer from any of these

disadvantages, and is described in more detail in the Methods section. GSEA, sigPathway, CAMERA, and

PAGE all rely on assumptions chosen to represent the features of bulk RNA-seq data. Such assumptions

may be unreasonable in scRNA-seq data, which often exhibits zero-inflated and overdispersed counts and the

possible within-sample correlation between cells from the same sample [30]. Misspecified gene-level models

can lead to misleading set-level inference, taking the form of inflated type-I error or reduced power. Thus,

there is a need for methodological advancements to tailor gene set testing frameworks to scRNA-seq data,

and a need to evaluate the ability of methods designed for bulk data to provide statistically valid results

when applied to scRNA-seq data.

We are aware of two existing methods explicitly created for competitive gene set testing in scRNA-seq

data: iDEA [18] and an extension of MAST [7]. iDEA jointly conducts gene-level DE testing using zingeR

[31] and uses a Bayesian approach to produce set-level p-values. iDEA does not explicitly adjust for IGC,

however, and may not detect the scenario in which the same proportion of genes are significant in the test

and reference set but the magnitude of the association differs. MAST fits a log-normal hurdle model at the

gene-level and uses a Z-test with a computationally-intensive bootstrapping procedure that was not studied

in great detail to produce set-level p-values. We discuss iDEA and MAST in more detail in the Methods

section. BAGSE was proposed as an improvement to GSEA designed to quantify the level of enrichment

while preserving both type-I error and the power of GSEA [13]. As in iDEA, BAGSE utilizes gene-level

estimates that can come from methods designed for DE analysis in scRNA-seq data. However, we do not

classify BAGSE as a competitive gene set testing option for scRNA-seq because it tests the hybrid null

hypothesis of GSEA and not the competitive null hypothesis mentioned above.

This paper develops TWO-SIGMA-G, a set-level framework for DE testing in scRNA-seq data with
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competitive null hypothesis. Our approach utilizes the flexible mixed-effects zero-inflated negative binomial

regression model of TWO-SIGMA [30] to produce gene-level statistics. Using TWO-SIGMA, the type-I error

is preserved in the presence of cell-cell correlation, and, as discussed below, many choices are available for

gene-level statistics. Using a regression-based framework means that complex experiments with additional

sample-level and cell-level covariates can be analyzed. IGC is estimated using an innovative residual-based

approach and explicitly adjusted for at the set-level. We demonstrate TWO-SIGMA-G outperforms existing

competitive gene set tests methods using extensive simulation scenarios under the null and alternative

hypotheses. Application of TWO-SIGMA-G to an HIV-related humanized mouse scRNA-seq dataset and

an Alzheimer’s Disease human brain scRNA-seq dataset reveal exciting biological findings.

2 Results

2.1 Estimation of Inter-Gene Correlation

Before specifying our new gene set testing method, we first propose a novel strategy to estimate IGC between

pairs of genes from their respective gene-level DE regression models. Cell-level covariates such as the cellular

detection rate (CDR), which measures the percentage of genes expressed in a cell, have been previously

demonstrated to be highly influential to observed expression levels [7]. Subject-specific covariates, such as

disease status or race, can further create an additional correlation structure in the raw data. Therefore, using

the raw data to estimate IGC can overestimate the correlation that remains between gene-level statistics,

which come from regression models that directly adjust for these other covariates. Thus, the use of residuals

to estimate IGC can better represent the remaining correlation of the gene-level statistics under the null.

We estimate the inter-gene correlation of a given gene set using the residuals from the TWO-SIGMA

model as follows: Define the (niˆ1) vector of residuals for gene s from individual i as ris “ Yis´ pYis. Then,

by individual, construct the niˆ s matrix Ri “ trisu consisting of the residuals for all test set genes. Given

these residual matrices, we can compute the pairwise (sˆ s) correlation matrix Ci, which contains s choose

two unique non-diagonal elements. These elements give the pairwise correlations between the residuals of

two different genes in the test set. We average these values to produce one average pairwise correlation

ρ̂i per individual. Finally, we estimate the overall correlation with the average of these values such that

ρ̂ “
řn

i“1 ρ̂i{n.

Therefore, our IGC procedure builds off of the advantages of a residual-based approach in removing the

correlation from sample-level and cell-level covariates. We further use individual-level calculations to help

mitigate the impacts of the large individual heterogeneity often seen in scRNA-seq datasets. In simulations,
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we found that this IGC estimate preserves type-I error in a conservative manner while still producing

improved power in a variety of realistic scenarios. The estimate of the IGC is virtually free computationally

in that the model is not refit via permutation or bootstrapping.
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Figure 1: Shows the set-level IGC estimates from TWO-SIGMA-G’s residual-based approach for the two
Alzheimer’s dataset comparisons (see the real data analysis section). Most sets demonstrate a substantially
positive correlation after regressing out sample-level and cell-level covariates. Sets plotted are taken from
the c2 collection of the Molecular Signatures Database, and negative estimated correlations are set to zero
to compute the TWO-SIGMA-G p-value in a conservative manner.

Figure 1 shows the average set-level IGC estimates from TWO-SIGMA-G for each of the two comparisons

in the Alzheimer’s dataset described more in the real data analysis section. A non-negligible correlation exists

in the residual space for both comparisons, with half of the sets having a correlation larger than 0.02. For

each comparison, over 98% of the estimated pairwise correlations are positive. Ignoring this remaining

correlation would therefore make inflated type-I error a possibility.

2.2 TWO-SIGMA-G for Set-Level Testing

We extend our TWO-SIGMA method [30] to competitive gene set testing via TWO-SIGMA-Geneset (TWO-

SIGMA-G). The Methods section contains full details regarding TWO-SIGMA. Briefly, TWO-SIGMA uses

a zero-inflated negative binomial regression model to test for DE at the gene level in scRNA-seq data. It is

flexible and can be customized in several different ways. First, the zero-inflation component can be removed
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from the model entirely (as was done in the real data analysis section), leaving a standard negative binomial

regression model. Second, the model can additionally include random effect terms to account for cell-cell

correlation within the same sample and limit type-I error inflation in gene-level DE inference. Finally, many

gene-level statistics measuring the evidence of DE can be used for set-level testing. For example, the likelihood

ratio or z statistic corresponding to a treatment effect are commonly used gene-level statistics. We discuss

uses for other, more complex, gene-level statistics based on custom contrasts of regression parameters in the

real data analysis section. TWO-SIGMA-G employs the Wilcoxon rank-sum test to compare the statistics

of genes in the test set to the statistics of genes in the reference set, and therefore uses the sum of the ranks

in the test set as the set-level summary statistic. In using the ranks, TWO-SIGMA-G provides robustness

against the influence of very large gene-level statistics.

Traditionally, the Wilcoxon rank-sum test assumes that observations within a group are independent.

However, as mentioned, IGC is expected given the construction of gene sets as harmonious biological path-

ways, and can inflate type-I error if ignored [33]. To create a gene set testing method designed for single-cell

data, we therefore utilize a modified version of the rank-sum test. This modification allows for correlated

gene-level statistics in the test set [2], similar to the approach of CAMERA for bulk RNA-seq [33]. We

assume a pairwise correlation ρ between gene-level statistics in the test set of size m1 and no correlation in

the reference set of size m2. With these assumptions, variance of the two-group Wilcoxon rank-sum statistic

is:

m1m2

2π

˜

sin´11` pm2 ´ 1qsin´1 1

2
` pm1 ´ 1qpm2 ´ 1qsin´1 ρ

2
` pm1 ´ 1qsin´1 ρ` 1

2

¸

A positive ρ increases the variance as compared to a value of zero. Therefore, ignoring a positive ρ leads

to an underestimated variance and inflated type-I error as a result. As discussed in the previous section, we

estimate ρ using a residual-based approach. Using this modified variance, and the known mean of rank-sum

statistics under the null, set-level p-values are computed analytically using a standard normal approximation

[33]. The reference set used in TWO-SIGMA-G can be chosen in one of two ways: either using a random

sample of other genes of size m1 or as the collection of all genes not in the test set under consideration.

In addition to producing set-level significance, TWO-SIGMA-G also identifies the directionality of sets

as up or down-regulated. Whether or not a zero-inflation component is included in gene-level models,

directionality is produced by averaging gene-level log fold-change estimates in the test set to produce a

set-level effect size and taking the sign of the result. These effect sizes are demonstrated further in the real

data analysis section.

As compared to other methods, TWO-SIGMA-G has several key advantages in applicability and inter-
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pretability. First, it is explicitly tailored to scRNA-seq data at the gene-level in that it can flexibly and

optionally account for zero-inflation, overdispersion, and within-subject random effect terms to account for

within-subject cell-cell correlation. Second, the use of a regression modeling framework at the gene-level

enables the analysis of complex designs including multiple confounding covariates, as will be demonstrated

further in the real data analysis section. Third, estimating IGC using residuals after regressing out sample-

level and cell-level covariates provides estimates of IGC that more closely reflect the remaining correlation of

the gene-level statistics. Simulation studies show that TWO-SIGMA-G preserves type-I error and improves

power over other methods. Applications to two real datasets demonstrate the TWO-SIGMA-G’s ability

to produce meaningful, cell-type-specific findings that can elucidate differentiation in pathway expression

profiles.

2.3 TWO-SIGMA-G preserves type-I error in the presence of inter-gene corre-

lation

Figure 2 shows the set-level type-I error performance of TWO-SIGMA-G, CAMERA, and MAST across

various simulation scenarios (see Supplementary Figures S1 and S2 for results using smaller significance

thresholds). Panel (A) shows that all three methods correctly hold the type-I error rate when genes are

simulated independently and no gene-level within-sample random effects exist. In contrast, panels (B), (C),

and (D) show that type-I error is consistently inflated when IGC is present and ignored. After p-value

adjustment using the estimated average IGC, both TWO-SIGMA-G and MAST tend to preserve type-I

error at the 5% level in the presence of IGC. In contrast, CAMERA suffers from inflation of type-I error

after IGC adjustment. Differences between the three methods are likely due to a combination of factors

that lead to a misspecified model for the features of scRNA-seq data. First, CAMERA and MAST use a log

transformation of the data, which may distort true signals, particularly in the presence of many zero counts

[29, 17]. Second, unlike TWO-SIGMA-G and MAST, CAMERA does not separately model the excess zeros

in the data and may underestimate parameters relating to mean expression as a result. The procedure used

in TWO-SIGMA-G to estimate and adjust for IGC is well-calibrated and produces valid set-level inference.

Panels (C) and (D) of figure 2 show that the type-I error from TWO-SIGMA-G is preserved or ap-

proximately preserved when gene-level random effect terms are truly present and either correctly included

(“present”) or incorrectly excluded (“incorrectly absent”) from the fitted gene-level model. For both CAM-

ERA and MAST, however, type-I error tends to be inflated on average and the variance in the type-I error

across the six settings tends to increase in the presence of gene-level random effects. For both methods, how-

ever, this type-I inflation is much lower in magnitude than can exist at the gene-level [30]. This highlights
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Figure 2: Shows type-I error performance for CAMERA, MAST, and TWO-SIGMA-G using a reference set
size of 30 genes. Each panel varies the existence of IGC between genes in the test set and the presence of
gene-level random effect terms in the gene-level model (CAMERA never includes gene-level random effect
terms). Within each panel, both unadjusted and adjusted set-level p-values are plotted (unadjusted p-values
are unavailable for MAST). Each boxplot aggregates six different settings which vary both the magnitude
of the average inter-gene correlation (where applicable) in the test set and the nature of the correlation
structure via the introduction of other individual-level covariates. Such settings are intended to represent
the diversity seen in real data sets to paint an accurate picture of testing properties over a wide range of gene
sets. Each of the six settings is further composed of 10 replicates which vary only random seed to mimic
the impact of a different starting pool of cells from which genes were simulated. See the Methods section for
more details regarding the simulation procedure.
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an advantage of competitive gene set testing: because it makes a relative comparison to a reference set of

genes, it is partially robust to the consequences of a systematic, gene-level misspecification. The real data

analysis section further shows a large agreement in set-level inference from TWO-SIGMA-G regardless of

random effect inclusion in the gene-level model.

We additionally found that the null distributions of all three methods are nearly identical with a larger

reference set size (Supplementary Figure S3). However, in the interest of being conservative, we will evaluate

performance using results in which the test and reference sets are of equal size.

We also evaluated type-I error at various set-level null hypotheses, in which an equal but non-zero percent-

age of genes in the test and reference sets are DE (with the same gene-level effect size, Supplementary Figure

S4). For example, the scenario in which 20% of genes are DE in both the test and reference sets is one set-

level competitive null hypothesis. Generally, TWO-SIGMA-G becomes more conservative, MAST becomes

anti-conservative, and CAMERA’s performance varies as the proportion of DE genes increases. MAST’s

type-I error tends to become inflated once the background percentage of DE genes increases, particularly

when gene-level random effects are mistakenly excluded from the gene-level model.

As discussed in the methods section, we had difficulty obtaining reliable p-values for iDEA and PAGE

using our main simulation structure. We found that TWO-SIGMA provided improved type-I error control

as compared to these methods using a modified simulation framework (Supplementary Figure S5).

2.4 TWO-SIGMA-G improves power over alternative approaches

Figure 3 shows the power of CAMERA, MAST, and TWO-SIGMA-G on simulated data, and demonstrates

that TWO-SIGMA-G is consistently the most powerful method. Different configurations are presented,

involving a differing proportion of DE genes (with the same effect size) in the test and reference set. For

example, “T100,R50” corresponds to the configuration in which 100% of genes in the test set are DE and

50% of genes in the reference set are DE. Scenarios that DE and non-DE genes in both the test and

reference set are the most informative to study because it is unlikely in real data to have a completely null

reference set and/or a completely alternative test set. Results suggest that power depends primarily on the

proportion difference in DE between the test and reference set and less on the precise composition of the

test and reference sets. For example, the “T80,R50” and “T50,R20” configurations have the same difference

in percentage of DE genes, and similar power profiles for all methods in all four panels of figure 3. We

found that using a reference set size of 100 tends to improve power for all methods and particularly for

TWO-SIGMA-G (Supplementary Figure S6). This power increase does not seem to be a consequence of an

increase in type-I error (Supplementary Figure S3). This provides some evidence in favor of using a larger
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Figure 3: Shows the set-level power of CAMERA, MAST, and TWO-SIGMA-G using a reference set size
of 30 genes. Each panel varies the existence of IGC between genes in the test set and the presence of
gene-level random effect terms in the gene-level model (CAMERA never includes gene-level random effect
terms). Scenarios along the x-axis of each panel vary the percentage of differentially expressed genes (with
the same effect size) in the test and reference sets. For example, “T80,R50” corresponds to the configuration
under the alternative hypothesis in which 80% of test set genes are DE and 50% of reference set genes are
DE. Each boxplot aggregates six different settings that vary both the magnitude of the average inter-gene
correlation in the test set and the nature of the correlation structure via the introduction of other individual-
level covariates. Such settings are meant to represent the diversity seen in real data sets to paint an accurate
picture of testing properties over a wide range of gene sets. Each of the six settings is further composed
of 10 replicates which vary only random seed to mimic the impact of a different starting pool of cells from
which genes were simulated. See the Methods section for more details regarding the simulation procedure.
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reference set in lieu of a balanced reference set.

Panels (A) and (B) of figure 3 summarize results from genes that do not contain gene-level random effect

terms. In contrast, panels (C) and (D) of figure 3 show power when gene-level random effect terms are

truly non-zero and either correctly included (“present”) or incorrectly excluded (“incorrectly absent”) from

the fitted gene-level model. In either case, power is only slightly reduced versus the case without gene-level

random effects. Thus, if interested primarily in set-level inference, the increased computational cost from

gene-level random effect terms may not be necessary for valid and powerful inference. The set-level power

loss may be acceptable to prevent the massive type-I error inflation that has been shown to occur at the

gene-level when random effects are mistakenly absent if gene-level inference is of interest[30].

When the magnitude of gene-level DE is varied, such that half of genes have twice the effect size of the

other half, we found that set-level power is improved (Supplementary Figure S7). The relative positions of

each configuration remain as in figure 3, suggesting that power results in figure 3 apply to alternative DE

breakdowns. For example, whether or not genes in the test have varying DE magnitudes, the “T80, R20”

scenarios have improved power over the “T100,R50” scenarios. The relative rankings of the three compared

methods also remains when the magnitude of gene-level DE is varied.

As above, we also used a modified simulation framework to compare to iDEA and PAGE. Results are

very similar to our main simulations: TWO-SIGMA-G improves power over both methods, and differing

configurations with the same difference in DE percentage between the test and reference sets tend to have

very similar power profiles (Supplementary Figure S8).

2.5 Analysis of HIV data reveals biologically expected findings

First, we analyze a dataset of 11,630 single-cells collected from of 4 humanized donor mice, two of which

were infected with HIV and two were given a mock treatment [3]. A total of 3,549 genes and 4,772 gene

sets were analyzed. Table 1 shows the number of differentially expressed genes and sets in all cell types

comparing HIV to a mock treatment. Having more DE genes does not always correspond to more DE gene

sets. For example, erythroid cells have the second largest number of DE genes, but rank eighth in terms

of the number of DE gene sets. This result is expected using TWO-SIGMA-G because, as a competitive

test, it focuses on the relative signal of gene sets as compared to a background reference set of genes. The

lack of a clear relationship between the number of DE genes and gene sets was also reflected when analyzing

the overlap in significance between genes and gene sets among the four most prevalent cell types as seen in

panels (B) and (C) of figure 4.

Figure 4 shows more detailed cell-type-specific results comparing HIV to the mock treatment. Panel
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Genes Sets

Cell Type Up Down Up Down
NK (N = 4249) 489 531 123 131

Erythroid (N = 2085) 413 523 56 94
ILC (N = 1421) 235 198 130 91
B (N = 1205) 168 273 95 133

mDC (N = 1088) 350 346 149 67
pDC (N = 821) 214 194 130 37

Progenitor (N = 555) 93 127 92 65
Macrophages (N = 126) 41 40 92 77

Mast (N = 80) 16 8 57 44

Table 1: Shows the number of differentially expressed genes (using TWO-SIGMA) and gene sets (using
TWO-SIGMA-G) after FDR-adjustment for the HIV dataset. Gene-level p-values were adjusted using the
Benjamini-Hochberg method, and significance was determined by comparing these adjusted p-values to the
5% significance threshold. Gene sets tested passed FDR-adjustment of the Fisher’s method p-value combining
the nine cell-type specific p-values, and marginal significance was judged as compared to the 5% significance
threshold.

(A) presents heatmaps showing cell-type-specific average log fold changes (FC) and corresponding p-values

for gene sets among the ten most significant in at least one of the nine cell-types. Sets related to virus

introduction and interferon release are expected to be consistently upregulated and highly significant at

both the set-level (as seen in a representative gene set in Supplementary figure S9) and the gene-level [24].

The significance of these sets is found both when combining p-values into a consensus FDR-adjusted p-value

using Fisher’s method and within cell types other than erythroid cells, albeit with differing strength of

significance. Given the known functionality of erythroid cells as oxygen carriers in contrast to the immune

function of the other cell types, this result is expected. Rather, it demonstrates that TWO-SIGMA-G

can recover expected biological findings using cell-type-specific analyses and quantify differing strengths of

association even among sets that may not exhibit large cell-type-specific heterogeneity. Panels (B) and (C)

of figure 4 show the overlap in FDR-adjusted DE genes and gene sets, respectively, among the four most

prevalent cell types. For example, there are 41 gene sets that are significant over all nine cell types analyzed

that are also significant in each of NK, Erythroid, ILC, and B cells. These Venn diagrams show that our

analysis reveals a large degree of cell-type specific heterogeneity at the gene level and the set level.

2.6 Analysis of Alzheimer’s data reveals cell-type-specific heterogeneity in set-

level expression

The second real data analysis is designed to demonstrate TWO-SIGMA-G using a more complex application.

Specifically, we use the scRNA-seq data of [20] (see Methods section for more details) to analyze changes

in gene expression as Alzheimer’s Disease (AD) progresses. The data provides gene expression across three
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Figure 4: Results from analysis of the HIV dataset. (A) Cell-type specific variation in average set-level log
fold-change (left) and significance (right). Sets plotted are among the top 10 in significance for at least
one cell type. Sets in bold are significant at the 5% level over all cell types after FDR-adjustment of the
Fisher’s method p-value, and the rank of the Fisher’s p-value among all sets is provided next to the set
name. (B) Overlap between FDR-adjusted DE genes (5% significance level) among the four most prevalent
cell types. (C) Overlap between FDR-adjusted DE gene sets (determined as in panel (A)) among the four
most prevalent cell types.

distinct pathology groups: control (AD free), early-stage AD progression, and late-stage AD progression.

We focus on two relevant comparisons: late vs. early-stage AD, and early-stage AD vs. control. A total of

6,048 genes and 5,074 gene sets were analyzed.
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Early Stage AD vs. Control Late vs. Early Stage AD

Genes Sets Genes Sets

Cell Type Up Down Up Down Up Down Up Down
Excitatory Neuron (N = 29018) 1055 1893 5 26 1619 2645 410 7
Oligodendrocyte (N = 14806) 339 619 3 5 1443 74 297 1
Inhibitory Neuron (N = 7621) 58 1781 4 29 1483 761 374 7

Astrocyte (N = 2840) 61 311 4 4 265 44 245 5
Oligodendrocyte Progenitor (N = 2207) 13 64 4 3 256 3 251 3

Microglia (N = 1491) 27 20 5 6 14 0 42 2

Table 2: Shows the number of differentially expressed genes (using TWO-SIGMA) and gene sets (using
TWO-SIGMA-G) after FDR-adjustment for both comparisons of the Alzheimer’s dataset. Gene-level p-
values were adjusted using the Benjamini-Hochberg method, and significance was determined by comparing
these adjusted p-values to the 5% significance threshold. Gene sets tested passed FDR-adjustment of the
Fisher’s method p-value combining the six cell-type-specific p-values, and marginal significance was judged
as compared to the 5% significance threshold.

Figure 5 shows cell-typ- specific results comparing early stage AD patients to control. Previous studies

have suggested that dysfunction in mitochondrial functioning, particularly in cellular respiration as caused

by oxidative damage, is among the earlist events in Alzheimer’s disease [21]. As panel (A) of figure 5

demonstrates, we replicate this finding with particularly robust downregulation seen in pathways related to

cellular respiration, such as “KEGG OXIDATIVE PHOSPHORYLATION” and “MOOTHA VOXPHOS”

(see Supplementary Figures S10 and S11 for more detailed gene-level results for these sets). The neuronal

cell types demonstrate highly consistent statistical significance in these cases. The Venn diagrams in panels

(B) and (C) of figure 5 show that, after FDR correction, the most significant gene sets are shared between

only the two neuronal cell types. This suggests that pathway changes in the early stages of Alzheimer’s

disease are most identifiable in these cell types. Table 2 shows breakdowns of the totals by direction of

differential expression, and additionally includes all cell types.

Previous differential expression analyses in AD patients have further suggested that this trend of decreased

expression in genes associated with cellular respiration may reverse as the disease progresses [21, 19]. To

investigate this possibility, figure 6 shows cell-type-specific results comparing late-stage AD to early-stage AD.

Heatmaps in panel (A) show that most of the top gene sets are now consistently and significantly upregulated,

and furthermore many of these sets are also seen as highly significant but downregulated in panel (A) of figure

6. Thus, the initial downregulation in gene sets related to cellular respiration is reversed over time, possibly

due to cellular degeneration and an increasing demand for energy in remaining cells [21] (see Supplementary

figures S12 and S13 for gene-level information for the sets discussed above). Interestingly, this observed

upregulation and the possible increase in demand for energy is highly significant in the neuronal cells, as

in the previous comparison, but also highly significant in astrocytes, oligodendrocytes, and oligodendrocyte
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progenitor cells. Panel (C) of figure 6 shows that, unlike in the previous comparison, there is a large degree

of overlap between the top four cell types among all DE gene sets. When comparing late-stage AD to control

(Supplementary figures S14-S16), there is a slight upregulation in respiration related gene sets, although

such sets are not among the most significant sets for any cell type. Thus, our analyses suggest that there is a

systematic decrease in the expression of genes related to cellular respiration in the neuronal cells of early-stage

AD patients. This decrease is reversed and even slightly over-compensated for when comparing late-stage

patients to early stage patients, both in neuronal cells and in other cell types. Without the breakdowns

of AD patients into the early and late stages, this pattern is obscured (Supplementary Figures S17-S19).

Table 2 shows that the number of differentially expressed sets and genes increases dramatically in the late

vs. early-stage AD comparison over the early stage AD to control comparison. This further reinforces the

idea that massive changes in gene and pathway expression profiles occur in late-stage AD patients.

Our analysis explicitly reveals other cell-type type-specific heterogeneity. For example, microglia cells

tend to have a unique set-level effect size profile, as demonstrated by the hierarchical clustering in the

left heatmap of figure 5. This uniqueness also extends to significance. In comparing early-stage patients

to control, microglia cells exhibit stronger significance in pathways involved in immune response, such as

“RADAEVA RESPONSE TO IFNA1 DN” or “BROWNE INTERFERON RESPONSIVE GENES,” while

showing less or no significance in previously mentioned pathways related to cellular respiration. Given the

role of microglia cells in immune response, these results are not surprising. For a general application, however,

TWO-SIGMA-G can help researchers to investigate cell-type-specific heterogeneity using the approach used

here. The ability to test complex gene-level hypotheses as contrasts of regression parameters increases the

diversity of cell-type-specific hypotheses that can be explored.

3 Discussion

We propose TWO-SIGMA-G, a novel method designed for competitive gene set testing using scRNA-seq

data. At the gene-level, we employ our previously developed TWO-SIGMA method to test for DE. TWO-

SIGMA is a flexible regression modelling framework that can fit both one-component and two-component

negative binomial regression models to allow for overdispersed and zero-inflated counts. Additional covariates

can be included in each of the two components, and sample-specific random effect terms can be included to

account for within-sample correlation. The gene-level hypothesis is not limited to a binary or categorical

group comparison, but rather can be a general contrast of regression parameters, as demonstrated in the

real data analyses. This flexibility allows the testing of complex hypotheses and the analysis of complex

experimental designs. At the set-level, we adjust for IGC, which has been demonstrated to inflate type-I
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error if mistakenly ignored. Using gene-level residuals to estimate IGC, we produce set-level p-values that

preserve type-I error and improve power over alternative approaches.

The ability of TWO-SIGMA-G to include random effect terms at the gene-level provides a distinguishing

factor from many methods for gene set analysis. Such random effects can improve inference at the gene-level

substantially for some genes [30]. However, if only interested in set-level inference, our simulations suggest

that statistical inference remains valid when excluding gene-level random effects and reducing computational

burden as a result. When gene-level inference is of interest, it is likely desirable to fall back on including

random effect terms into the regression modelling framework. However, we suggest that inference in real

data analyses is likely not influenced greatly at the set-level by the presence or absence of gene-level random

effects (Supplementary Figure S20).

TWO-SIGMA-G is implemented in the twosigma R package (https://github.com/edvanburen/twosigma),

which is computationally efficient and allows for parallelization. To benchmark computational performance,

we ran a modified version of our HIV data analysis, testing for a treatment effect of HIV pooled over all cell

types. This modification to a one degree of freedom hypothesis allows us to test identical hypotheses in TWO-

SIGMA-G, MAST, and CAMERA to provide a fairer comparison of computation. Using three computing

cores on a MacBook Pro laptop, the methods had the following respective runtimes: 33.2 minutes for

TWO-SIGMA-G, 33.5 minutes for MAST (25 bootstrap replications), and 5 seconds for CAMERA. TWO-

SIGMA-G shows slightly improved yet nearly identical computational performance to MAST in the presence

of the other advantages for performing gene set testing in scRNA-seq data described throughout this paper.

Unlike bulk RNA-seq data, many genes are often uncaptured or fail to survive filtering in scRNA-seq data.

In gene set analysis, we must therefore assume that a gene set can be represented by the genes that exist

in the dataset. In both the HIV and Alzheimer’s datasets, we typically have around 40% representation

regardless of set size after gene filtering (Supplementary Figure S21). Given the biologically meaningful

and interpretable results we presented, the absence of these genes does not seem to threaten the ability of

scRNA-seq gene set analyses to contribute new biological insights.
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Figure 5: Results from Alzheimer’s dataset comparing Early Stage AD to Control. (A) Cell-type-specific
variation in average set-level log fold-change (left) and significance (right). Gene sets plotted are among the
top 10 in significance for at least one cell type. Sets in bold are significant at the 5% level over all cell types
after FDR-adjustment of the Fisher’s method p-value, and the rank of the Fisher’s p-value among all sets is
provided next to the set name. (B) Overlap between FDR-adjusted DE genes (5% significance level) among
the four most prevalent cell types. (C) Overlap between FDR-adjusted DE gene sets (determined as in panel
(A)) among the four most prevalent cell types.
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Figure 6: Results from Alzheimer’s dataset comparing Late to Early Stage AD. (A) Cell-type-specific varia-
tion in average set-level log fold-change (left) and significance (right). Gene sets plotted are among the top
10 in significance for at least one cell type. Sets in bold are significant at the 5% level over all cell types
after FDR-adjustment of the Fisher’s method p-value, and the rank of the Fisher’s p-value among all sets is
provided next to the set name. (B) Overlap between FDR-adjusted DE genes (5% significance level) among
the four most prevalent cell types. (C) Overlap between FDR-adjusted DE gene sets (determined as in panel
(A)) among the four most prevalent cell types.
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4 Methods

4.1 Compared Methods

We compared TWO-SIGMA-G to four other methods for competitive gene set testing in R version 3.6.3:

the competitive testing procedure of MAST (version 1.13.5, accessed via the gseaAfterBoot function),

CAMERA (accessed via version 3.42 of the limma package), iDEA (version 1.0.1), and PAGE (accessed via

the PGSEA function of version 1.60 of the PGSEA) package. Log fold-change values from TWO-SIGMA were

used as input for both iDEA and PAGE, and for MAST, 25 bootstrap replicates were used. In all other

cases, default options were used for each method.

PAGE was developed as an extension of GSEA, and compares the log fold-change values in the test set to

those from the complement set of genes using a one-sample z-test, where the sample mean and variance are

estimated using all genes. PAGE does not adjust for IGC, but is computationally quite efficient as compared

to GSEA. It may fail to preserve type-I error in some cases, however.

CAMERA was proposed as a competitive gene set test for microarray or RNA-seq data [33]. Gene-level

statistics are first constructed using a linear model, meaning that CAMERA can accommodate complex

experimental designs beyond a two-group comparison. Set-level p-values are then computed using modifica-

tions of the t-test or Wilcoxon rank-sum test that allow for a common pairwise correlation in the test set.

Rather than using the raw data to estimate the IGC, CAMERA uses the residuals from the linear model. Use

of the residuals means that the variation in gene expression explained by the covariates is removed, giving

the most reliable estimate of the correlation between the gene-level statistics in the test set. By avoiding

permutation, and unlike some early approaches, CAMERA provides a statistically valid, computationally

efficient test of a precisely defined and fully specified null hypothesis [10]. The hypothesis corresponds to a

test that the average absolute value of each coefficient in the test set is larger in magnitude as compared to

the reference set.

MAST, which was developed for scRNA-seq DE analysis, has an extension to allow for competitive gene

set testing comparing a test set to its complement set of genes [7]. This extension is quite flexible given

the log-normal hurdle regression framework employed by MAST. Once the gene-level statistics are collected,

a bootstrap procedure is used to estimate the inter-gene correlation of the regression coefficients. Set-level

tests are conducted using the Z-test and computed separately for the two components of the hurdle model.

The performance of the method does not seem to have been studied in great depth, and recent evidence has

suggested that log transforming scRNA-seq data may distort true signal [29, 17].

iDEA was developed as an integrative method for both DE and gene set enrichment analysis [18]. The

method takes gene-level DE summary statistics and gene sets as input. For each gene set, the method
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produces a posterior probability of DE for each gene and a set-level p-value. As a competitive test, the

set-level p-value compares the gene-level odds of DE in the test set to the reference set. Because it focuses

on the posterior probability of DE at the gene level, iDEA may not capture a gene set where enrichment of

the test and reference sets is similar in proportion but the effect sizes themselves are systematically larger

in the test set.

Both MAST and iDEA use the complement set of genes as the reference set. Previous studies have,

however, cautioned that set size may inflate the type-I error of some gene set testing procedures [4, 28]. For

larger gene sets, which are likely of more interest scientifically, the difference between these two approaches

for choosing a reference set diminishes.

4.2 TWO-SIGMA for Gene-Level DE Statistics

TWO-SIGMA fits a zero-inflated mixed-effects negative binomial regression model and simultaneously mod-

els, for cell j of individual i, the probability of dropout pij and the negative binomial mean µij as follows:

logitppijq “ z
T
ijα` ai, ai „ Np0, σ2

aq

logpµijq “ x
T
ijβ ` bi, bi „ Np0, σ2

b q, assume ai KK bi (1)

α and β are fixed effect coefficient vectors and the corresponding vectors of covariates zij and xij can be

different. ai and bi are sample-specific random intercept terms. Including these terms helps control for any

within-sample correlation, providing more accurate estimates and standard errors of fixed effect parameters.

In this context, gene-level statistics will correspond to tests of estimable contrasts of regression parameters

in the TWO-SIGMA model seen in equation (1). Examples could include a likelihood ratio statistic of a

treatment effect, or an ANOVA style pairwise comparison between treatment groups within cell-type as we

demonstrate in the real data analysis of this paper. If an effect of interest is present in both the mean

and zero-inflation component, options for a joint test include the likelihood ratio test, Stouffer’s method to

combine Z-scores, or using simply using the test statistic from the mean model. To summarize, TWO-SIGMA

can control for additional covariates in both components, incorporate random effects to accommodate within-

sample dependency, analyze unbalanced data, test general DE hypotheses beyond a two-group comparison,

and allow for zero-inflated and overdispersed counts at the gene-level. The zero-inflation component can be

removed in its entirety if desired, as is done in the real data analyses.
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4.3 Gene Set Simulation Procedure

To simulate correlated gene sets, with varying magnitudes of correlation designed to represent the diversity

seen in real data, we employ the following simulation procedure:

1. Simulate set of independent (“original”) genes

(a) Simulate covariates and random effects (if present) to create cell population

(b) Randomly sample (or set to zero to exclude) parameter values for additional covariates to include

in the model

• Random sampling creates variability in read counts

• Intercepts fixed to ensure drop-out percentages and data scale comparable

(c) Simulate Yij from the ZINB distribution

(d) Repeat 1,000 times without RE and 300 times with RE

• Cell population same in each scenario, genes differ due to differing parameters and randomness

• Need to make sure there are enough unique data values to limit spurious correlation

2. Generate correlated gene sets of size 30

(a) For each “original” gene, call it Yinput, add noise from NB distn using pre-specified, fixed param-

eters a1, µperm, φperm to create 29 correlated genes Yout:

Yout “ roundpa1 ˚ Yinput ` a2 ˚NBpµperm, φpermqq

• Added noise has the same distribution for each scenario

• Weight noise by a2 to control the amount of correlation (larger a2 means lower correlation)

and change mean patterns across scenarios

• If gene is under the alternative, add additional noise a3 ˚NBpµperm, φpermq to preserve signal

(a3 taken as 0.15 in “mixed” alternatives and 0.1 otherwise)

(b) Randomly set some non-zero counts to zero to keep the proportion of zeros the same in correlated

and original gene

• Ensures that proportion of zeros alone does not drive significant results

3. Vary magnitude of IGC in 2(a) by taking a2 from various values in table 3
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Table 3: Shows the six different settings used to simulate data for gene set simulations. “O.C.” refers to
the presence of other covariates besides treatment in the true model, which can serve to create complex
gene-gene correlation structures.

a2 O.C.
3 No
5 No
10 No
3 Yes
5 Yes
10 Yes

4. Repeat 1-4 using 10 different random seeds (mimic different cell populations)

Genes were simulated using the zero-inflated negative binomial distribution to be under the gene-level null

or, for simplicity, a single gene-level alternative (this is relaxed in supplementary Figure S7). Gene sets

possessing a compound symmetric correlation structure were generated by a procedure described fully in

supplementary section S1. Briefly, a total of six different settings were constructed to vary both the amount

of inter-gene correlation in the test set and the presence of other covariates in the gene-level model. The

presence of such other covariates can create additional complex correlation structures between cells and

genes as discussed in section 2.2. For each setting, we aggregated over ten biological replicates consisting of

different cell populations to minimize the impact of the initial cell population on results. At the set-level, sets

can be constructed to be under various null or alternative hypotheses by varying the proportion of genes that

are under the gene-level null or alternative in both the test sets and reference sets. Settings were repeated

using reference sets of size 30 and 100 to evaluate the impact of reference set size on set-level inference.

This simulation strategy introduces a small positive correlation which varies from 0 to about 0.05 depending

on simulation scenario and the computational method used to estimate the correlation. Our aim is not to

evaluate correlation estimates directly, but rather to introduce small but positive gene-gene correlations and

evaluate the ability of various competitive gene set testing methods based on their set-level performance

after adjusting for inter-gene correlation.

In the main simulations TWO-SIGMA-G was compared to two other methods for competitive testing

using regression modelling approaches: CAMERA [33], the leading method for bulk RNA-seq and thus for

competitive testing, and the procedure in MAST [7], which is one of the most popular packages for scRNA-

seq data analysis. We had difficulties obtaining reliable p-values from iDEA [18] and PAGE [14] for the main

simulations. We believe this is because our main simulations were calibrated using gene-level statistics which

summarize evidence from both the mean and zero-inflation components, while iDEA and PAGE use only the

effect size (and standard error in iDEA) from the mean component. TWO-SIGMA-G, CAMERA, and MAST
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all utilize the raw data and as such can capture general set-level enrichment coming from expression changes

in zero proportion or mean value. In contrast, iDEA and PAGE do not use the raw data. To provide

a meaningful and fair comparison to both iDEA and PAGE, we simulated correlated genes emphasizing

signal in the mean component. Type-I error results for these methods are shown in Supplementary Figure

S2 and provide similar conclusions to the above. Methods designed for self-contained testing, a hybrid of

self-contained and competitive testing, or other aspects of gene set testing, such as ROAST [32], GSEA [25],

sigPathway [28], PAGODA [6], and BAGSE [13] were not included because they are testing fundamentally

different null hypotheses.

4.4 HIV Dataset

Our first dataset consists of single-cells collected from humanized mice [3]. Given our focus is at the set level,

we filtered genes to keep those with zero proportion no higher than the mean percentage, leaving the most

relevant and highly expressed 3,549 genes. A total of nine cell types are present in the data: natural killer

(NK) cells, erythroid cells, innate lymphoid cells (ILC), B cells, myeloid dendritic cells (mDC), plasmacytoid

dendritic cells (pDC), progenitor cells, macrophages, and mast cells. The read counts are then treated

as the outcome of interest; as with other UMI-based scRNA-seq count data, we found that this data was

not consistent with zero-inflation [26], and thus we fit the TWO-SIGMA model without the zero-inflation

component at the gene-level. Because the primary interest is in comparisons between HIV and mock cells

within cell-type, we categorize cells into one of 2*9 = 18 mutually exclusive groups. An ANCOVA model

additionally adjusting for CDR was fit as a way to test for cell-type specific differences in expression levels

comparing HIV to mock. TWO-SIGMA-G is ideal for this analysis because gene-level statistics can come

from a test of such an arbitrary contrast matrix. These gene-level statistics are, for each cell-type, Wald

Z-statistics contrasting the mean values in observed expression between the two groups within a cell-type.

Gene sets were taken from the Molecular Signatures Database (mSigDB) [25, 15] version 7, c2 collection,

accessed via the msigdf R package (https://github.com/ToledoEM/msigdf). After filtering to keep sets with

at least two genes present in our data, a total of 4,772 sets with at least two genes present in our data were

analyzed. More detailed breakdowns showing the percentage of genes available by set size are available in

Supplementary Figure S19.

4.5 Alzheimer’s Dataset

Our second dataset consists of 70,634 single cells from human donors [20]. We did not remove cells beyond

what was done in the original manuscript. Given our focus is at the set level, however, we chose to filter the
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original 17,926 genes to the 6,048 most highly expressed genes by removing genes unexpressed in at least

90% of cells. The read counts are once again treated as the outcome of interest in a model without a zero-

inflation component. A total of 48 individual donors are present, categorized into three pathology groups: 24

individuals are control patients free of a diagnosis of AD, 12 were diagnosed with early stage AD, and 12 were

diagnosed with late stage AD. The 70,634 single cells from the six most common cell-types were analyzed:

astrocytes (Ast), excitatory neurons (Ex), inhibitory neurons (In), microglia (Mic), oligodendrocytes (Oli),

and oligodendrocyte progenitor cells (Opc). The existence of the pathology groups allows us to explore

cell-type specific variability in gene expression as AD progresses into early and late stages of disease severity.

Our geneset analysis was conducted similarly to above: a one-component ANCOVA model was fit including

cell-type and AD status jointly, with age at death, sex, and the CDR used as an additional covariates. In

total, 5,074 sets with at least two genes present from the MsigDB c2 collection were analyzed. More detailed

breakdowns showing the percentage of genes available by set size are available in Supplementary Figure S19.

5 Availability of data and materials

Both datasets analyzed in this manuscript are publicly available. The HIV dataset is available at the Gene

Expression Omnibus under accession GSE148796. The Alzheimer’s dataset is available upon completion of

a data usage agreement at the Rush Alzheimer’s Disease Center (RADC) Research Resource Sharing Hub

(https://www.radc.rush.edu/docs/omics.htm) under “snRNA-seq PFC.” TWO-SIGMA-G is implemented

in the function twosigmag in the twosigma R package, which is freely available on GitHub at

https://github.com/edvanburen/twosigma.
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