
Representation and inference of size control laws by neural network aided point
processes

Atsushi Kamimura∗ and Tetsuya J. Kobayashi†

Institute of Industrial Science, The University of Tokyo,
4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Dated: January 25, 2021)

The regulation and coordination of cell growth and division is a long-standing problem in cell
physiology. Recent single-cell measurements using microfluidic devices provide quantitative time-
series data of various physiological parameters of cells. To clarify the regulatory laws and associated
relevant parameters such as cell size, mathematical models have been constructed based on phys-
ical insights over the phenomena and tested by their capabilities to reproduce the measured data.
However, such a conventional model construction by abduction faces a constant risk that we may
overlook important parameters and factors especially when complicated time series data is con-
cerned. In addition, comparing a model and data for validation is not trivial when we work on
noisy multi-dimensional data. Using cell size control as an example, we demonstrate that this
problem can be addressed by employing a neural network (NN) method, originally developed for
history-dependent temporal point processes. The NN can effectively segregate history-dependent
deterministic factors and unexplainable noise from a given data by flexibly representing functional
forms of the deterministic relation and noise distribution. With this method, we represent and
infer birth and division cell size distributions of bacteria and fission yeast. The known size control
mechanisms such as adder model are revealed as the conditional dependence of the size distributions
on history and their Markovian properties are shown sufficient. In addition, the inferred NN model
provides a better data representation for the abductive model searching than descriptive statistics.
Thus, the NN method can work as a powerful tool to process the noisy data for uncovering hidden
dynamic laws.

I. INTRODUCTION

One of the major quests in microbial physiology is to unveil the fundamental principles and laws underlying the
regulation and coordination of cell growth and division[1]. Recent developments in microfluidic devices enable us to
track microbial cells over hundreds of generations[2–5]. Various physiological parameters, in particular cell sizes, have
been measured over time quantitatively at the single-cell level [2, 6–8].

To elucidate laws of cell growth and division, a large body of research has been conducted by employing techniques
from physical and mathematical sciences[1, 9–14]. Especially, simple physical and mathematical models have been
pursued, which can explain cell growth and division with a small number of relevant variables. In order to account
for the significant cell-to-cell variety of division patterns in measured data, the process of cell growth and division
was typically formalized as a continuous-time stochastic process where each cell grows and divides with a variable
rate[10, 11]. In this formalism, different models can be implemented by choosing the relevant variables to determination
of the division rate. For example, ‘sizer’ model[10] posits that the absolute size of the cell is relevant whereas ‘adder’
model[15–17] considers the added size from the birth of the cell fundamental. Even though the biological mechanisms
regulating cell divisions are complex and can involve many biochemical reactions and signaling, such simple models
were found to reproduce the division patterns successfully. However, construction of a good model generally requires us
for deep insights and intuitions into the cell physiology as well as trial and error because one has to figure out relevant
variables and their relation for characterizing and reproducing cell divisions statistics. Even if an obtained model works
good, we may find a better model by choosing or including another variable that we did not try. Moreover, biological
data shows high variability, only part of which a simple model can explain. Thus, the unexplained part is represented
as noise by assuming its distribution. However, the prefixed repertoire of noise distributions such as Gaussian or
exponential distribution may not appropriately explain the unexplained components. Thus, the conventional model
construction by abduction faces a constant risk that we may overlook important parameters, variables, and relations
especially when the complicated high dimensional or noisy time-series data is concerned and when the model that
we are fitting to data does not have a sufficient representation power over both deterministic relation and noise
distribution.
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In the last decade, machine learning (ML) methods have been prodigiously developed and applied to a wide variety
of problems[18]. ML methods especially deep learning (DL) have demonstrated that they can semi-automatically
extract complicated patterns underlying large amounts of noisy data sets by removing irrelevant dimensions and
unexplainable noise factors. Even though ML, in reality, is not at all the magic wand that can solve problems without
any human help or preconceived assumptions, we can use it to support us for searching a defined but huge model
space without relying on our insights and intuition.

In this work, we employ a neural network (NN) method to the problem how cell size is regulated. By following
the similar formulation in the previous modeling of cell size control as stochastic process[10, 11], we represent the
cell size dynamics interrupted by division events by using temporal point process (TPP). Then we introduce a NN
method to represent the intensity function of the process, which can depend flexibly on the history of cell size over
the retrospective lineage. By training the NN, we obtain conditional probability density functions (PDFs) of cell
sizes at birth and division, given their past histories. The trained PDFs reproduce and confirm the previous results
and presumed assumptions of size control; the cell division is indeed stochastic; the Markovian model is sufficient for
predicting birth and division sizes. Adder and weak-sizer principles for E. coli and S. pombe respectively are obtained
from the history dependency of the conditional PDFs. Moreover, the NN method is shown to extract the relations
between multiple variables and provide a better data representation for the model searching by abduction than the
conventional descriptive data plotting or use of summary statistics. Thus, the NN method can work as a powerful
tool for uncovering hidden dynamic laws from noisy data.

The rest of the paper is organized as follows. In Section II, we extend the formalism of the stochastic process of cell
growth and division to the case where cell sizes at division depend on their history. We then explain the formulation
and recent developments of intensity-based NN models for TPP. In Section III, we describe the experimental data
of E. coli and S. pombe cell division used in our analysis. In Section IV, we first present performances of existing
intensity-based models and show that a fully NN model developed recently is the best in its flexible expressiveness
of data. By using the model, we examine how the conditional PDFs of cell sizes depend on their history. We also
examine the ‘typical’ behavior by calculating the medians of the conditional PDFs and compare them with the size
control laws obtained by previous modeling. In Section V, we summarize and discuss our study.

II. FORMULATION

A. Modeling history-dependent stochastic dynamics of cell size

The stochastic dynamics of cell size can be modeled as a history-dependent temporal point process (hTTP) [19]
First, we characterize the history of a cell by a sequence of cell sizes at birth (lb) and division (ld). m is the

pre-determined length of the sequence with alternating lb and ld. We categorize sequences into two types hm and gm:
sequence hm is the size history up to the most recent birth lb and gm is that up to the most recent division ld. For
even m, they are represented as

hm = {li−m/2
d , l

i−m/2+1
b , l

i−m/2+1
d , l

i−m/2+2
b , ..., li−1d , lib}, (1)

gm = {li−m/2
b , l

i−m/2
d , l

i−m/2+1
b , l

i−m/2+1
d , ..., li−1b , li−1d }. (2)

and for odd m,

hm = {li−(m−1)/2b , l
i−(m−1)/2
d , l

i−(m−1)/2+1
b , ..., li−1d , lib}, (3)

gm = {li−(m+1)/2
d , l

i−(m+1)/2+1
b , l

i−(m+1)/2+1
d , ..., li−1b , li−1d }, (4)

where the superscripts, e.g., i, denote the generations of the cell defined along a lineage.
Then, we consider the next division size lid of a cell with history hm. The history includes sizes up to the most

recent birth size lib. We define the survival probability Π(l|hm) that the cell with the history hm does not divide up to
size l. In the following, we assume that the size dynamics is stationary and thus Π(l|hm) is independent of generation
i. The survival probability satisfies the following master equation:

Π(l + dl|hm) = Π(l|hm) [1− λd(l|hm)dl] , (5)

where λd(l|hm)dl is the probability that division occurs within the size interval [l, l + dl] given the size history hm

and the fact that the cell did not divide up to size l. In the continuum limit, Eq. (5) is written as

d

dl
Π(l|hm) = −λd(l|hm)Π(l|hm). (6)
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The formal solution of Eq. (6) is

Π(l|hm) = exp

[
−
∫ l

lib

λd(s|hm)ds

]
= exp

[
−
∫ l

0

λd(s|hm)ds

]
, (7)

at the second equality of which, the integral range is changed by defining λd(s|hm) = 0 for s ≤ lib. Since the probability
that a cell division occurs within the size interval [l, l + dl] is

P (l|hm)dl = Π(l|hm)λd(l|hm)dl, (8)

the probability density function (PDF), P (l|hm), of division-size conditioned by history is written as

P (l|hm) = λd(l|hm) exp

[
−
∫ l

0

λd(s|hm)ds

]
= − d

dl
Π(l|hm). (9)

In a similar manner, one can describe the birth-size PDF, Q(l|gm), for lib:

Q(l|gm) = λb(l|gm) exp

[
−
∫ l

0

λb(s|gm)ds

]
, (10)

where the history gm includes the division size li−1d up to the generation i − 1. The stationarity for generation is
also assumed. Even though the rate function λb(l|gm)dl itself does not have an appropriate physical interpretation
for birth size, we can use λb(l|gm) in modeling as a proxy of Q(l|gm) because λb(l|gm) has the same information as
Q(l|gm).

B. Representation and inference of temporal point process by neural networks

Temporal point process (TTP) is a stochastic process that describes a sequence of discrete events at times {ti}ni=1 ∈
[0, T ]. The history-dependent conditional intensity function λ(t|ht) ≥ 0 is typically used to specify the dependency
of the next event time t on the event timing history ht = {ti : ti < t}.

Given the conditional intensity function, one can obtain the conditional PDF of the next event time ti+1 as

p(ti+1|ht) = λ(ti+1|ht) exp

(
−
∫ ti+1

ti

λ(s|ht)ds

)
. (11)

While λ(ti+1|ht) is an indirectly way to represent p(ti+1|ht), we need not care about the constraint
∫
p(ti+1|ht)dti+1 =

1 if we use λ(ti+1|ht). In the conventional point process modeling and inference, simple functional forms have
been assumed for λ(ti+1|ht;θ) or p(ti+1|ht;θ) to make their parameter inference of θ and log-likehood computation
tractable. However, the expression power of the model is severely restricted and insufficient especially when λ(t|h)
should be a complicated function of either t or history h or both.

In the last couple of years, neural networks have been employed in different ways. For example, a recurrent neural
network (RNN) was used to obtain a fixed-dimensional representation rt , which compresses the information of history
ht[20]. Then, rt is used with a simple and fixed form of λ(t|rt;θ).

The representation power was extended further by employing another NN to flexibly model the functional form

of λ(t|rt;θ). Among others, Omi et.al.[21] proposed a fully NN model, in which the integral Λ(t) =
∫ t

ti−1
λ(s|ht)ds

rather than λ(s|ht) is modeled by a feed-forward NN. This allows us to efficiently compute the log-likelihood, L =[∑
i log λθ(ti)−

∫ tN
0

λθ(s)ds
]
, by avoiding integration of λ(s|ht), regardless of the functional form of the intensity

function λ(s|ht). This method endows more flexiblity in the hTPP modeling, reduces computational complexity for
parameter learning, and thereby extends its applicability.

These NN models can be directly applied to the size control of cell physiology because the mathematical framework
is almost identical: the conditional PDF in Eq. (11) has the same form with Eq. (9) and Eq. (10). In this paper, we
apply FullyNN model to obtain the conditional PDFs of division and birth sizes on size history.
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III. DATA

In this study, we use two public data sets[8, 22]. Both were obtained by microfluidic single-cell measurement devices,
versions of the commonly known ’mother machine’[2, 6]. The devices allow tracking of mother cells trapped at the
bottom of the observation channels over tens or a hundred of generations (see Fig. 1A). From the data obtained, one
can extract the following parameters to characterize the size dynamics and divisions events (see Fig. 1B): birth size
lb, division size ld, the size added between a consecutive pair of birth and division ∆d = ld − lb, the relative septum
position l1/2, and division interval τ .

The first data set was obtained by the measurements of Escherichia coli (E. coli)[22]. The data were recorded every
minute and contain time series of cell length of mother cells. The measurements were conducted in three different
growth conditions of temperatures (37◦C, 27◦C, and 25◦C). An example of the cell size time course is shown in Fig.
1C.

The second set was obtained by the measurements of Schizosaccharomyces pombe (S. pombe)[8]. The data were
recorded every three minutes and contain time series of cell area. The measurements were conducted in seven different
culture conditions with different media and temperatures (28◦C, 30◦C, and 34◦C in yeast extract medium [YE], and
28◦C, 30◦C, 32◦C and 34◦C in Edinburgh minimum medium [EMM]).

In Appendices A and B, we describe the details of preparing and preprocessing the sequential data and procedures
for NN learning.

Basic statistics of the parameters are summarized in Tables S1, S2 and S3 of the supplementary materials for E.coli
and S. pombe in YE and EMM conditions, respectively. We also present the histograms of cell sizes in Fig. S1, S2
and S3 of the supplementary materials for E.coli and S. pombe in YE and EMM conditions, respectively.

IV. RESULTS

A. The fully NN model achieves a better performance than the other RNN based models

In this section, we first test performances of different RNN methods by applying them to the cell-size data of E. coli.
and S. pombe. In the previous study [21], FullyNN model we use in our subsequent analysis achieved a competitive
or better performance over other RNN based models for various synthetic and real data. Here, we will show that this
is also the case for the cell-size data.

In addition to FullyNN model, we here consider three RNN models with specific intensity functions of λb and
λd. The simplest one is to assume a constant intensity function (constant model) λ∗(li) = exp(vThi + b), where
hi denotes the embedded vector of the history by RNN, and vT and b are learnable parameters. This constant
intensity function corresponds to an exponential distribution for the PDF in Eq. (11), whose parameter varies over
generations depending on the history hi. The second one is the exponential intensity function (exponential model)
λ∗(li) = exp(wli + vThi + b) where it depends on the size l but can be integrated directly[20]. This exponential
intensity function corresponds to a Gompertz distribution for the conditional PDF. As a more flexible functional
form[23], a piecewise constant model is considered where the intensity function is discretized by piecewise constant
functions as λ∗(li) = softplus(vTj hi + bj) for (j − 1)L ≤ l ≤ jL, where j = 1, 2, ..., lmax/L with given lmax and L. In

this study, we fix L = 128 and lmax = 1.001× ldatamax, where ldatamax denotes the maximum size in the data.
Figures 2A and B show examples of trajectories of the actual observations and the RNN models after training for

birth and division sizes of E. coli, respectively. For each RNN model and each generation i, the median of the PDF
is calculated by using the observed history of sizes before i. The medians of the FullyNN and the piecewise constant
models agree with the actual observations better than the other models. Significant deviations from the measured
data were observed in the exponential model for birth size and in the constant model for both sizes.

In Figs. 2CD, we calculate the shapes of the PDFs for the four models at generation i = 30 in Figs. 2AB. It should
be noted that the PDFs are history-dependent and thereby their shapes change depending on the generation at which
we calculate them. The conditional PDFs of the FullyNN and the piecewise constant models are located relatively
close to the actual observation and their shapes are similar. The PDFs of the exponential and the constant models
are much broader and their functional forms are restricted to the Gompertz and exponential functions, respectively.

To measure the performances of the four models quantitatively, we calculated negative log-likehood − logQ(l∗b |gm)
and − logP (l∗d|hm) for birth and division sizes, respectively, where l∗b and l∗d denote the actual observations in the
validation data. A lower negative log-likehood means a better performance in prediction. Figures 2E-H show average
performances of the four models for both E. coli and S. pombe. For almost all cases, the FullyNN model achieves the
best performance with the smallest values of the negative log-likelihood. Since the amount of data is smaller than
those used in Ref. [21], we change the fraction of the training data from 80% to 95%. We found that the scores are
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approximately constant for the different sizes of training data, which assures that the FullyNN model is sufficiently
trained. The piecewise constant model performs similarly well but slightly worse than the FullyNN model and predicts
rugged conditional PDFs.

The exponential and constant models perform poorly because they have the restrictions in the functional form.
The PDF of cell sizes is typically single peaked and right-skewed (see section IV C). Therefore, they cannot be
approximated sufficiently by a Gompertz or an exponential distribution. Also, the performances of the exponential
model are unstable. Its scores are more sensitive to the size of training data than the others. In any cases, the
FullyNN model performs better by flexibly approximating the PDFs.

B. The most recent size in history is sufficient for birth and division size prediction

The NN method has several hyperparameters. Of particular interest is the length m of the histories hm and gm.
In the previous modeling of size control, Markov models were employed and their sufficiency were not tested. Only
recently, the impact of the length of history was tested by using a regression model[24]. The dependence of the
performance on the history length m can be used to systematically and quantitatively verify how far back in the
history is relevant to predict the next division or birth size.

Figure 3 shows the performance of the FullyNN model for lb and ld as functions of history length m. Even though
a slight improvement between m = 1 and m = 2 is observed for the division size ld of E. coli. (Fig. 3B), the
performances do not show significant improvements with increasing m for m ≥ 1. This observation indicates that the
most recent elements in the history (lib in hm and li−1d in gm) are practically sufficient. This supports the assumptions
of the previous size control models.

We also investigated the performance as functions of other three NN hyperparameters, the number of layers and
the number of units in each layer (Fig. S5 and S6 in the supplementary materials) to confirm that increase in the
complexity of NN from current parameter values does not significantly improve the results.

C. Shapes of birth and division distributions depend differently on history

We next analyze how the shapes of the birth and division size distributions depends on history by using the
estimated PDFs, P (ld|hm) and Q(lb|gm).

Figure 4AB shows the PDF of E. coli birth size Q(l|gm). While the shape of the PDF can in principle depends on
all the elements in the history gm, we exclusively focus on the most recent division size because we verified it as the
most influential and sufficient element of the history in Fig. 3 (see also Fig. S7 and S8 in the supplementary materials
for the dependence of P (l|hm) and Q(l|gm) on the earlier sizes).

As demonstrated in Fig. 4A, the mode of the birth size PDF is monotonously dependent on the most recent division
size, which reflects the obvious fact that a bigger cell divides into two bigger daughters on average. The modes of
Q(l|gm) is approximately located at the position l = ld × l1/2, where the relative septum position l1/2 = lib/l

i−1
d is

approximately 0.46 for this data set (see Table S1 in the supplementary materials). This dependency of birth size
PDF is captured even when only the most recent division size is considered as the history, i.e., by setting m = 1 in
the model when trained (see Fig. S9 in the supplementary materials).

Similar dependency of mode is observed for the division size PDF P (l|hm) as a function of the most recent birth
size (Fig. 4B). This dependency, however, is less prominent than that of the birth size PDF, suggesting that the
division size is under tighter control than the birth size.

In addition, Fig. 4A clarifies that the birth size of a cell with a bigger parent cell shows greater variation than one
with a smaller parent. This is a sharp contrast to the birth size PDF of S. pombe. (Fig. 4C for YE and Fig. S10
for EMM condition), whose variation, i.e., the width of the PDF, is almost independent of the previous division size.
This results may indicate the difference in the birth size control between E. coli and S. pombe., the latter of which
has a more elaborated molecular mechanism to determine the middle of a cell [25, 26]. For the mode of division size
PDF of S. pombe. in Fig. 4D, in contrast, we observe a similar dependency on the birth size to E. coli, which implies
the existence of division size control for both E. coli and S. pombe.

All these properties are automatically extracted and clearly presented in the estimated conditional PDFs by the
Fully NN model from the noisy raw data.
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D. NN makes adder principle conspicuous by denoising data

We further elucidate the “typical” behaviors of birth and division size distributions as functions of histories, by
calculating the medians of the PDFs estimated by the FullyNN model. We have a stable and systematic way to
obtain the median of the PDF represented implicitly by the complicated NNs (see Material and Method). Figure 5A
exemplifies a comparison of the time-series of actual birth lb and division ld sizes with the medians of the PDFs for
E. coli (the same data with Fig. 2AB).

For birth size lb, the actual observation (orange) and the medians (light blue) agree well and are distributed along
x = y in the scatter plot (Fig. 5B). This result demonstrates that the median of the PDF works as a good predictor of
lb. For the division size ld in Fig. 5A, we observe more sporadic jumps in the actual observations, which the median
of P (l|hm) (purple) fails to predict. Except such outliers, e.g., l > 10, the median can predict a general trend in the
division size over time, which is also verified in the scatter plot of Fig.5C.

By using the PDF, we next try to detect the adder law of E. coli size control revealed by the previous modeling. It
posits that cells add constant size ∆ between birth and division, irrespective of the birth size. A standard approach
to explore size control laws is to plot correlations among pairs of potential control parameters. Fig. 5D shows the
correlations between four parameters, division size ld, birth size lb, elongation ατ , and added size ∆ for E. coli at
37◦C.

We first focus on the correlation between the division size ld and the birth size lb (Fig. 5D1). The plot clearly show
a positive correlation in which a cell with a large (small) birth size divides at a large (small) division size. The trend
is also consistent with binned raw data indicated by empty circles and error bars, each of which corresponds to the
median and the interquartile range of the binned data, respectively.

The correlation between the added size ∆ = ld−lb and the birth size lb shows a slightly negative correlation for 37◦C
(Fig. 5D11) and approximately no correlation for 27◦C and 25◦C (Fig. S11 and S12 in the supplementary materials).
This negative correlation is dimmed in the binned raw data (empty circles). Owing to the reduced variation by the
NN model, we can identify the weak sizer property in 5D 11 at 37◦C. Overall, these results support the adder principle
even though it is not necessarily perfect at high temperature.

E. Underlying relations may not be represented appropriately by a simple descriptive approach

To investigate whether adder principle can account for all the other correlations, we also present the expected
behaviors of the ideal adder model by the blue curves in Fig. 5D (see section 1 in the supplementary materials for
the ideal adder). For most of plots in Fig. 5D, the medians agree very well with the idealized adder model (the blue
curves).

In contrast, in all the plots except Figs. 5D 1, 8, and 11, the binned raw data fail to capture the correlations
expected from the adder model. It should be noted that the binned plots basically represent the actual distributions
of data (Fig. S13 of the supplementary material). The deviation are not produced by the binning procedure except
the non-monotonical behavior between elongation and division size (Fig.5D2) where the data size is relatively small
for small ατs. The discrepancies of the binned data arise because substantial variations are present in the actual data,
and the noise simultaneously influences multiple variables so that an additional correlation is produced between the
parameters. Thus, when we do not know the relevant variables a priori, we can obtain a correct relation only if we
happen to choose a right variable as the binning variable as in 5D 1 and 8. Otherwise, the binned data may mislead
us over the underlying relation. By using the conditional PDF and its representative value, the effect of additional
correlations is eliminated between fluctuating variables and a direct comparison becomes possible between data and
models.

However, there is still a possibility that the discrepancy between the median and the binned data is an artifact of
the NN modeling. Actually, the median does not perfectly follow the idealized adder relation in some plots such as
5D 3, 6, and 9. To exclude this possibility, we constructed a synthetic data of a stochastic adder model, in which
the added size is generated from a fixed right-skewed distribution by reflecting the right-skewness in the observed
division distribution (see Table S4 and section 2 in the supplementary material). Then, we trained the NN model
with this synthetic data (Fig. 6). Here, we assume that the birth size is given by a perfect binary division lib = li−1d /2
for simplicity, and the division size is given by lid = lib + ∆i, where the added size ∆i is drawn from a log-normal
distribution.

For the synthetic data, the birth size is predicted almost perfectly by median of the trained conditional PDF (Fig.
6B). In addition, Fig. 6C of the synthetic data reproduced an asymmetry between the median and the actual size in
Fig. 5C such that the points distribute around the line y = x but larger deviations appear more above the line. Thus,
this asymmetry comes from the right-skewness of the added size and thereby of division size, which is not sufficiently
represented only by the median of the PDF. Figure 6 D also confirms that the median of PDF can perfectly reproduce
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the assumed adder property whereas the binned plots (gray empty circles and error bars) fail to capture the property
except in Fig. 6 D 1, 8, and 11, similarly to the case of E. coli data.

These results highlight a general advantage of the NN model over the conventional descriptive plot of raw data
especially when we do not know which variables should work as explanatory variables in advance.

In this sense, the NN model can also benefit the physical modeling by abduction by extracting relations among
multiple variables from noisy data.

F. NN works for other microbe with different size control mechanism

Finally, we investigate S. pombe, whose size control law differs from the perfect adder [17, 27].
Figure 7 shows the same analysis as that in Fig. 5 for YE condition at 30◦C (see also Fig. S14 for EMM condition)

. The elongation is omitted because the growth of S. pombe may depart from exponential trajectory and the equation
ld = lb exp(ατ) used for E. coli may be invalid (see Fig. S15).

The NN model reproduces the birth size of S. pombe as good as that of E. coli (Fig. 7 A and B). In addition, Fig.
7D6 clarifies a significant negative correlation between the birth size and the added size, whose slope is approximately
−0.6 (the blue line). The slope of -1 in this plot posits the perfect sizer principle in which there is a critical size
for division. The approximated slope of −0.6 indicates a size control in-between perfect adder and sizer, which is
consistent with previous studies [17, 27].

Similarly to Fig. 5D, all the plots of median in Fig. 7D agree with the weak-sizer model of −0.6 (blue curves).
The binned data fails to capture the relations except in Figs. 5D 1 and 6. Thus, this result reinforces the general
advantage of the NN method illustrated with E. coli data.

By comparing the results of E. coli and S. pombe, one noticeable difference is observed between Figs. 5C and 7C,
where the actual sizes of S. pombe deviate from the prediction by medians. This deviation can be attributed to the
sizer aspect of S. pombe size control. The perfect sizer principle posits that the division occurs at a certain threshold
size, which makes the average division size independent of the birth size as well as the other elements in the size
history. Thus, if size control becomes closer to sizer, the best statistical model is the history-independent iid model
that faithfully reproduce the variation of division size around the threshold size.

To order to confirm this, we make a weak-sizer model where the added size weakly depends on the birth size and
is generated in a probabilistic manner (Fig. 8 and section 2 in the supplementary material). Here, we assume that
the birth size is given by a perfect binary division lib = li−1d /2, and the division size is given by lid = lib + ∆i, where
the added size ∆i is a realization drawn from a normal distribution with the mean (median) −0.6lb + 800. Here, we
chose the slope −0.6 from Fig. 7D6. With this synthetic data, as shown in Fig. 8C, the NN model reproduces the
division size distribution similar to that in Fig. 7C. Also, the other plots in Fig. 8 perfectly reproduced the assumed
weak-sizer property. Therefore, the NN model can effectively extract the relation between variables hidden by noise
and its correlation among different variables.

V. CONCLUSION AND DISCUSSION

In this work, we have applied the NN method to the problem of cell size control. Our method describes the size
dynamics as a history-dependent temporal point process and models the integral of its intensity function directly by
NNs. It is free from assuming any specific functional shape for the size distribution or its dependence on the past
size history. Thereby, our method enjoys an extremely flexible expressive power, whose performance was confirmed
by using the time-series data of E.coli. and S.pombe.

One notable advantage of this method is that it can automatically separate two factors in size determination: one
is the history-dependent deterministic size control; the other is the stochastic component which cannot be explained
only by the size history. From the former factor, we confirmed that the size control can be well approximated as
Markovian, which supports the general assumption, presumed in previous modeling, that the birth size is essential for
the next division size. From the latter factor, we can know that there still remains a large stochastic component that
cannot be explained only by the information of past size, no matter how far back the history is considered. The result
implies that the division is determined not only by size but with the interference of other processes in self-replication
of a cell.

If we have a substantial portion of stochasticity, which cannot be explained by past sizes, it hampers the discovery
of unknown relations from data by abduction[12, 28]. The NN method flexibly represents the stochaticity in data in
the form of a probability distribution and its typical behavior as its representative value. This representation allows
us to find underlying relationships between variables that are difficult to capture clearly in the conventional scatter
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plotting or binning of data. The size control relations obtained by NN are consistent with the adder model of E.coli
and capture the sizer aspect in Spombe.

These results demonstrate that the NN mehod is an extremely powerful tool to semi-automatically separate deter-
ministic and stochastic factors from measured data, and it can develop further as an alternative to the conventional
modeling method by abduction.

The NN model we used was originally developed for history-dependent time point processes[21]. Therefore, the
present method is also directly applicable to cell cycle duration, i.e., division interval. The division interval is another
phenotypic variable influenced by and interfering with cell-size control. Similarly to size, the division intervals of
mother and daughter cells shows correlations. While models of cell-size control typically predict negative correlations[1,
16], the correlation of division intervals can be positive in a subset of bacterial experiments and most observations
of mammalian cells[29]. The positive correlation suggests that the division interval is a heritable quantity over
generations, whose dynamics was recently inferred as a latent state dynamics from cellular lineage trees[30]. The NN
method we employed may contribute to disentangling the relation between cell size and division interval.

In addition, we may extend its architecture to incorporate cell size, division interval, and also other variables such
as gene expression as a multidimensional history. The flexible expression power of the NN method is indispensable
for elucidating the complicated mechanisms of cell division where various factors are involved. However, we should
mention that, when we incorporate multiple factors, the problem of causality have to be addressed. In the formulation
of the point process, a division event is the objective variable whereas other variables including past division events
are treated as explanatory variables. When only size is concerned as in this work, the causal relationship between the
objective and explanatory variables is obvious. When other factors are involved, however, the true causal relationship
among them is not known a prior, e.g. we should distinguish whether a high gene expression before division induces
cell division with a long division interval or the long division interval leads the high gene expression. In order to
address such problems, it would be important to develop a NN method that can integrate causal inference, data from
intervention experiments, and other techniques such as the dual reporter system.
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Appendix A: Preparation of data

The birth size lb, division size ld, and division interval τ are defined from the E. coli. data[22] as follows. The data
were recorded every minute, and the division events were indicated by ’division flags’ (1 if division occurred). The
birth size lb is defined by the cell length at which each division occurred, and the division size ld is defined by the
length at the measurement immediately before division. The division interval τ is defined by the time between the
consecutive division flags.

The measurement was conducted for each cell over 70 generations, i.e., 70 lbs, and 69 lds and τs. The data were
combined for all the measured cells in each of the three growth conditions (37◦C, 27◦C, 25◦C) to assure sufficient
training samples for learning. It contains a total of 160, 54 and 65 mother cell lineages at 37◦C, 27◦C and 25◦C,
respectively.

For S. pombe, we used data published in Ref. [8]. The data were recorded every three minutes and contained
millions of time slices. Here, the authors introduced and defined several indices in each time slice to handle the
huge data as follows. See Ref. [8] for further details. The status of a cell (alive or dead) was indicated by an index
’LastIndex’. If the index is 0, the cell was alive. If the index is 1, it survived at the end of the tracking in which an
index ‘NextCell’ was set to 0. If the LastIndex was set to 2 or greater, the cell was dead or disappeared from the
channel. The division events were indicated by indices ’MergeIndex’ and ’NewBornCell’. If the index MergeIndex
was set to 1, the cell would undergo cell division by the next time slice. If the index NewBornCell was set to 1, the
cell divided between the current and the immediately before time slices.

The parameters for S. pombe are defined by monitoring these indices as follows. The birth size lb is defined by
the cell area at which LastIndex ≤ 1 and NewBornCell = 1. The division size ld is defined by the cell area at which
LastIndex ≤ 1 and MergeIndex = 1. The division interval τ is defined by the time between the consecutive realizations
of LastIndex ≤ 1 and MergeIndex = 1. Here, the time is not calculated if the end of tracking occurred (NextCell =
1) between the realizations.
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For each of seven culture conditions with different medium (yeast extract medium [YE] and Edinburgh minimum
medium [EMM]) and temperatures, a time window was introduced in the paper within which stable growth was
achieved (for example, t ≥ 3000(min) in YE conditions). To select the data in the time window, we monitor an index
‘Slice’ in addition to the above indices. For example, the parameters were defined only if the slice i satisfied i ≥ 1000
for YE conditions where the slice i corresponds to t = 3(i− 1) (min).

Appendix B: Training and validation of neural network model

Both for the data of E. coli. and S. pombe, the sequences of the birth size lb and the division size ld were divided
into training and validation data. Unless otherwise mentioned, the first 80% and the last 20% of the sequences were
used for training and validation, respectively. In the training phase, the model parameters were estimated using the
training data. For the optimization, the Adam optimizer with a learning rate of 0.001 was used and the batch size
was 256[31].

We performed the training of lb and ld separately as follows. For the division size ld, the sequences of lb and ld are
formatted into the form of hm in Eq. (1) and (3) for a given length m. To calculate the PDF P (l|hm) of the next
division size of l = ld, the model parameters was estimated by using the collection of sequences hms. In the same
way, the sequences of lb and ld were formatted into the form of gm in Eq. (2) and (4) to calculate the PDF Q(l|gm)
of the birth size lb.

In the validation phase, we evaluated the performance of the trained models, respectively for lb and ld, using the
validation data. For each generation time i, the PDF of the division size ld was calculated from Eq. (9) and scored by
the negative log-likelihood (NLL), − logP (l∗d|hm), for the actual observation l∗d at i. Here, a smaller score indicates a
better predictive performance for the validation data. Finally, the average of NLLs (MNLL) was calculated for lds at
different generations within the validation data. In the same way, the performance was scored for the birth size of lb.

The training and validation of the NN explained above was basically performed using the code provided by Omi
et.al.[21], while necessary modifications were made, in particular, to distinguish hm and gm. The code uses TensorFlow
2.0.0.

Unless otherwise mentioned, the hyperparameters of the NN model are fixed as follows. The length of histories is
m = 10. In the feed-forward network to learn the integral of the intensity function, the number of units in each layer
was 64, and the number of layers was 2. The number of units in RNN to embed the history was fixed to 64.

In order to characterize typical behavior of trained PDFs, we calculated their medians by following Omi et.al.[21].

The median l̃ was calculated by solving Λ(l̃) = log(2), where Λ(l) denotes the integral of the intensity function. We
also calculate the characteristics in size control models as follows: Given the most recent actual birth size lb in the
history hm, the added size is calculated as ∆ = l̃d − lb. The elongation ατ = log(l̃d/lb) is also computed from the
median. Here, we assume the equation ld = lb exp(ατ) because the majority of E. coli. cells elongate exponentially
with time and do not display significant growth rate variations at specific cell stages (see Fig. S16 in the supplementary
materials).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.428011doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.428011


10

C

μ

 1

 10

 0  100  200  300  400  500  600  700  800  900  1000

C
el

l s
iz

e 
(

m
)

Time (min)
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FIG. 4. The conditional probability density functions (PDFs) for (A) birth size Q(l|gm) and (B) division size P (l|hm) of E.
coli at 37◦C, and those for (C) birth size and (D) division size of S. pombe in YE condition at 30◦C. Q(l|gm) and P (l|hm) are
plotted as a function of the most recent size, i.e., ld for Q(l|gm) and lb for P (l|hm). Left panels are 3D plots of the PDFs as
functions of l and the most recent size in the histories. Right panels are the slices of the PDFs for fixed values of the most
recent size. In right panels, the colors of the curves indicate a range of the most recent size. One can see that the sliced PDFs
shift from left to right as the most recent size increases. The history length is set to m = 10.
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size. The identity lines are also shown in blue. (D) All correlations between all pairs of the four parameters, ld, lb, ατ , ∆. Each
density plot shows the correlation between each pair of the parameters calculated from the medians of PDFs. Given the birth
size of lb, the PDF for the division size is used to calculate the division size (ld), elongation ατ = log(ld/lb), and the added
size ∆ = ld − lb. The blue curves indicate the adder model with ∆ = 2.35. The gray empty circles and error bars indicate the
summary statistics of the binned raw data. The circles and bars are the medians in the binned range and their interquartile
range, respectively.
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circles and bars are the medians in the binned range and their interquartile range, respectively.
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FIG. 7. Data for S. pombe in YE condition at 30◦C. (A) Trajectories of the actual birth and division sizes and the medians
of the PDFs obtained by the NN model. (B, C) Density plots of the actual sizes and the medians of the PDFs for (B) birth
size and for (C) division size. The identity lines are also shown in blue. (D) All correlations between all pairs of the three
parameters, ld, lb, ∆. Each density plot shows the correlation between each pair of the parameters calculated from the medians
of PDFs. Given the birth size of lb, the PDF for the division size is used to calculate the division size (ld) and the added size
∆ = ld − lb. The blue lines indicate ∆ = −0.6lb + 310. The gray empty circles and error bars indicate the summary statistics
of the binned raw data. The circles and bars are the medians in the binned range and their interquartile range, respectively.
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FIG. 8. Data for synthetic data of the weak sizer model. The alternating sequence of lb and ld is synthesized as follows. For
the birth size, a perfect binary division is assumed so that lib = 0.5li−1

d , where the superscript denotes the generation. For the
division size lid = lib + ∆i, the added size is drawn from the normal distribution N(µ, σ2) with µ = −0.6lib + 800 and σ = 200.
(A) Trajectories of the actual birth and division sizes and the medians of the PDFs obtained by the NN model. (B, C) Density
plots of the actual sizes and the medians of the PDFs for (B) birth size and for (C) division size. The identity lines are also
shown in blue. (D) All correlations between all pairs of the three parameters, ld, lb, ∆. Each density plot shows the correlation
between each pair of the parameters calculated from the medians of PDFs. Given the birth size of lb, the PDF for the division
size is used to calculate the division size (ld) and the added size ∆ = ld − lb. The blue lines indicate the weak sizer model with
µ = −0.6lb + 800. The gray empty circles and error bars indicate the summary statistics of the binned raw data. The circles
and bars are the medians in the binned range and their interquartile range, respectively.
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