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Abstract 

Recent resting-state fMRI studies have shown that brain activity exhibits temporal variations in functional 

connectivity by using various approaches including sliding window correlation, co-activation patterns, independent 

component analysis, quasi-periodic patterns, and hidden Markov models. These methods often model the brain activity 

as a discretized hopping among several brain states that are defined by the spatial configurations of network activity. 

However, the discretized states are merely a simplification of what is likely to be a continuous process, where each 

network evolves over time following its unique path. To model these characteristic spatiotemporal trajectories, we trained 

a variational autoencoder using rs-fMRI data and evaluated the spatiotemporal features of the latent variables obtained 

from the trained networks. Our results suggest that there are a relatively small number of approximately orthogonal 

whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can serve as the 

building blocks to construct all possible spatiotemporal dynamics in resting state fMRI. These spatiotemporal patterns 

provide insight into how activity flows across the brain in concordance with known network structures and functional 

connectivity gradients. 

1 Introductions 

In resting state fMRI (rs-fMRI), the blood oxygenation level-dependent (BOLD) signal is acquired in the absence of an 

explicit task or stimulation (Biswal et al., 1995; Ogawa et al., 1992). Networks of spatially distributed brain regions whose 

time courses are correlated, referred to as “resting state networks” (RSN) (Cordes et al., 2000; Damoiseaux et al., 2006; Fox 

et al., 2006; Fox and Raichle, 2007; Ghahremani et al., 2016; Greicius et al., 2003; Hampson et al., 2002; Power et al., 2011; 

Smith et al., 2009), can be reliably observed under numerous conditions and serve as the foundation of our knowledge of 

the brain’s functional architecture. Recent studies have revealed that these large-scale patterns of brain activity exhibit 

temporal variations at relatively fast time-scales (seconds-minutes) (Allen et al., 2014; Chang and Glover, 2010; Handwerker 

et al., 2012; Jones et al., 2012a; Keilholz et al., 2013; Kiviniemi et al., 2011; Majeed et al., 2011; Sakoğ lu et al., 2010), and that 

these dynamics are sensitive to changes related to behavior, cognition (Albert et al., 2009; Bassett et al., 2011; Esposito et 

al., 2006; Fornito et al., 2012; Thompson et al., 2013), and pathology (Damaraju et al., 2014; Hamilton et al., 2011; Jones et 

al., 2012a). A number of techniques have been used to characterize the time-varying patterns of activity, including sliding 

window correlation (SWC) (Allen et al., 2014; Chang and Glover, 2010; Handwerker et al., 2012; Jones et al., 2012a; Keilholz 

et al., 2013; Kiviniemi et al., 2011), co-activation patterns (CAPs) (Liu and Duyn, 2013; Tagliazucchi et al., 2012), Independent 

component analysis (ICA) (Allen et al., 2014; Damaraju et al., 2014; Kiviniemi et al., 2011) and hidden Markov models 

(HMM) (Vidaurre et al., 2017). However, most of these methods consider spatial and temporal information separately, when 

in reality the temporal and spatial aspects of brain activity are intricately related. Brain activity has often been modeled as a 

discretized hopping among several brain states that are defined by the spatial configurations of network activity. However, 

the discretized states are merely a simplification of what is likely to be a continuous process, where each network evolves 

over time following its unique path. In this case, the presence of stereotyped pathways of evolution between states that 

manifest as characteristic spatiotemporal trajectories in the rs-fMRI data would provide new insight into the systems-level 

coordination of brain function. 

At least one characteristic spatiotemporal trajectory has already been observed using a recursive algorithm. The 

resulting quasi-periodic patterns (QPPs) revealed highly reproducible spatiotemporal trajectories showing sinusoidal 
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patterns of activation and deactivation in the default mode network (DMN) and task positive network (TPN) with opposite 

phases (Abbas et al., 2019; Yousefi et al., 2018), along with propagation along the cortex. Despite these successes, the 

primary QPP only explains 25-50% of the variance in the BOLD signal (Hutchison et al., 2013), suggesting that there is still a 

large portion of the signal not accounted for, and there are potentially other spatiotemporal trajectories not yet identified. 

An effort has been made to identify these secondary components by performing QPP analysis again after regressing out 

the primary QPP component (Belloy et al., 2018). These secondary QPPs have demonstrated distinct spatiotemporal patterns 

that are different from the primary ones, however the number of additional components identified was limited to three. To 

date there has not been an exhaustive search for all possible characteristic spatiotemporal trajectories, potentially due to 

difficulties from the computational complexities, as well as the reduced robustness and interpretability after the repeated 

calculation of regression and convolution.  

Deep learning methods could potentially solve this problem because they are inherently designed to extract key 

information or characteristic patterns from very complicated systems in a data-driven way. Convolutional neural networks 

(CNN), in particular,) have proven very successful at extracting spatial features from images, e.g. AlexNet (Krizhevsky et al., 

2017) and GoogLeNet (Szegedy et al., 2015), and there are also studies using convolutional neural networks to extract 

temporal features from time series, e.g. applications in natural language processing (Gehring et al., 2017; Kalchbrenner et 

al., 2014; Kim, 2014) where the convolutional kernel was shown to be capable of extracting the features from the ordering 

of words in a sentence. In a more generic setting, (Bai et al., 2018) has shown that the CNN is capable of learning the 

temporal structures of time series in various tasks. Therefore, supposing there is a specific spatiotemporal property 

attributable to intrinsic brain dynamics, presumably it would be captured by a CNN as well. 

As of today there are relative few studies in resting state fMRI that use deep learning methods, most of which focus on 

classification problems, e.g., classification of Alzheimer’s disease (Sarraf and Tofighi, 2017), mild cognitive impairment (MCI) 

(Meszlényi et al., 2017; Suk et al., 2016) and ADHD (Mao et al., 2019). A few studies attempt to extract features in the fMRI 

data. For example, Huang et al. (2018) used a convolutional autoencoder to extract temporal features from task-fMRI data, 

which describes variations in the hemodynamic response function (HRF). Hu et al. (2018) trained a restricted Boltzmann 

machine using task-fMRI data, which was claimed to outperform ICA in terms of higher temporal correlation with task 

paradigms, and greater spatial overlap with the general linear model. Despite deep learning’s great potential, none of the 

existing studies is designed to detect characteristic spatiotemporal brain trajectories. 

 We designed a deep learning method specifically to extract characteristic spatiotemporal trajectories from rs-fMRI 

time courses. Specifically, a variational autoencoder (VAE) was trained to identify a relatively small number of approximately 

orthogonal whole-brain spatiotemporal patterns that capture the most prominent features of rs-fMRI data. The resulting 

latent variables show that characteristic brain trajectories (beyond the QPP) exist and provide insight into how activity flows 

across the brain in concordance with known network structures and functional connectivity gradients. 

2 Methods 

2.1 fMRI data preprocessing 

The minimally processed rs-fMRI data from the 412 subjects with “study completion: full 3T imaging protocol 

completed” label was downloaded from the HCP S500 release (Glasser et al., 2013). The resting-state fMRI data were 

acquired using Gradient-echo EPI with the following parameters: TR/TE = 720ms/33.1ms, resolution = 2.0mm isotropic, 

matrix size = 104x90, number of slice = 72, numer of TR = 1200. Further preprocessing included the following procedures: 

The first 5 frames were removed to minimize the transient effects before reaching equilibrium. Gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) signal were averaged within their masks provided by HCP. Then GM, WM, and 

CSF signals, along with 12 motion parameters (provided by HCP), linear and quadratic trends were regressed out altogether 

at the voxel level. The regressed BOLD signals were then bandpass filtered using a 0.01-0.1Hz 6-order Butterworth filter, 

and spatially smoothed using a Gaussian kernel with FWHM = 4mm. Finally the BOLD signals were parcellated using the 

Brainnetome atlas (Fan et al., 2016) and each parcel was z-scored. The final parcellated BOLD signal has 412 subjects by 
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1195 time points by 246 parcels. For better visualization, the 246 parcels were then sorted into 7 functional networks using 

Yeo’s 7-network model (Thomas Yeo et al., 2011) provided by the Brainnetome website, namely default mode (DMN), visual 

(VIS), somatomotor (SM), dorsal attention (DA), ventral attention (VA), frontalparietal (FP) and limbic (LIM) networks, with 

the remaining parcels all classified as subcortical regions (SC). 

2.2 Variational Autoencoder 

An autoencoder is a type of neural network used to learn efficient data representation in an unsupervised manner. It 

typically consists of an encoder network that gradually reduces dimensions, and a symmetric decoder network that recovers 

the dimensions. In this case, the output of the encoder has the lowest dimensionality in the entire network, and thus is a 

bottleneck of the information, which forces the network to extract features that most represent the data structure, since any 

reconstruction error is penalized.  

To improve generalizability, a variant of the autoencoder architecture called a variational autoencoder (VAE) includes 

a random sampling process (Kingma and Welling, 2014). The model learns the distributions of the latent variables (by 

learning means and variances), instead of learning a deterministic mapping. A random sample is drawn from the 

distributions for every data point passing through the latent layer. The calculation of the loss function involved in this process 

and how it is back propagated to update the parameters in the networks was described in the original VAE paper (Kingma 

and Welling, 2014). To summarize, the loss function that corresponds to the randomization process is the Kullback-Leibler 

(KL) divergence, which has a closed form when the prior distribution is assumed to be Gaussian. Thus, by minimizing the 

sum of the reconstruction loss and the KL divergence, the latent variable not only learns the most representative features 

in the dataset, but also becomes as close to a multidimensional standard Gaussian distribution (all components are 

independent, zero-mean, unit-variance) as possible. This tendency to approach Gaussian distribution serves as a 

regularization effect, which leads to a smoother latent distribution compared to the plain autoencoder, and thus improves 

the generalizability of the model. The VAE model essentially assumes that if the network is deep enough (having enough 

expressive power), then any complicated system can be mapped to a series of disentangled Gaussian-distributed variables.  

2.3 Convolutional Variational Autoencoder Design 

With the goal of extracting common spatiotemporal trajectories in brain activities, we chose to feed the neural network 

with short rs-fMRI segments instead of single frames. Each rs-fMRI scan (1195 TR) was divided into 36 segments that are 

33-TR long (23.76sec), with 50% overlap. The 33-TR segment length was chosen based on prior work identifying a strong 

spatiotemporal pattern with a duration of ~20s (Majeed et al., 2011). Based on the assumption that the rules governing the 

network dynamics are shift-invariant across time, convolutional layers were used in the first few layers instead of fully 

connected layers. As suggested by (Lecun et al., 1998), the parameter sharing in the convolutional layer greatly reduces the 

number of parameters in the model, thus improves its generalizability. Instead of using the common 2D convolutional kernel, 

here we used a 1D convolutional kernel that applies only to the temporal dimension, because the fMRI signal in the 

parcellated space is not shift-invariant across different parcels in the spatial domain.  

This neural network architecture is shown in figure 1. The network consists of a symmetric encoder and decoder pair, 

either of which has 3 convolutional layers and 2 fully-connected layers. Each convolutional/fully-connected layer consists 

of a weight layer and a Rectified Linear Unit (ReLU) activation layer. The performance of other 4 alternative network designs 

with different number of layers or different number of hidden units was evaluated using holdout validation (the results are 

shown in supplemental materials section S.1) and the architecture shown in figure 1 showed the best performance. The 

encoder encodes the input rs-fMRI segments of size 246 parcels by 33 time points into a 32x1 latent representation that 

roughly follows a multidimensional Gaussian distribution. The distributions of the latent variables were represented in means 

and variances that are estimated by the networks. Then during training, a sample was randomly drawn from this distribution 

whenever a data point arrives at the latent layer. This random process is a key feature in variational autoencoder, which 

improves its robustness and generalizability. Then the decoder performs a series of reverse operations (dilated convolution 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.427841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.427841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

 

being the reverse operation of convolution) to reconstruct rs-fMRI segments from the 32x1 latent representation. 

2.4 Training and testing of the model 

The 412 subjects were randomly split into a training set (n=248), a validation set (n=82) and a testing set (n=82). Then the 

segments were shuffled, resulting a training set with size of [248x36,246,33], a validation set and a testing set both with size 

of [82x36,246,33]. To make the model more regularized, we used a variant of VAE called beta-VAE (Higgins et al., 2017), 

whose loss function is the sum of reconstruction loss (root mean square error between input and output) and the K-L 

divergence loss weighted by a factor beta (beta=4). Large beta values increase the penalty for KL-divergence and therefore 

the model is more regularized (variables become closer to orthogonal). As proposed in the original beta-VAE paper, as well 

as confirmed in our experiments (shown in supplemental materials section S.2), beta = 4 gives a reasonable result that 

appear to be more robust and regularized than a regular VAE (a special case where beta = 1). The networks were trained 

on a Nvidia GTX2080Ti GPU using Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001 for 90 epochs. To 

validate the model, we used the rs-fMRI segments from the testing set as the input and compared the rs-fMRI segments 

reconstructed by the networks with the input. The reconstruction provides a qualitative assessment of how much 

information is preserved by the latent representation.  

 

Figure 1. The architecture of the networks. The networks consist of a symmetric encoder and decoder, both having 3 

convolutional or dilated convolutional layers, and 2 fully connected layers. The encoder encodes rs-fMRI segments of size 

246x33 into 32x1 latent variables that follow Gaussian distributions, whose mean and variance were estimated by the 

network. Then a sample is randomly drawn from the distribution, which is then propagated through the decoder to 

reconstruct back to rs-fMRI segments. 

2.5 Feature Visualization of the Latent Variables 

Neural networks are often described as “black boxes” and it is not uncommon to see difficulties in interpreting why 

they perform well over a particular task. There are a few methods for visualizing features learned by the networks that can  

help interpret the results, including saliency maps and class visualization (Simonyan et al., 2014), although these methods 
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are typically used for classifiers. Thanks to its Gaussian-distributed latent variables and its symmetric encoder-decoder 

design, there is one visualization method exclusive to variational autoencoder. The latent variables are disentangled, 

because penalizing the KL divergence leads to a multidimensional Gaussian distribution where all components are 

independent from each other. This means that the effect of each latent variable is isolated, thus can be visualized by 

propagating a perturbation of such latent variable though the decoder. In addition, this effect on the reconstructed rs-fMRI 

segments by the decoder, should ideally be the same spatial temporal pattern that will activate the corresponding latent 

variable when passing through the encoder. Using this method, we vary each of the 32 latent variables from -3 to +3 (since 

99.7% of the data lies in the ±3 sigma range of a Gaussian distribution) with 500 increment steps, and observe how the rs- 

rs-fMRI segments reconstructed by the decoder vary. This process returns a 4D vector (500 increments, 246 parcels, 33 time 

points, 32 latent variables), which can be visualized if one dimension is fixed. By fixing the perturbation at its maximum 

amplitude, we obtained a set of 32 spatiotemporal patterns or trajectories of brain activities that can activate their 

corresponding latent variables, which is shown in figure 2. 

2.6 Grouping of the Latent Variables Based on Their Spatial Similarity 

These 32 spatiotemporal patterns exhibit a few common spatial configurations which show synchronized fluctuations. 

Thus the 32 latent dimensions can be further organized into several groups based on their similarity in the spatial domain. 

To do that, first the time points when the fMRI time course reaches maximum variance across spatial dimensions were 

extracted (shown with black cursors in figure 2). The spatial profiles (as a function of latent variable) at the max-variance 

time points of the 32 latent variables were compared with each other and reorganized into several groups using K-means 

clustering (with spatial similarity calculated with Pearson correlation being the clustering criteria, and k empirically chosen 

as 6).  

Then clusters were sorted in descending order by the variance explained by each latent variable (calculated as the 

variance across time domain, which was then summed over 246 parcels). The variance of individual latent variables within 

a cluster is also in descending order for better visualization. Aside from the spatial profiles, the functional connectivity of 

each latent variable’s spatiotemporal pattern was calculated. The weighted average (weighted by the variance of the latent 

variable) functional connectivity within each cluster was shown to provide an alternative representation of the spatial 

configurations among major functional networks of the 6 clusters. 

2.7 Comparison with the Primary QPP 

The latent variables of the trained networks capture spatiotemporal trajectories of the brain, in a manner similar to the 

QPPs. Thus the features of latent variable 1, whose variance is the highest, was compared with the primary QPP. The primary 

QPP was calculated from the same testing set (n=82) with the Brainnetome parcellation, using the existing Matlab code for 

calculating QPPs published in (Yousefi et al., 2018).  

3 Results 

3.1 The convolutional VAE decomposes rs-fMRI segments into a weighted combination of spatiotemporal 

patterns  

The trained convolutional VAE learns to represent any rs-fMRI segments using the 32 latent variables. To visualize the 

latent variables, we used the method described in section 2.5. Figure 2 shows a set of 32 spatiotemporal trajectories of brain 

activity that can activate their corresponding latent variables. This set of spatiotemporal patterns were learnt to be the most 

representative features existing in short rs-fMRI segments, and any given rs-fMRI segment can be expressed by a weighted 

sum of these orthogonal spatiotemporal patterns, with the weights being the values of latent variables for that particular 

rs-fMRI segment. Note that each cluster of the spatiotemporal trajectories shares a common spatial network configuration 

(which can also be seen in the clusters in figure 3), while each individual latent variable within a given cluster describes a 

unique evolution of activity for that particular network configuration. These latent variables are organized into 6 groups 

based on their spatial configurations using the method described in section 2.6. It can be seen that each cluster shares a 
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common spatial organization of connectivity. For example, all 6 of the latent variables in the first cluster exhibit the 

anticorrelated DMN-TPN network configuration. All 32 spatiotemporal patterns share the same display scale, thus higher 

contrast suggests higher variance explained and presumably greater importance of the latent variable.  

 

Figure 2. Spatiotemporal patterns extracted by latent variables. Each subplot is obtained by making one latent variable 

equal to +3 (corresponding to +3σ for a Gaussian distribution) while fixing the rest of the latent variables at zero. The x-

axis is time in seconds. The y-axis is the 246 parcels. The patterns have arbitrary units, but all subplots share the same 

display scale so that higher variance results in higher contrast. The 32 latent variables are already organized in 6 clusters 

(see their spatial configurations in figure 3). The black cursor indicates the time of maximum spatial variance across parcels. 

 

3.2 The 32 latent dimensions can be further clustered based on their spatial similarity. 

To better illustrate the common spatial configurations shared by the latent variables, here we leave out the temporal 

dimension by focusing on the time point when the fMRI time course reaches maximum variance across spatial dimensions, 

as described in section 2.6. The spatial configurations at this timepoint are shown for each variable in each cluster in Figure 

2, accompanied by a matrix of the spatial similarity (Pearson correlation) between the spatial configurations that clearly 

shows the division into six distinct groups. The weighted averaged functional connectivity for each group is also shown to 

provide an alternative representation of the spatial configurations, and the variance explained for each latent variable i s 

given. 

It can be seen in figure 3 panel A that, within the primary cluster, whose mean variance is the highest, the spatial profile 

of every latent dimension at the max-variance time has the DM, FP and LIM network on one end, and VIS, SM, DA and VA 

networks on the opposite end. Although this max-variance time only gives a snapshot of this opposing relationship, such 

contrast can be seen throughout the course of the trajectories (both shown in the time courses in figure 2, and the functional 

connectivity in figure 3 panel C). This finding is in agreement with many previous studies, including the DMN/TPN 

anticorrelation found in (Fox et al., 2005), quasiperiodic patterns (Majeed et al., 2011) and principal functional connectivity 

gradients (Margulies et al., 2016). The latent variables in the primary cluster all show that the DMN and TPN have a few 

components (with very high variance) with opposite phase at almost every instantaneous moment, suggesting this is the 

most prominent feature existing in resting state fMRI, which is likely the reason why we can see a consistent anti-correlation 

between the two networks.  
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Figure 3. The latent dimensions can be organized into 6 clusters (shown in rows) based on their spatial similarities. 

Panel A shows how the spatial profile at the max-variance time (in figure 2) changes when sliding a single latent variable 

from -3 to +3. Panel B shows the spatial similarities among latent variables at the max-variance time, measured by Pearson 

correlation between the spatial profiles. The latent variables were then clustered using K-means clustering using the spatial 

similarity as the clustering criteria (K = 6). The cluster label index and the variance explained are also shown. Panel C shows 

the weighted mean functional connectivity of each cluster of latent variables over the 33-TR window. 

 

The secondary cluster, which has the second highest variance, also has an interesting feature that further separates 

different networks within the task positive network. At the max-variance time, it can be seen from figure 3 panel A that, 

every latent variable in cluster 2 has the negative end corresponding to the activation of VIS and DA networks, and the 

positive end corresponding to the activation of SM and VA networks. These together with the primary cluster, exhibit a 
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remarkable resemblance to the principal gradients. The principal gradients are obtained using a method called diffusion 

embedding, which maps brain regions into an embedded space, where strongly connected points are closely spaced while 

loosely connected points are far apart. It was reported that in principle gradient 1, the transmodal DMN regions are 

anchored at one end and the unimodal visual, somatosensory/motor regions are at the other end, whereas in principle 

gradient 2, the visual networks are at one end and the somatosensory/motor regions are on the opposite end. This close 

resemblance between latent variables and principal gradients provides evidence that the network configurations based on 

the connectivity geometry revealed by the principal gradients closely reflects the instantaneous network activity 

demonstrated by the VAE. 

3.3 The primary latent dimension shows a spatial-temporal pattern very similar to the QPP.  

It can be seen from figure 2 that the first latent dimension (which has the highest variance) encodes a spatiotemporal 

pattern that shows one cycle of anti-correlated activities between DMN and TPN over a 24 second time window. This 

spatiotemporal feature is very similar to the primary QPP except having opposite phase (the phase in figure 4 is already 

reversed for better comparison with QPP). The network is trained with randomly initialized weights, which leads to random 

polarity of latent variables for every training trial. Thus, the polarity can be ignored and the latent variable 1 and the primary 

QPP essentially extracted very similar information. This similarity makes sense because QPP averages the time points that 

have the most prominent correlation with the template, thus reinforcing itself over multiple iterations, and extracting the 

most prominent, reoccurring spatial temporal features. It is not surprising that such spatial temporal features have the most 

variance and thus were picked up by the variational autoencoder as the first latent dimension.  

 

 

Figure 4. Spatial temporal features represented by latent variable 1 (panel A), the primary QPP (panel B) and their 

difference. Both the latent feature and the QPP were divided by their 98th percentile to normalize. It can be seen that the 

spatial temporal features represented by latent variable 1 are very similar to the primary QPP (Pearson correlation coefficient 

= 0.759), but there are also some differences, most notably in the strength of frontoparietal involvement and near transitions 

between positive and negative activation in the somatomotor network. 

 

Aside from the first latent dimension, there are also 5 other latent dimensions in the primary cluster that share very 

similar spatial distributions, but differ in frequency and phase. To better visualize these differences among the timings of 

the latent variables, the latent features from a region of interest (ROI) in the SM was shown as a function of both the value 

of latent variable and time in figure 5. Specifically, these latent variables with smaller variance tend to have higher 

frequencies. These spatiotemporal trajectories have not been previously reported, probably because their variance is 

relatively small compared to the primary component. On top of this, the VAE also identifies 5 other clusters of latent variables 

that have different spatial configurations. In the traditional QPP calculations, these features may have been canceled out 

with each other during the averaging process. 
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Figure 5. Temporal patterns extracted by latent dimensions. Each subplot shows the temporal pattern from a latent 

variable obtained by averaging 5 parcels in the SM network (96th parcel to 100th parcel, all in the Postcentral Gyrus). The 

x-axis is time in seconds. The y-axis is the value of the latent variable, sliding from -3 to +3. 

3.4 Reconstruction of rs-fMRI segments in the testing set 

Figure 6 shows the reconstruction of the rs-fMRI segments and the corresponding weights of latent variables. This 

reconstruction provides a qualitative assessment of how much information is lost during the encoding-decoding process. 

Although it is not a perfect match, most of the timing and the amplitude information is captured, especially for fluctuations 

with high amplitudes. It is worth mentioning that each rs-fMRI segment has 246 parcels and 33 time points, while the 

encoded representation only has 32 variables, which is around 1/250 of the original size. This fairly good quality of 

reconstruction despite such a high compression rate suggests that the original parcellated rs-fMRI data is actually quite 

redundant, which is potentially due to the fact that many parcels coactivate with each other, while others may show 

anticorrelations. This interlinked relationship among different brain regions greatly reduces the degree of freedom in the 

system. Thus, the proposed VAE extracts a set of orthogonal bases that accounts for most of the degree of freedom (that 

have the highest variances), which creates a parsimonious representation of brain activity that reveals such relationships 

among brain regions. 

4 Discussions 

4.1 Innovativeness of the method 

We demonstrated a new method to study the intrinsic features in resting-state fMRI using a convolutional variational 

autoencoder. This particular architecture has never been used to characterize rs-fMRI, although there have been a few 

applications in other fields that have similar convolutional VAE architectures. For example, (Kulkarni et al., 2015) used a 2-

D convolutional variational autoencoder to learn intrinsic spatial patterns from images. The features of the network 

architecture that we developed (namely the autoencoder design, the variational approach and the 1-D convolutional layers) 

have many advantages for studying rs-fMRI temporal dynamics.  
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Figure 6. A fMRI segment can be encoded as a 32-dimensional code. Panel A shows 20 concatenated original rs-fMRI 

segments. Panel B shows the reconstructed rs-fMRI segments. Panel C and D show the values of latent variables in the 

primary cluster and secondary cluster, respectively. The remaining 4 clusters were not shown. 

 

Firstly, the proposed method provides a parsimonious representation of brain activity by condensing it into a few highly 

representative components, without losing too much information. Each “brain state”, which is the collection of activity across 

the entire brain at any given time, can be represented as a point in a hyperplane. This brain state representation tends to 

be very high-dimensional. For example, the 2mm volumetric HCP data has 91x109x91=902,629 voxels, and even the greatly 

downsampled data examined here after parcellation with the BN atlas has 246 parcels. Extremely high-dimensional data is 

very sparse and hard to generalize, which is also known as the “curse of dimensionality” (Bellman, 1952). Thus, this high-

dimensional definition of brain states, is overly complicated and redundant, because the many resting state networks are 

spatially organized, and the temporal dynamics involved may also be governed by certain rules. The “true” brain state vector 

may live in a much lower dimension space, which is what the VAE is designed to capture. The parsimonious representation 
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of brain activity (using a 32-component vector to represent the brain state dynamics contained in a 246 parcels by 33 time 

points matrix) captures the most distinctive and prominent common trajectories that can serve as the building blocks to 

construct all possible spatiotemporal dynamics in resting state fMRI. This provides insight into both the spatial organization 

of the networks, and the characteristic dynamics for those networks. The variational approach (which includes random 

sampling and penalizing KL divergence) has forced the latent components to be nearly orthogonal to each other, which 

have helped to create a robust and unique decomposition of the brain activity and make the latent variables easier to 

interpret since they are disentangled.  

Secondly, the use of 1-D convolutional layers has taken the structure along temporal dimension into consideration, 

which enables the method to simultaneously extract not only spatial patterns, but also their temporal dynamics. As discussed 

later, most analysis methods consider spatial information and temporal information independently. The learned latent 

representations were grouped into a few clusters that show similar spatial configurations that are in agreement with the 

anticorrelated DMN-TPN and principal gradients. Moreover, the temporal dynamics within these spatial configurations were 

also provided in the form of a few orthogonal components, where the one with the highest variance closely resembles the 

primary QPP, while the others show temporal structures that were previously extensively reported in the past.   

Thirdly, as a deep learning method, this method makes minimal assumptions about rs-fMRI. The use of 1-D 

convolutional kernel implies that the rule governing the temporal dynamics is shift-invariant along time and is applicable 

to all subjects, which is a reasonable assumption to make if the goal is to find common spatiotemporal features that exist 

across subjects. Other than that, the neural network itself does not make any other assumptions about rs-fMRI. It is a data-

driven approach that aims to extract the most common and most prominent features existing in rs-fMRI with no prior 

knowledge that could potentially bias the results. 

4.2 Comparison with existing methods 

While there is no existing method that strictly focuses on the same goal as the proposed method, many other methods 

are conceptually related, and the spatial configurations obtained by the proposed method can be compared with existing 

methods. In this section we compare the results from our VAE approach to other existing methods for rs-fMRI analysis, 

including principal component analysis (PCA), principal gradients, QPP, SWC, ICA, CAP and HMM. 

4.2.1 Relation to principal component analysis (PCA) 

PCA and the VAE used for this study share some similarities. Both methods identify orthogonal bases for the original 

data and can achieve dimensionality reduction by selecting a few components that explain the most variance. In fact, a two-

layer VAE with a linear activation function produces almost identical results to PCA, because both methods aim to create a 

linear projection of the data to an orthogonal space (Plaut, 2018). In our VAE, there are 10 layers in total, making the VAE 

capable of creating a much more nonlinear mapping that might capture features that would not be found in a linear 

mapping. On top of that, the proposed VAE has three 1-D convolutional layers to extract characteristic temporal dynamics, 

which are not captured by PCA. Thus the latent variables in our model captures spatiotemporal dynamics, whereas the 

traditional PCA often gives eigenvectors in the spatial domain, e.g. (Leonardi et al., 2013). 

4.2.2 Relation to diffusion embedding (principal functional connectivity gradients) 

Principal functional connectivity gradients were described using a method called diffusion embedding, which 

nonlinearly maps brain region into an embedded hyperplane, where strongly connected points are close whereas loosely 

connected points are far apart (Margulies et al., 2016). The “gradients” that define the hyperplane reveal connectivity 

patterns over space. Like PCA, diffusion embedding provides information about connectivity geometry, but loses temporal 

information, whereas the proposed VAE provides a set of spatiotemporal patterns that demonstrate clusters of spatial 

organization while also providing information about characteristic temporal dynamics.  

Because diffusion embedding and the VAE method emphasize different features of the rs-fMRI data, they are 

complementary to each other. The principal gradient is able to differentiate several networks along the gradient (e.g. DMN-

FP-DA-VIS) whereas the variational autoencoder can only provide coarse locations (DMN and FP on one end, and DA, VA, 

VIS, SM on the other end). The VAE however, is also capable of showing temporal features and considers both the dynamics 
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involved in brain activity and the interactions among brain regions, which the principle gradient lacks. Thus, they bring 

insights into different aspects of the same complicated brain system. The fact that the first two clusters of latent variables 

in VAE and the first two principal gradients show a consistent DMN versus TPN along the primary axis, and VIS versus SM, 

as well as DA versus VA along the secondary axis, is a reassuring indication of the consistency of the two approaches. 

4.2.3 Relation to QPP regression 

The spatiotemporal feature that would activate latent variable 1 is very similar to the spatiotemporal patterns found in 

the primary QPP, specifically a sinusoidal wave-like fluctuation showing anti-correlation between the DMN and TPN, as 

shown in figure 4. The QPP picks up the most prominent feature in rs-fMRI because it iteratively averages the time points 

that have the highest correlation with the template to update the template, so it makes sense for such a feature to capture 

the largest portion of the variance. Aside from the primary QPP, a set of secondary QPPs have been obtained from mouse 

(Belloy et al., 2018) and human (Yousefi and Keilholz, 2020) resting-state fMRI data, by recursively regressing out QPP 

components. QPP regression is similar to the VAE method in that they both extract components that are independent to 

each other, and they both capture reoccurring spatiotemporal patterns. However, QPP regression was often done only for 

the first few components, without an exhaustive search for all possible components, perhaps because of the decreased 

robustness involved in the recursive convolution and regression, as well as the increased computational cost. The VAE 

method, however, gives an overview of all spatiotemporal patterns at the same time. 

4.2.4 Relation to sliding window correlation (SWC).  

The proposed VAE was trained with short rs-fMRI segments of approximately 24 seconds in length. Although during 

training the rs-fMRI segments were shuffled, during testing (shown in figure 6) there was no shuffling, and the rs-fMRI time 

course was essentially transformed into latent representations using a 24-second, 50%-overlapping sliding windows, in a 

manner similar to the sliding window correlation method. However, for the VAE approach, the windows are used to train 

32 latent variables which capture the spatiotemporal dynamics, while for sliding window correlation, dynamics are 

represented by the time varying correlation values. K-means clustering is applied for both approaches. For the VAE, 

clustering is used to group latent variables by their spatial similarity. For SWC, however, clustering the time-varying 

correlation is the basis for “brain states” that can be defined for each time window in the scan. Since the VAE requires 

components to be nearly independent of each other, the resulting clusters are more unique and clearly defined, whereas 

in SWC, the clusters seem to have more ambiguities because different components can mix and the long window (typically 

around 1~2 minutes) used for correlation can obscure short-term dynamics. For example, in (Allen et al., 2014) it was shown 

that the brain exhibits 7 states with connectivity patterns using a SWC method, among which states 2-7 all show notable 

anticorrelation between default-mode regions and sensory systems, with some variations (e.g.,. state 5 and 6 separates 

posterior DM nodes (precuneus and PCC) from anterior and lateral parietal regions; state 6 and 7 shows positive correlation 

between DM and SM area, and negative correlation between SM and VIS regions). These effects manifest as a slight 

deviation from the average functional connectivity, whereas in our VAE method, such separations are much more clearly 

defined, e.g. SM versus VIS in cluster 2, and posterior DM regions versus anterior and lateral parietal DM regions in cluster 

2 and cluster 4.  

4.2.5 Relation to independent component analysis (ICA) 

The proposed method also has some similarities to ICA, another popular method for dimensionality reduction. Though 

both methods try to decompose the rs-fMRI signal into independent components, the approaches they take are different. 

ICA can be used to discover either spatially or temporally independent components. Most rs-fMRI studies use a spatial ICA 

(sICA) approach to find spatial components that are maximally independent in space (Calhoun et al., 2009). It is typically 

applied as one step in the preprocessing to create a “functional parcellation”, which is also known as intrinsic connectivity 

networks (ICNs), and is often applied in conjunction with further analysis methods like SWC, e.g. (Allen et al., 2014). ICA 

seeks to create a matrix decomposition of the entire rs-fMRI dataset, where one matrix represents spatially independent 

networks and the other represent the time courses of the signals from different sources. The proposed VAE, on the other 

hand, is trying to find characteristic spatiotemporal patterns that are independent from each other, on a much shorter time 
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scale. It identifies instantaneous brain trajectories within a short time window (~20 seconds) that are very characteristic, so 

that all the dynamics in rs-fMRI can be explained by the same set of common trajectories. The counterpart of ICA’s role of 

creating parcellation in this study was achieved by using the Brainnetome atlas 246-region parcellation (an anatomical 

parcellation), which was then organized using Yeo’s 7network7-network model. 

4.2.6 Relation to HMM and CAP 

HMM and CAP methods are explicitly designed to characterize changes in the rs-fMRI signal over time and emphasize 

individual time frames in the rs-fMRI time series. The VAE, on the other hand, focuses on the dynamic patterns within rs-

fMRI segments, linking spatial patterns with temporal variation. Nevertheless, the spatial patterns obtained with the three 

methods can be compared. For the HMM method it was reported that every fMRI frame can be classified into one of the 

12 brain states, which are organized into 2 metastates (Vidaurre et al., 2017). The first metastate (state 1-4), is composed 

of sensory (somatic, visual, and auditory) and motor regions, and the second metastate (state 6-12) covers higher order 

cognitive regions that include the DMN, language, and prefrontal areas. Individual states may show specific network patterns, 

e.g. state 4 (visual), state 6 (DMN), state 9 (Language). In the CAP method, the few frames with posterior cingulate cortex 

(PCC) activation (whose correlation map resembles DMN) can be decomposed into 8 different spatial patterns (Liu and 

Duyn, 2013). In the first 4 components, CAP1 and CAP2 more closely resemble DMN than CAP3 and CAP4, with CAP1 

extending more dorsally and CAP2 more ventrally. CAP3 highlights the middle frontal gyrus (MFG, lies in FP network in 

Yeo’s parcellation), whereas CAP4 highlights the superior frontal gyrus (SFG, DM network) and the parahippocampus gyrus 

(PHG, LIM network). There are also another 4 CAPs with less resemblance to DMN that have lower within-group similarity. 

These variations of spatial patterns observed in the individual time frames, could emerge from the superposition of the 

orthogonal components found in the proposed VAE model. For example, positive components in latent cluster 1 (DMN 

activation) superimposed with positive components in latent cluster 2 (DM and LIM activation) could give rise to a spatial 

pattern similar to CAP4, whereas positive components in latent cluster 1 superimposed with negative components in latent 

cluster 2 (FP activation) could result in something more similar to CAP3. 

4.3 New findings from the VAE 

Although fundamentally different from existing methods, the trained VAE returns results in line with many previous 

studies. In particular, the DMN-TPN contrast seen here was also reported in DMN-TPN anticorrelation, QPPs, metastates 

(Vidaurre et al., 2017) and principal gradients. In addition to recapitulating previous findings, the VAE method also reveals 

some spatiotemporal trajectories that were not previously discovered or extensively discussed. For example, there are 

spatiotemporal trajectories that generally follow the DMN-TPN spatial configuration, but have much faster frequencies 

when compared to the QPP (e.g. latent variable 2, 4, 5 in the primary latent variable cluster). A second example is given by 

the spatiotemporal trajectories in the secondary cluster, which show temporal dynamics along a spatial distribution similar 

to principal gradient 2 (VIS, DA on one side and SM, VA on the other). These additional spatiotemporal dynamics are worth 

investigating in the future, including but not limited to their reproducibility and whether they would change under different 

cognitive states. 

Another interesting feature to notice is that there seem to be two modes of activity revealed by the spatiotemporal 

trajectories. One mode has distinct on and off blocks showing two networks having exactly opposite phase (e.g. latent 

variable 1). Another mode shows a gradual change of phase/peak time along the spatial dimension, which behaves more 

like a wave propagating through different networks, which could also be related the findings in (Gu et al., 2020) and (Yousefi 

and Keilholz, 2020). This propagation/time lag, and how it interacts with the first mode (the well-known DMN-TPN 

anticorrelation) is worth investigating in the future. 

4.4 Potential applications 

The proposed VAE has found a set of characteristic spatiotemporal brain trajectories that can explain most of the 

dynamics involved in rs-fMRI. This new perspective provides insights into the brain’s spatiotemporal dynamics that cannot 

be accessed from traditional methods such as functional connectivity. Future work should explore how these characteristic 
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trajectories change when the cognitive state is changed (e.g. task performance, sleeping vs resting state) or with the 

presence of a neurological or psychiatric disorder (e.g. Alzheimer’s disease, major depression disorder or ADHD) as these 

alterations may change the fMRI characteristics and instantaneous dynamics. For example, in (Jones et al., 2012b) it was 

reported that the differences in static connectivity observed in Alzheimer’s disease can be explained by differences in dwell 

time in DMN sub-network configurations, which suggests the dynamics of brain activity, and presumably the characteristic 

spatiotemporal brain trajectories are also altered by Alzheimer’s disease. Potential additional approaches include training 

multiple VAEs on patient and control groups to see if the characteristic trajectories identified are different, using the 

characteristic trajectories from healthy resting-state data as a benchmark to identify statistical differences among groups, 

or training a classifier to utilize trajectories to identify the cognitive state or neurological disorder.  

4.5 Technical limitations 

Although the proposed method has opened up a new perspective for viewing rs-fMRI dynamics, it does have some 

technical limitations. First many of the hyperparameters are empirically chosen, which is almost always not the most “optimal” 

solution of the problem. While it is possible to perform an exhaustive grid search for optimal parameters in some 

circumstances, the computational cost quickly become infeasible when the number and the range of parameters being 

tuned is large (Wu et al., 2019). That said, we did consider many factors when designing the neural network so that the 

parameters involved are within a reasonable range. For example, the number of layers cannot be too small, or the model 

will lack expressive power and cannot capture complicated features; on the other hand, the number of layers cannot be too 

large or the gradient will not backpropagate easily, resulting in difficulties in training. We also performed a holdout validation 

to examine the effect of the hyperparameters like the number of latent variables and number of layers (the results were 

shown in supplementary materials section S.1). While the choices we made are not necessarily the best, they certainly are 

not the worst.  

Secondly the network was trained with a built-in “sliding window”. We chose to divide the dataset into 50% overlapping, 

33-TR (24 sec) long time window. This is likely to limit the lowest frequency component the model can identify, which is 

around 1/24 = 0.042Hz. Fluctuations that occur at lower frequencies are likely to be ignored by the model. Using a longer 

window may help capture components with lower frequencies, but doing such also requires an increase number of latent 

variables to encode the additional information in the elongated window, thus making the model more complex and harder 

to train. Eventually there will be a soft limit of how long the window can be feasibly implemented, which puts a lower bound 

to the frequencies that can be properly identified.  

Thirdly the proposed method is tailored for parcellated rs-fMRI data. For nonparcellated rs-fMRI data, it would make 

more sense to use multidimensional convolutional layers instead of the 1-D convolutional layers we used in our work, since 

volumetric rs-fMRI data may preserve the property of shift-invariance not only in the time domain, but also in the spatial 

domain as well. However, volumetric rs-fMRI data are orders of magnitude larger than parcellated rs-fMRI data in size, 

whose modeling demands a neural network with more complex structure and greater expressive power. This increased 

model size makes the network harder to train. Whether it is possible to train such a model for nonparcellated rs-fMRI data, 

and if so how the latent variable would differ from those obtained from a model trained with parcellated rs-fMRI data, still 

remains unknown at the moment. 

5 Conclusion 

In this article we proposed a novel convolutional variational autoencoder to extract intrinsic spatiotemporal patterns 

from short segments of resting-state fMRI data. The extracted latent dimensions show clear clusters in the spatial domain 

that are in agreement with previous findings, but also provide temporal information about the evolution of brain activity as 

well. Some spatiotemporal features were similar to previously-described QPPs, but there are others with smaller variances 

that were not previously discovered, which is worth investigating in the future. 
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