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Abstract

Systems biology shows that genes related to the same phenotype are often functionally related.
We can take advantage of this to discover new genes that affect a phenotype. However, the natural
unit of analysis in genome-wide association studies (GWAS) is not the gene, but the single nucleotide
polymorphism, or SNP. We introduce martini, an R package to build SNP co-function networks and
use them to conduct GWAS. In SNP networks, two SNPs are connected if there is evidence they
jointly contribute to the same biological function. By leveraging such information in GWAS, we
search SNPs that are not only strongly associated with a phenotype, but also functionally related.
This, in turn, boosts discovery and interpretability. Martini builds such networks using three sources
of information: genomic position, gene annotations, and gene-gene interactions. The resulting SNP
networks involve hundreds of thousands of nodes and millions of edges, making their exploration
computationally intensive. Martini implements two network-guided biomarker discovery algorithms
based on graph cuts that can handle such large networks: SConES and SigMod. They both seek
a small subset of SNPs with high association scores with the phenotype of interest and densely
interconnected in the network. Both algorithms use parameters that control the relative importance
of the SNPs’ association scores, the number of SNPs selected, and their interconnection. Martini
includes a cross-validation procedure to set these parameters automatically. Lastly, martini includes
tools to visualize the selected SNPs’ network and association properties. Martini is available on
GitHub (hclimente/martini) and Bioconductor (martini).
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1 Introduction

Networks are a compact way to integrate information about how genes, proteins and other biomolecules
relate to each other. Hence, they frame each measurement from omics experiments within its biological
context. We focus here on SNP networks, which model the genome by capturing functional relationships
between SNPs. Using such networks in the context of genome-wide association studies (GWAS) boosts
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discovery of susceptibility SNPs and provides more interpretable hypotheses [3]. In this note, we introduce
martini, an R package that provides tools to build SNP networks and use them to guide GWAS.

2. Generate SNP network
gs <- get_GS_network(gwas) # OR

gm <- get_GM_network(gwas) # OR

gi <- get_GI_network(gwas)

1. Read GWAS data
library(snpStats)

gwas <- read.plink(”bed_file”)

3. Find connected, high-scoring SNPs
res <- scones.cv(gwas, gi) # OR

res <- sigmod.cv(gwas, gi)

4. Visualize results
plot_ideogram(gwas, res)

GMGS

GI

Manhattan plot

Inter-chromosome 
gene-gene interactions

Figure 1: Overview of a the 4 main steps of a martini analysis. Adapted from Azencott et al. [1].

2 Main functionalities

In the following sections, we present the different functionalities of martini (see Fig 1 for an overview).

2.1 Building SNP networks

In SNP networks, nodes are SNPs, which are connected by edges when there is some evidence of shared
biological function between them. In principle, they can be built from any source of evidence of such
shared functionality. Martini includes functions to generate the three SNP networks described in Azen-
cott et al. [1], so-called GS, GM and GI (Fig 1):

• get GS network() provides the Genetic Sequence (GS) network, in which SNPs are connected if
they are adjacent on the chromosome.

• get GM network() produces the Gene Membership (GM) network, which includes the GS network
and, in addition, interconnects all SNPs that are mapped to the same gene.

• get GI network() generates the Gene Interaction (GI) network, which includes the GM network
and, on top of it, interconnects all the SNPs mapped to two genes that encode interacting proteins.

Mapping SNPs to genes The two latter functions require the user to provide a mapping of SNPs
to genes. martini provides a convenient way to obtain such a mapping via snp2ensembl(), which maps
each SNP to all Ensembl genes with overlapping genomic coordinates. This mapping corresponds to
the one considered in Azencott et al. [1]. In addition, users can easily provide their own mappings to
generate other SNP networks. For instance, providing a list of eQTLs together with their target genes
(e.g., obtained from GTEx [4]) to get GM network() will generate networks based on gene expression
regulation.
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Gene-gene interactions get GI network() requires the user to provide a list of gene-gene inter-
actions. The get gxg() function of martini recovers gene-gene interactions from the BioGRID [6] or
STRING [7]. In addition, users can provide their own list of gene-gene interactions beyond protein-
protein interactions via a two-column data.frame containing gene-gene pairs.

2.2 Finding biomarkers using SConES and SigMod

Martini implements two algorithms to find connected subsets of SNPs associated with the phenotype:
SConES [1] and SigMod [5]. They share the following formulation:

arg max
u∈{0,1}n

= cTu− λuTLu− η‖u‖0, (1)

where u is a selection vector, in which element ui is 1 when SNPi is selected, and 0 otherwise; c is
a scoring vector, in which element ci is a measure of association between SNPi and the phenotype; L is
the Laplacian matrix of the SNP network; and λ > 0 and η > 0 are parameters controlling connectivity
and sparsity, respectively. In the case of SConES, ci = zi, where zi is a statistical measure of association
between SNPi and the phenotype. For SigMod, however, ci = zi + λdi, where di is the number of
neighbors SNPi in the network. This difference implies that where SConES penalizes the presence
of edges connecting selected SNPs with non-selected SNP, SigMod encourages that selected SNPs are
connected with each other. In other words, SigMod selects densely connected subnetworks, while SConES
selects relatively isolated subnetworks.

2.2.1 Parameter selection

Both SigMod and SConES use two parameters: λ and η. If both can be provided, martini ’s functions
scones() and sigmod() provide the corresponding subset of SNPs. However, in most cases, the optimal
values of λ and η are unknown. For such cases, we provide the functions scones.cv() and sigmod.cv().
These functions explore a grid of parameters in a 10-fold cross-validated setting. A score is computed for
each combination of parameters, using the average across the folds of a user-specified scoring function.
Then, the best-scoring set of parameters is used in a run on the whole dataset.

Martini includes three types of scoring functions: stability, penalized log-likelihood, and network
properties. Stability selects the parameters that most consistently select the same SNPs across folds.
Penalized log-likelihood measures are computed on a linear model trained to predict the phenotype using
the selected SNPs exclusively. They favor sets of SNPs that lead to good linear predictors but penalize
high complexities. Martini has three such information criteria available: Bayesian, Akaike, and corrected
Akaike (see Appendix A for details). Lastly, network properties include two measures that quantify the
solution’s edge density: the global and the local clustering coefficients.

Hence, martini ’s implementation of SigMod is different from the one in the original paper [5], in that
we conduct the parameter selection by cross-validation.

2.2.2 Association tests

Martini can perform two tests of association between SNPs and the phenotype: 1 d.f. χ2 and generalized
linear models (GLM). The former sets zi in Eq 1 to the χ2 test statistic of association between SNPi

and the phenotype. Hence, it requires the phenotype to be discrete (e.g., case-control). The latter sets
zi to the χ2 test statistic for the significance of the regression coefficient of SNPi in a multivariate GLM
explaining the phenotype from SNPi as well as additional user-specified covariates, such as principal
components to capture population structure. This model can handle both discrete and continuous
phenotypes, through the specification of different distribution families. The user can also choose different
link functions for the GLM.

2.3 Visualization

Martini ’s plot ideogram() function displays the results on a three-layer ideogram (Fig 1). The first
layer displays the cytobands. The second layer contains a circular Manhattan plot showing the statistical
association of each SNP with the phenotypes. Non-selected SNPs are colored in gray, and selected SNPs
in orange. Lastly, the third layer displays the edges in the SNP network between SNPs from different
chromosomes.
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3 Implementation and availability

Martini is implemented in R, and includes a fast C++ implementation of the min-cut/max-flow algorithm
[2]. Martini is available on GitHub (hclimente/martini) and Bioconductor (martini). The code is licensed
as GPL-3. It includes vignettes to show the basic functionalities.
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A Log-likelihood penalized scores

Determining optimal values for λ and η can be seen as a model selection problem and solved using cross-
validation, meaning that for each pair of values of these parameters that is considered, one evaluates the
cross-validated performance of a penalized logistic regression trained on the features selected by solving
Eq 1. However, using the accuracy of this penalized logistic regression as a criterion for evaluation is prone
to overfitting. An alternative is to use penalized log-likelihood criteria, which improve generalization by
including a regularization term. They take the form

−2L(X, y, θ̂) + c(θ̂),

where L(X, y, θ̂) is the log-likelihood of the model, which depends on the design matrix X, the

outcome vector y, and the parameters θ̂; and c(θ̂) is a measurement of the model’s complexity. We
implemented the three most common of these model complexities, resulting in the information criterion
(AIC), the Bayesian information criterion (BIC), and the corrected Akaike information criterion (AICc).
For all three information criteria, the model complexity is proportional to the number pin of parameters
of the model, here corresponding to the number of selected SNPs:

c(θ̂) = αpin.

For AIC, the factor α is equal to α = 2.
For BIC, α = ln(n) where n is the number of samples.
For AICc, which is a modification of AIC proposed for settings where the number of features is much

larger than the number of samples, as is the case in GWAS,

α = 2 + 2
pin + 1

n− pin − 1
= 2

n

n− pin − 1
.
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