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Abstract. Protein fossils, i.e. noncoding DNA descended from coding
DNA, arise frequently from transposable elements (TEs), decayed genes,
and viral integrations. They can reveal, and mislead about, evolutionary
history and relationships. They have been detected by comparing DNA
to protein sequences, but current methods are not optimized for this
task. We describe a powerful DNA-protein homology search method.
We use a 64×21 substitution matrix, which is fitted to sequence data,
automatically learning the genetic code. We detect subtly homologous
regions by considering alternative possible alignments between them, and
calculate significance (probability of occurring by chance between random
sequences). Our method detects TE protein fossils much more sensitively
than blastx, and > 10× faster. Of the ∼7 major categories of eukaryotic
TE, three have not been found in mammals: we find two of them in
the human genome, polinton and DIRS/Ngaro. This method increases
our power to find ancient fossils, and perhaps to detect non-standard
genetic codes. The alternative-alignments and significance paradigm is
not specific to DNA-protein comparison, and could benefit homology
search generally.

1 Introduction

Genomes are littered with protein fossils, old and young. They can be found
by comparing DNA to known proteins: new transposable element (TE) families
have been discovered in this way [25]. An interesting class of protein fossils
comes from ancient integrations of viral DNA into genomes, enabling the field of
paleovirology [17]. The DNA sequences of protein fossils often have similarity to
distantly-related genomes (e.g. mammal versus fish), simply because the parent
gene evolved slowly, so it is important to know that they are protein fossils in
order to understand this similarity [28]. DNA-protein homology search is also
used to classify DNA reads from unknown microbes, including nanopore and
PacBio reads with many sequencing errors [16]. DNA-protein comparison can
be used to find frameshifts during evolution of functional proteins [26], and
programmed ribosomal frameshifts [35]. A more specialized and complex kind of
DNA-protein comparison, outside this study’s scope, considers introns and other
gene features to identify genes.
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DNA-protein homology search is a classical problem with many old solutions
[23, 30, 12, 15, 39, 13, 11, 20, 4, 22, 34]. A notable one is “three-frame alignment”
[39], which we believe is the simplest and fastest reasonable way to do frameshifting
DNA-protein alignment. Nevertheless, we can significantly improve DNA-protein
homology search in these aspects:

– Better parameters for the (dis)favorability of substitutions, deletions, in-
sertions, and frameshifts. Most previous methods use standard parameters
such as the BLOSUM62 substitution matrix, which is designed for functional
proteins, and likely completely inappropriate for protein fossils. We optimize
these parameters by fitting them to sequence data.

– Instead of a 20×20 substitution matrix, use a 64×21 matrix (64 codons × 20
amino acids plus STOP). This allows e.g. preferred alignment of asparagine
(which is encoded by aac and aat) to agc than to tca, which both encode
serine.

– Incorporate frameshifts into affine gaps. Because gaps are somewhat rare
but often long, it is standard to disfavor opening a gap more than extending
a gap. However, most previous methods favor frameshifts equally whether
isolated or contiguous with a longer gap.

– Detect homologous regions based on not just one alignment between them,
but on many possible alternative alignments. This is expected to detect subtle
homology more powerfully [1, 6].

– Calculate significance, i.e. the probability of such a strong similarity occurring
by chance between random sequences. To this day, for ordinary alignment,
BLAST can only calculate significance for a few hardcoded sets of substitution
and gap parameters. We can do it for any parameters, for similarities based
on many alternative alignments.

We also aimed for maximum simplicity and speed, inspired by three-frame
alignment.

2 Methods

2.1 Alignment elements

We define a DNA-protein alignment to consist of: matches (3 bases aligned to 1
amino acid), base insertions, and base deletions. To keep things simple, insertions
are not allowed between bases aligned to one amino acid. A deletion of length not
divisible by 3 leaves “dangling” bases (Fig. 1): for simplicity, we do not attempt
to align these (equivalently, align them to the amino acid with score 0).

2.2 Scoring scheme

An alignment’s score is the sum of:

– Score for aligning amino acid x to base triplet Y : SxY
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Ser-TyrAlaThrMetLeuTrpAspGln--Leu***
tctCtat---acg--cctctga-atcagCAttctaa

Fig. 1. Example of a DNA-versus-protein alignment. *** indicates a protein end from
translation of a stop codon. Insertions are bold uppercase. “Dangling” bases, left by
deletions of length not divisible by 3, are underlined gray.

– Score for an insertion of k bases: aI + bIk +


0 if k mod 3 = 0

fI if k mod 3 = 1

gI if k mod 3 = 2

– Score for a deletion of k bases: aD + bDk +


0 if k mod 3 = 0

fD if k mod 3 = 1

gD if k mod 3 = 2

This scheme extravagantly uses 4 frameshift parameters (fI , gI , fD, gD), because
it’s based on a probability model with 4 frameshift transitions (Fig. 2), and we
can’t think of a good way to simplify the model. Overall, our alignment scheme
is similar to FramePlus [13] and especially to aln [11].

2.3 Finding a maximum-score local alignment

A basic approach is to find a maximum-score alignment between any parts of a
protein sequence R0 . . . RM−1 and a DNA sequence q0 . . . qN−1. Let Qj mean the
triplet qj , qj+1, qj+2. We can do these calculations for 0 ≤ i ≤M and 0 ≤ j ≤ N :

y1 = Yi−1 j−2 + [bD + fD] z1 = Zi j−1 + [bI + fI ]

y2 = Yi−1 j−1 + [2bD + gD] z2 = Zi j−2 + [2bI + gI ]

y3 = Yi−1 j + [3bD] z3 = Zi j−3 + [3bI ]

Xij = max(Xi−1 j−3 + SRi−1Qj−3 , y1, y2, y3, z1, z2, z3, 0)

Yij = max(Xij + aD, y3) Zij = max(Xij + aI , z3)

The boundary condition is: if i < 0 or j < 0, Xij = Yij = Zij = −∞. The
maximum possible alignment score is max(Xij), and an alignment with this score
can be found by a standard traceback [5].

For each (i, j) this algorithm retrieves 7 previous results, and performs 9
pairwise maximizations and 9 additions (which could be reduced to 6 additions if
each insertion cost equals its corresponding deletion cost). This is slightly slower
than three-frame alignment, which retrieves 5 previous results and performs 7
pairwise maximizations and 6 additions.

2.4 Probability model

The preceding algorithm is equivalent to finding a maximum-probability path
generating the sequences, through a probability model (Fig. 2). The score and
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Fig. 2. A probability model for related DNA and protein sequences. The arrows are
labeled with probabilities of traversing them. Each pass through an i state generates
one base y ∈ {a, c, g, t}, with probabilities ψy. Each pass through a D state generates
one amino acid x, with probabilities φx. Each pass through the M state generates
one amino acid x aligned to three bases Y = y1y2y3, with probabilities πxY . The two
bottom-left i states correspond to “dangling” bases.
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Here ψY is defined to be ψy1
ψy2

ψy3
, and t is an arbitrary positive constant

(because multiplying all the score parameters by a constant makes no differ-
ence to alignment). An alignment score is then: t ln[prob(path & sequences)/
prob(null path & sequences)], where a “null path” is a path that never traverses
the Γ , αD, or αI arrows [10].

Balanced length probability A fundamental property of local alignment
models is whether they are biased towards longer or shorter alignments [10]. If
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ωD and ωi are large (close to 1) and Γ +αD +αI is small, there is a bias in favor
of shorter alignments. In the converse situation, there is a bias towards longer
alignments. It can be shown (using the method of [10]) that our DNA-protein
model is unbiased when

Γ

ωDω3
i

+
a′Ib
′
I(f ′I + g′Ib

′
I + b′2I )

1− b′3I
+
a′Db

′
D(f ′D + g′Db

′
D + b′2D)

1− b′3D
= 1 . (1)

2.5 Sum over all alignments passing through (i, j)

To find subtly homologous regions, we should assess their homology without
fixing an alignment [1, 6]. In other words, we should use a homology score like this:
t ln
[∑

paths prob(path & sequences)/prob(null path & sequences)
]
. However, if

the sum is taken over all possible paths, we learn nothing about location of the
homologous regions, which is important if e.g. the DNA sequence is a chromosome.
There is a kind of uncertainty principle here: the more we pin down the alignment,
the less power we have to detect homology. As a compromise, we sum over all
paths passing through one (protein, DNA) coordinate pair (i, j). This has two
further benefits: it is approximated by the seed-and-extend search used for big
sequence data, and we can calculate significance.

To calculate this sum over paths, we first run a Forward algorithm for
0 ≤ i ≤M and 0 ≤ j ≤ N :

y1 = [b′Df
′
D]Y F

i−1 j−2 y2 = [b′2Dg
′
D]Y F

i−1 j−1 y3 = [b′3D]Y F
i−1 j

z1 = [b′If
′
I ]ZF

i j−1 z2 = [b′2I g
′
I ]ZF

i j−2 z3 = [b′3I ]ZF
i j−3

XF
ij = S′Ri−1Qj−3

XF
i−1 j−3 + y1 + y2 + y3 + z1 + z2 + z3 + 1

Y F
ij = a′DX

F
ij + y3 ZF

ij = a′IX
F
ij + z3

The boundary condition is: if i < 0 or j < 0, XF
ij = Y F

ij = ZF
ij = 0. We then run

a Backward algorithm for M ≥ i ≥ 0 and N ≥ j ≥ 0:

y1 = [b′Df
′
D]Y B

i+1 j+2 y2 = [b′2Dg
′
D]Y B

i+1 j+1 y3 = [b′3D]Y B
i+1 j

z1 = [b′If
′
I ]ZB

i j+1 z2 = [b′2I g
′
I ]ZB

i j+2 z3 = [b′3I ]ZB
i j+3

XB
ij = S′RiQj

XB
i+1 j+3 + y1 + y2 + y3 + z1 + z2 + z3 + 1

Y B
ij = a′DX

B
ij + y3 ZB

ij = a′IX
B
ij + z3

The boundary condition is: if i > M or j > N , XB
ij = Y B

ij = ZB
ij = 0. Finally,

t ln[XF
ijX

B
ij ] is the desired homology score, for all paths passing through (i, j).

2.6 Significance calculation

The just-described homology score is similar to that of “hybrid alignment”,
which has a conjecture regarding significance [37]. (Hybrid alignment sums over
paths ending at (i, j), instead of passing through (i, j).) We make a similar
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Fig. 3. Sketch of seed-and-extend heuristic for homology search.

conjecture. Suppose we compare a random i.i.d. protein sequence of length M
and letter probabilities Φx to a random i.i.d. DNA sequence of length N and
triplet probabilities ΨY . We conjecture that the score smax = t ln[maxij(X

F
ijX

B
ij )]

follows a Gumbel distribution:

prob(smax < s) = exp(−KMNe−s/t) , (2)

in the limit that M and N are large, provided that:(∑
x,Y

ΦxΨY S
′
xY

)
+
a′Ib
′
I(f ′I + g′Ib

′
I + b′2I )

1− b′3I
+
a′Db

′
D(f ′D + g′Db

′
D + b′2D)

1− b′3D
= 1 . (3)

Equation 3 is analogous to Equation 27 or 28 in [37], see also [10]. In practice,
we assume that Φx = φx and ΨY = ψY , which makes Equation 3 equivalent to
Equation 1.

This conjecture leaves one unknown Gumbel parameter K. We estimate it by
brute-force simulation of 50 pseudorandom sequence pairs [38], with Φx = φx,
ΨY = ψY , M = 200 and N = 602, which takes zero human-perceptible run time.

2.7 Seed-and-extend heuristic

To find homologous regions in big sequence data, we use a BLAST-like seed-and-
extend heuristic (Fig. 3) [2]. We first find “seeds”: we currently use exact-matches
(via the genetic code), which can be sensitive if short, but we could likely get
better sensitivity per run time with inexact seeds [27, 31]. Our seeds have variable
length: starting from each DNA base, we get the shortest seed that occurs ≤ m
times in the protein data [19]. We then try a gapless X-drop extension in both
directions, and if the score achieves a threshold d, we try a “Forward” extension
in both directions.

We use our Forward algorithm, modified for semi-global instead of local
alignment. In each direction, we sum over alignments starting at the seed and
ending anywhere: thus the algorithm’s +1 is done only at the first (i, j) next to
the seed, and we accumulate the sum W =

∑
ij X

F
ij . We run this algorithm in

increasing order of antidiagonal (3i+ j) on the seed’s right side (decreasing order
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on the left side). If XF
ij is less than a fraction f of W accumulated over previous

antidiagonals, we stop extending, which defines the boundary of the gray region
in Fig. 3. The final homology score is t ln[Wleft] + seed score + t ln[Wright].

Sum-of-path algorithms are prone to numerical overflow [5]. To prevent that:
once per 32 antidiagonals, we multiply all the XF , Y F , and ZF values in the
last six antidiagonals by a scaling factor of 1/W .

A score with no alignment is disconcerting, so we get a representative alignment
by a similar semi-global modification of our maximum-score alignment algorithm.
To avoid redundancy, we prioritize homology predictions by score (breaking ties
arbitrarily), and discard any prediction whose representative alignment shares
an an (i, j) left or right end with a higher-priority prediction.

2.8 Fitting substitution & gap parameters to sequence data

We can fit the parameters to some related (unaligned) DNA and proteins, by an
iterative Baum-Welch algorithm [5]. We implemented two versions of this: an exact
O(MN) version, and a seed-and-extend version. The seed-and-extend version,
at each iteration, finds significantly homologous regions (with -K1 filtering, see
below) and gets expected counts from the seeds and extend regions (gray areas
in Fig. 3). It does not infer φx, ψy, ωD, or ωi in the usual way: at each iteration,
it sets φx =

∑
Y πxY , ψy =

∑
xij(πx yij + πx iyj + πx ijy)/3, and ωD = ω3

i = the

value that satisfies Equation 1 (found by bisection with bounds 1 > ω3
i > βIδIεI

and 1 > ωD > βDδDεD). We set t = 3/ ln[2] to get scores in third-bit units.

3 Results

3.1 Parameter fitting

We applied our O(MN) fitting to a set of human processed pseudogenes and
their parent proteins from Pseudofam [21]. To avoid bias, we began the first
iteration with πxY = 1/(21 · 64). The fitting discovered the genetic code: for each
codon Y , its encoded amino acid has maximum SxY .

Sometimes, our fitting had an undesirable feature: the SxY values for some
cg-containing codons were all negative. This is presumably due to the well-known
depletion of cg in human DNA, which can be captured in πxY but not ψy. As an
ad hoc fix, we set ψY =

∑
x πxY (after O(MN) fitting, and at each iteration of

seed-and-extend fitting).
Next, we applied our seed-and-extend fitting to human chromosome 21 (hg38

chr21) and transposable element (TE) proteins from RepeatMasker 4.1.0 [29]. The
result primarily favors genetic-code matches (Figure 4), and secondarily favours
single a↔g or c↔t mismatches, e.g. asparagine scores +5 with agc and −14
with tca. The gap scores are aI , bI , fI , gI = −28,−1,+3, 0 and aD, bD, fD, gD =
−23,−1,+3, 0. So frameshifts are not disfavored, perhaps because RepeatMasker’s
proteins are close to the fossils’s most recent active ancestors. The positive fI,D
values might be caused by the gap-length distribution not fitting the simple affine
model, with an excess of length-1 and length-4 gaps [33].
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Fig. 4. Substitution matrix inferred from human chromosome 21 versus RepeatMasker
proteins. Darker red means more disfavored and paler yellow means more favored. Black
dots indicate the standard genetic code.
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Fig. 5. Distributions of homology scores using the chr21-TE parameters. (A) Exact
homology scores for random protein & codon sequences. (B) Seed-and-extend homology
scores for random protein & DNA sequences. The dashed line shows a test with
(Φ, Ψ) 6= (φ, ψ). (C) Seed-and-extend homology scores for TE proteins & reversed chr21
without and (D) with simple-sequence masking.

3.2 Significance calculation & simple sequences

To test the accuracy of our significance estimates, for the chr21-TE parameters,
we calculated smax by our full Forward-Backward algorithm for 1000 pairs of
random i.i.d. protein and codon sequences, with Φx = φx, ΨY = ψY , M = 200,
and N = 602. The observed distribution of smax agrees reasonably well with that
predicted by Equation 2 (Fig. 5A).

To test whether our significance estimates apply to our seed-and-extend ho-
mology search, we compared one pair of random i.i.d. protein and DNA sequences,
with Φx = φx, Ψy = ψy, and lengths equal to the number of unambiguous letters
in the TE proteins and chr21. The search sensitivity depends on the seed param-
eter m: as m increases, sensitivity increases, and the distribution of homology
scores approaches the Gumbel prediction (Fig. 5B).

We then considered (Φ, Ψ) 6= (φ, ψ), because the marginal frequencies of πxY
differ from the letter abundances in the TE proteins and chr21, e.g. ψa:ψc:ψg:ψt

= 40:19:18:23 but chr21 is 29:21:21:29. So we compared another pair of random
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i.i.d. protein and DNA sequences, with Φx and Ψy equal to the frequencies in the
TE proteins and chr21. In this test, the E-values (expected counts) were too low
by a factor of about 3 (Fig. 5B).

Homology search is confounded by “simple sequences”, e.g. ttttcttttttcctt,
which evolve frequently and independently. There are various methods to suppress
such false homologies, but most do not fully succeed [9, 8]. To illustrate, we
compared reversed (but not complemented) chr21 to the TE proteins: this test
has no true homologies, but we found many highly-significant homology scores
(Fig. 5C). Our solution is to mask the DNA and protein with tantan [9], which
eliminates extremely-significant false homologies, at least in this test (Fig. 5D).
Further testing is warranted, e.g. here we used a default tantan parameter
r = 0.005, but 0.02 was suggested for DNA-protein comparison [9].

3.3 Comparison to blastx

To test whether our homology search is more sensitive than standard methods,
we compared chr21 to the TE proteins with NCBI BLAST 2.11.0:

makeblastdb -in RepeatPeps.lib -dbtype prot -out DB

blastx -query chr21.fa -db DB -evalue 0.1 -outfmt 7 > out

We repeated this comparison with our method (in LAST version 1177):

lastdb -q -c -R01 myDB RepeatPeps.lib

last-train --codon -X1 myDB chr21.fa > train.out

lastal -p train.out -D1e9 -m100 -K1 myDB chr21.fa > out

Option -q appends * to each protein; -R01 lowercases simple sequence with
tantan; -c requests masking of lowercase; -X1 treats matches to unknown residues
(which are frequent in these proteins) as neutral instead of disfavored; -D1e9 sets
the significance threshold to 1 random hit per 109 basepairs; -m100 sets m = 100;
-K1 omits alignments whose DNA range lies in that of a higher-scoring alignment.

This test indicated that our method has much better sensitivity and speed.
The single-threaded runtimes were 193 min for blastx and 18 min for lastal.
blastx found alignments at 2604 non-overlapping sites on the two strands of
chr21, of which all but 23 overlapped LAST alignments. LAST found alignments
at 6640 non-overlapping sites, of which 4499 did not overlap blastx alignments.
All but 21 of LAST’s sites overlapped same-strand annotations by RepeatMasker
open-4.0.6 - Dfam 2.0 (excluding Simple repeat and Low complexity) [29, 32],
suggesting they are not spurious.

3.4 Discovery of missing TE orders in the human genome

Eukaryotic TEs have immense diversity, but can be classified into ∼7 major
orders: LTR, LINE, and tyrosine-recombinase (YR) retrotransposons, and DDE
transposons, cryptons, helitrons, and polintons [36]. Three of them (YR retro-
transposons, cryptons, polintons) have not been found in mammals [24, 3].
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MER58A#DNA/hAT-Charlie MLT1C2#LTR/ERVL-MaLR

Fig. 6. An ancient polinton in human chromosome 7. Black bars: alignments to polinton
proteins, arrows indicate +/− strand. Green: alignments to other vertebrate genomes [14].
Screen shot from http://genome.ucsc.edu [18].

By comparing the whole human genome (hg38) to RepeatMasker’s TE proteins,
we found two of these missing TE orders: YR retrotransposons and polintons. We
found polinton alignments at 18 non-overlapping genome sites, with E-values as
low as 1.8e-36. Five of these sites are clustered in chromosome 7, indicating that an
ancient polinton was fragmented by insertion of an LTR element and an inversion
(Fig. 6). We found both major superfamilies of YR retrotransposon: DIRS at 20
non-overlapping sites with min E-value 3e-45, and Ngaro at 4 non-overlapping
sites with min E-value 5.1e-14.

4 Discussion

Our DNA-protein homology search method seems to be fast, specific, and highly
sensitive. It should enable discovery of more ancient and subtle fossils, such as
the human polinton, DIRS and Ngaro elements found here. So almost all known
major TE categories have left traces in the human genome, suggesting an ability
to spread broadly among eukaryotes.

Possible future improvements include better seeding, and using position-
specific information on variability of a sequence family [5, 38]. Our significance
calculation becomes inaccurate for short sequences, so a finite size correction
would be useful [37]. Our method’s parameter-fitting makes it versatile, but it
would be better to use different parameters for fossils of different ages.

The sum-of-paths and significance paradigm is not specific to DNA-protein
comparison, so could benefit homology search generally. A previous study made
similar conjectures on significance of probabilistic homology scores [7]. We suspect
those conjectures may be too broad: e.g. one set of substitution and gap scores
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corresponds to a range of probability models with different values of t [10], but
only one t can appear in the Gumbel formula (Equation 2).
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