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Abstract

During cell division, the duplication of the genome starts at multiple positions called
replication origins. Origin firing requires the interaction of rate-limiting factors with
potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as
synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By
modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1
over-expressed replication pattern of single DNA molecules from Xenopus sperm
chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of
data requires: 1) a segmentation of the genome into regions of low and high probability
of origin firing; 2) that regions with high probability of origin firing escape intra-S
checkpoint regulation and 3) the variability of the rate of DNA synthesis close to
replication forks is a necessary ingredient that should be taken in to account in order to
describe the dynamic of replication origin firing. This model implies that the observed
origin clustering emerges from the apparent synchrony of origin firing in regions with
high probability of origin firing and challenge the assumption that the intra-S
checkpoint is the main regulator of origin clustering.

Author summary

DNA replication is one of the fundamental cell functions. The genome of eukaryotic
organisms is duplicated from multiple positions named replication origins. Single
molecule experiments allow to visualise the dynamics of spatio-temporal patterns
created during replication process. The dynamic of replication process is regulated by
checkpoints. However, the influence and the role of checkpoint regulation in the
dynamics of spatio-temporal patterns of DNA replication is not understood. In this
work we build a minimal, process-based and data rooted numerical model that allows to
decipher the impact of checkpoint regulation on the dynamics of spatio-temporal
pattern of DNA replication.
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Introduction 1

Eukaryotic genomes are duplicated in a limited time during the S phase of each cell 2

cycle. Replication starts at multiple origins that are activated (fired) at different times 3

in S phase to establish two diverging replication forks that progress along and duplicate 4

the DNA at fairly constant speed until they meet with converging forks originated from 5

flanking origins [1, 2]. The mechanisms that regulate the timing of origin firing remain 6

largely unknown [3–8]. 7

The core motor component of the replicative helicase, the MCM2-7 complex, is 8

loaded on chromatin from late mitosis until the end of G1 phase as an inactive 9

head-to-head double hexamer (DH) to form a large excess of potential origins [9, 10]. 10

During S phase, only a fraction of the MCM2-7 DHs are activated to form a pair of 11

active Cdc45-MCM2-7-GINS (CMG) helicases and establish bidirectional replisomes [1]. 12

MCM2-7 DHs that fail to fire are inactivated by forks emanating from neighboring fired 13

origins [11]. Origin firing requires S-phase cyclin-dependent kinase (CDK) and 14

Dbf4-dependent kinase (DDK) activities as well as the CDK targets Sld2 and Sld3 and 15

the replisome-maturation scaffolds Dpb11 and Sld7 in S. cerevisiae. The six initiation 16

factors Sld2 (RecQ4 in Xenopus), Sld3 (Tresline in Xenopus), Dpb11 (TopBP1 in 17

Xenopus), Dbf4 (Drf1 in Xenopus), Sld7 (MTBP in Xenopus) and Cdc45 are expressed 18

at concentrations significantly lower than the MCM complex and core replisome 19

components, suggesting that they may be rate-limiting for origin firing [12, 13]. Among 20

these six factors, Cdc45 is the only one to travel with the replication fork. 21

DNA replication initiates without sequence specificity in Xenopus eggs [14, 15], egg 22

extracts [16–19] and early embryos [20, 21] (for review see [22]). To understand how a 23

lack of preferred sequences for replication initiation is compatible with a precise S-phase 24

completion time, investigators have studied replication at the single DNA molecule level 25

using the DNA combing technique [23–27] which contrast to population based 26

approaches, that average replication characteristics. DNA combing technique reveals 27

cell-to-cell differences in origin activation important for understanding how genomes are 28

replicated during S-phase, these experiments did not detect a regular spacing of 29

initiation events but revealed that the origin firing rate strongly increases from early to 30

late replication intermediates, speeding up late replication stages [23, 24]. An 31

observation that has been also confirmed in many other model organisms, including 32

human cell lines [28]. 33

A mathematical model based on the assumptions i) that the probability of firing of 34

each replication origin can be replaced by the averaged probability of firing calculated 35

over all degree of freedom of origin firing process (MCM2-7 DH density, genomic 36

position, chromatin compaction, nucleosome density, etc named ”mean-field 37

hypothesis”), ii) that firing of origins are independent events and ii) that fork speed is 38

constant was proposed [29]. This model allowed the extraction of a time-dependent rate 39

of replication initiation, I (t), from the measured eye lengths, gap lengths and eye-to-eye 40

distances on combed DNA molecules (Fig 1.a) [29]. The extracted I (t) markedly 41

increased during S phase. Simulations incorporating this extracted I (t) reproduced the 42

mean eye length, gap length and eye-to-eye distance, but the experimental eye-to-eye 43

distance distribution appeared “peakier” than the simulated one [22,30]. Modulating 44

origin firing propensity by the probability to form loops between forks and nearby 45

potential origins resulted in a better fit to the data without affecting I (t) [30]. 46

Importantly, experiments revealed that in Xenopus, like in other eukaryotes, 47

replication eyes are not homogeneously distributed over the genome but tend to 48

cluster [25, 27]. First, a weak correlation between the sizes of neighbouring eyes was 49

observed [25,27,30], consistent with firing time correlations. Second, more molecules 50

with no or multiple eyes than expected for spatially uniform initiations were observed in 51

replicating DNA [27]. There are two potential, non-exclusive mechanisms for these 52
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spatiotemporal correlations. The first one, compatible with a mean-field hypothesis, is 53

that activation of an origin stimulates nearby origins. The second one, no longer 54

consistent with a mean-field hypothesis, is that the genome is segmented into 55

multi-origin domains that replicate at different times in S phase. This second 56

hypothesis has been explored numerically in human and has been shown to be 57

compatible with the universal bell shaped I (t) profile [31]. 58

Interestingly, experiments in Xenopus egg extracts revealed that intranuclear 59

replication foci labelled early in one S phase colocalized with those labelled early in the 60

next S phase, whereas the two labels did not coincide at the level of origins or origin 61

clusters were examined [32]. Given the different characteristic sizes of timing domains 62

(1-5 Mb) and origin clusters (50-100 kb) in the Xenopus system, it is possible that 63

origin correlations reflect both a programmed replication timing of large domains and a 64

more local origin cross-talk within domains. 65

It is now well accepted that the intra-S phase checkpoint regulates origin firing 66

during both unperturbed and artificially perturbed S phase [27,33–36]. DNA replication 67

stress, through the activation of the S-phase checkpoint kinase Rad53, can inhibit origin 68

firing by phosphorylating and inhibiting Sld3 and Dbf4 [37]. The metazoan functional 69

analogue of Rad53 is Chk1. Experiments in human cells under low replication stress 70

conditions showed that Chk1 inhibits the activation of new replication factories while 71

allowing origin firing to continue within active factories [33]. Experiments using 72

Xenopus egg extracts suggested that the checkpoint mainly adjusts the rate of DNA 73

synthesis by staggering the firing time of origin clusters [27]. Our first model for DNA 74

replication in Xenopus egg extracts [38] (which combined time-dependent changes in the 75

availability of a limiting replication factor, and a fork-density dependent affinity of this 76

factor for potential origins) was used to model the regulation of DNA replication by the 77

intra-S checkpoint [35]. We showed that even during an unperturbed S phase in 78

Xenopus egg extracts, Chk1 inhibits origin firing away from but not near active 79

forks [35]. To account for the regulation of DNA replication by the intra-S checkpoint, 80

we replaced the dependency of origin firing on fork density by a Chk1-dependent global 81

inhibition of origin firing with local attenuation close to active forks as was proposed in 82

other contexts [33, 39–41]. This model was able to simultaneously fit the I (f) (the rate 83

of origin firing expressed as a function of each molecule’s replicated fraction f) of both a 84

control and a UCN-01-inhibited Chk1 replication experiment [35]. However, in that 85

work we did not push further the analysis to verify if our model was able to explain 86

simultaneously I (f) (temporal program) and the eye-to-eye distance distribution 87

(spatial program). 88

In the present work, using numerical simulations, we quantitatively analysed both 89

the temporal and spatial characteristics of genome replication as measured by DNA 90

combing in the in vitro Xenopus system. Xenopus egg extracts have been successfully 91

used since over three decades now to study DNA replication in metazoans [42]. Rooted 92

on experimental data, we build a general and minimal model of DNA replication able to 93

predict both the temporal and the spatial characteristics either during an unchallenged 94

or a challenged S phase. We use the experimental data from [35] where the experimental 95

mean chosen for activating or inhibiting (manipulating) the checkpoint was respectively 96

to overexpress Chk1 protein or to inhibit its activity using the specific inhibitor 97

UCN-01. By analysing the spatio-temporal pattern of DNA replication after inhibition 98

or activation of intra-S checkpoint and comparing them to an unchallenged pattern we 99

disentangle the complex role of the intra-S checkpoint for replication origin firing. 100
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Materials and methods 101

Monte Carlo simulation of DNA replication process. 102

A dynamical Monte Carlo method was used to simulate the DNA replication process as 103

detailed before [38]. We simulate the replicating genome as a one-dimensional lattice of 104

L = 106 blocks of value 1 for replicated and 0 for unreplicated state, respectively. To 105

match the spatial resolution of DNA combing experiments each block represents 1kb. 106

After one round of calculation an existing replication track grows in a symmetric 107

manner by 2 blocks. Considering that the fork speed v = 0.5 kb.min�1 is constant 108

(except in MM2 where the value of v( kb.min�1) for each active fork is randomly chosen 109

at each round of calculus from {0,1,2,3} ( kb.min�1)), one round of calculation 110

corresponds to 2 minutes. In the continuous case we assume that the potential 111

replication origins are continuously distributed on the genome with an average density 112

of one potential origin per 1kb (1 block). As it is also considered that potential 113

replication origins are discrete objects and as a consequence are distributed in a 114

heterogeneous manner on the genome [43,44] we also simulate the case where the 115

distribution of potential origins is discrete. In the discrete case we assume that potential 116

origins are randomly distributed along the genome with an average density of one 117

potential origin per 2.3 kb [45]. In both cases origins fire stochastically. Origin firing 118

requires an encounter with a trans-acting factor which number N (t) increases as S 119

phase progresses with a rate J , N (t) = N0 + Jt. If an encounter leads to an origin 120

firing event, the trans-acting factor is sequestrated by replication forks and hence the 121

number of available trans-acting factors is Nf (t) = N (t)�Nb (t), where Nb (t) is the 122

number of bound factors. To ensure that origins do not re-fire during one cycle and are 123

inactivated upon passive replication, only “0” blocks (not replicated) are able to fire. 124

Before the beginning of replication process the one-dimensional lattice is randomly 125

segmented into ✓L blocks where the probability of origin firing is Pin and (1� ✓)L 126

blocks where the probability of origin firing is Pout. After the start of replication 127

process, at each round of calculus, each block is randomly assigned a value between 0 128

and 1. This value is compared to Pin or Pout (depending to which category the block 129

belongs) to decide whether the block may fire. In total, M “0” blocks (M  L) with 130

value strictly smaller than their reference probability may fire. If M  Nf (t) all M 131

blocks may fire, otherwise Nf (t) blocks may fire. Furthermore, in MM3 and MM5, we 132

consider that the probability of origin firing Plocal may be increased downstream of a 133

replication fork over a distance d. The trans-acting factors sequestered by forks are 134

released and are made available for new initiation events when forks meet. 135

Measuring: the replicated fraction f (t), the rate of origin firing 136

I (t), fork density Nfork (t), eye-to-eye, eye and gap length 137

distributions. 138

The genome is represented as a one-dimensional lattice of 106 elements xi 2 {0, 1}. At 139

each round of calculation the replicated fraction is calculated as f (t) = hxii 140

corresponding to the average value of xi over the genome. 141

The rate of origin firing per length of unreplicated genome per time unit (3 min) is 142

calculated at each round of calculation, by counting the number of newly created “1” 143

blocks, N1 and I (t) = N1
(1�f(t))L�t where �t = 3 min and L = 106. The density of 144

replication forks is calculated at each round of calculation by counting the number of 145

“01” tracks, Nleft, and “10” tracks, Nright and Nforks (t) =
Nright+Nleft

L . The 146

distributions of eye-to-eye distances, eye lengths and unreplicated gap sizes are then 147

computed from the distribution of “0” and “1” tracks after reshaping the data (see 148

below). 149
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Comparing experimental and numerical data. 150

The simulation results were compared to the DNA combing data from Platel et al. [35]. 151

The fluorescence intensities for total DNA and replicated tracks of each fiber were 152

measured and binarized on a Matlab® platform by using a thresholding algorithm. The 153

threshold value was chosen to minimize the difference between the replicated fraction 154

measured by ↵32P-dATP incorporation and by DNA combing. Replicated tracks larger 155

than 1kb were scored as eyes. Gaps were considered significant if > 1kb, otherwise the 156

two adjacent eyes were merged. The eyes whose lengths span from 1 to 3 kb were 157

considered as new origin firing events. The time interval in which these new detectable 158

events can occur was calculated as �t = 3min assuming a constant replication fork 159

velocity of v ⇡ 0.5 kb.min�1. This data reshaping protocol was also applied to 160

simulated DNA molecules, in order to match the spatial and temporal resolutions 161

between the experimental and simulated data. The global replicated fraction of each 162

sample was computed as the sum of all eye lengths divided by the sum of all molecule 163

lengths. To minimize finite molecule length effects in comparisons between data and 164

simulations, the experimental molecule length distribution was normalised and 165

considered as probability density of molecule length in the sample and used to weight 166

the random shredding of the simulated genome at each time (Fig 1.b). The global 167

replication fraction of simulated cut molecules was calculated. Only molecules from the 168

simulation time that had the same global replication fraction as the experimental 169

sample were further considered. 170

Fig 1. Characteristics of combed DNA molecules. a. Example of combed DNA molecule. The top panel is a
fluorescence microscopy of a representative, stretched DNA fiber (green) containing replication eyes (red). The bottom panel
is a schematic illustration of measured parameters in replication studies using DNA combing. b. Molecular length
distribution (global replicated fraction of 8%) of combed DNA fibre. The black open circles are the experimentally measured
and the red curve is the simulated cut molecular length distributions, respectively.

Molecules were sorted by replicated fraction f (t). The rate of origin firing and fork 171

density were calculated for each molecule as a function of f (t) (I (f) and Nfork (f), 172

respectively) for both simulated and experimental data. The experimental I (f), 173
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Nfork (f), eye-to-eye distances, eye and gap length distributions were computed as the 174

averaged value of three independent experiments. 175

Modeling experimental data: parameters optimization. 176

To estimate the parameters of the model, we fitted the six experimental observables 177

(I (f), Nfork (f), replicated fibre, eye-to-eye distances, eye and gap length distribution) 178

using a genetic optimization algorithm (Matlab®). The fitness function was defined as 179

the sum of the square of the differences between experimental and simulated data 180

curves divided by the squared mean of the experimental data curve. The genetic 181

optimization algorithm was set over three subpopulations of 20 individuals with a 182

migration fraction of 0.1 and a migration interval of 5 steps. Each individual defined a 183

set of variables for the simulation and the variables were chosen within the range 184

reported in Table 1 for the model that best fit the data. At each generation, 3 elite 185

children were selected for the next generation. The rest of the population corresponds 186

to a mixture between 60% of children obtained after a scattered crossover between two 187

individuals selected by roulette wheel selection and 40% of children obtained by uniform 188

mutation with a probability of 0.2, leading to a variability of 8%. The genetic algorithm 189

was stopped after 50 generations corresponding to the convergence of the optimization 190

method. As the size of variable space is unknown, we considered a large domain of 191

validity for the variables. This has as an effect to reduce the probability that the 192

optimization process reaches a unique global minimum. For this reason we repeat the 193

genetic optimization method 100 times independently over each data set and consider 194

for each optimization round only the best elite individual.

Table 1. Lower and upper bounds of adjustable variables.

Variable Lower bound Upper bound Significance
N0 1 2000 Initial number of limiting-factor
J (s�1) 0 4000 Rate at which the number of limiting-factor increases
Pout 0 1 Probability of origin firing in the 1� ✓ fraction
Pin 0 1 Probability of origin firing in the ✓ fraction
Plocal 0 1 Probability of origin firing ahead of an active replication fork over a distance d
✓ 0 1 Fraction of genome where the probability of origin firing is Pin

d (kb) 0 1000 Distance over which a fork acts on the probability of origin firing

195

Results 196

Finding the best integrative model of unperturbed S phase 197

Our previous model [35] failed to simultaneously reproduce the eye-to-eye distance 198

distribution and the I (f) of the same control experiment (Fig 2). This discrepancy 199

could be explained if initiation events have a strong tendency to cluster [25, 27]. 200

Clustering produces an excess of small (intra-cluster) and large (inter-cluster) eye-to-eye 201

distances compared to random initiations, but only the former could be detected on 202

single DNA molecules due to their finite length [27]. Chk1 action has been proposed to 203

regulate origins clusters [33]. However, Chk1 inhibition by UCN-01 did not result in the 204

broader eye-to-eye distribution predicted by random origin firing ( Fig 2 c and d), 205

suggesting that other mechanisms than intra-S checkpoint are involved in the origin 206

clustering. We therefore explored the ability of several nested models with growing 207

complexity (designated MM1 to MM5) (S1 Appendix). MM1 corresponds to a mean 208

field hypothesis of origin firing : all potential origins have a constant firing probability 209
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Fig 2. Chk1 does not control origin clustering. The black symbols are experimental data and the red curves are
simulations. (a) and (c) Fitting of I (f) data extracted from raw data published in [35] as described in material and methods
for control and Chk1 inhibition experiments respectively. The discrepancy in values between the extracted data and those
published in [35] are due to difference in thresholding and the lack of smoothing of the extracted data in this work. (b) and
(d) Discrepancy between experimental and simulated distributions of eye-to-eye distances in control and Chk1 inhibition
experiments, respectively.

Pout [38, 46]. MM2 corresponds to MM1 but assuming that replication forks can have a 210

variable speed [47,48]. MM3 corresponds to MM1 with a local perturbation, whereby 211

the proximity of forks facilitates origin firing [30,49] over a distance d downstream of an 212

active fork where the probability of origin firing is Plocal. In MM4 origin firing does not 213

follow the mean field hypothesis but assumes that the genome can be segmented into 214

regions of high and low probabilities of origin firing [31,49] as accepted for most 215

eukaryotes [8, 43, 50–54]. In this scenario, the probability of origin firing of potential 216

origins located within a fraction ✓ of the genome, Pin, is assumed to be higher than the 217

firing probability Pout of potential origins in the complementary fraction 1� ✓. Lastly, 218

MM5 combines the specific features of MM3 and MM4 into a single model. 219

Furthermore, to verify if the localized nature of potential origins [43, 44] can influence 220

the spatio-temporal program of origin firing, each considered scenario was simulated 221

assuming either a continuous or a discrete distribution of potential origins except for 222

MM2. 223

For each model, we coupled dynamic Monte Carlo numerical simulations to a genetic 224

optimization algorithm to find the family of variables that maximized the similarity 225

between the simulated and measured profiles of I (f), replicated fraction of single 226

molecules, global fork density, eye-to-eye distances, gap lengths and eye lengths. MM5 227

with localized potential origins (Fig 3) provided the best fit to the experimental data 228

(S1 Appendix, Figure 9). The increase in concordance between MM5 and the data 229

occurs at the expense of increasing the number of parameters, which is justifiable on 230
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statistical grounds (S1 Appendix,TABLE 2) and the predictive ability of MM5 is 231

verified (S2 Appendix). 232

Fig 3. Schematic representation of MM5. Potential replication origins located in a fraction ✓ of the genome (not
necessary contiguous) have a probability of firing Pin higher than probability of firing Pout of potential origins located in the
complementary genome fraction 1� ✓. The firing of a potential origins requires its encounter with limiting factors which
number N (t) = N0 + Jt increases as S phase progresses. Potential origins fire with a probability Plocal over a distance d
ahead of a replication fork.

We used MM5 to analyse unchallenged, checkpoint inhibited and Chk1 over 233

expressed S phase (S3 Appendix). In all cases MM5 was able to model concomitantly 234

I (f) and eye-to-eye distance distribution (Fig 4). In conclusion, while MM5 does not 235

include all the possible mechanisms involved in DNA replication process and its 236

regulation, it can adequately predict the spatio-temporal dynamics of DNA replication 237

and its regulation by checkpoint mechanisms using a limited number of processes.

Fig 4. MM5 captures the essential processes necessary to model the regulation of DNA replication by
Chk1. a and b. Unchallenged (8% global replication fraction) and Chk1 inhibited samples (22% global replication fraction)
corresponding to the same experiment and harvested at same time. c and d. Unchallenged (46% global replication fraction)
and Chk1 over expressed samples (22% global replication fraction) corresponding to the same experiment and harvested at
same time. The black open circles are experimental data and the dashed red lines are the fit obtained by MM5 model

238
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Retrieving the dynamics of an unchallenged S phase using the 239

MM5 model 240

MM5 faithfully reproduced the temporal and spatial program of DNA replication from 241

unperturbed S phase samples with global replicated fractions of 8%, 19% and 53% (S1 242

Appendix, Figure 9; S3 Appendix, Figures 1 and 2). The fitted values of parameters 243

changed as S phase progressed (Fig 5). However, only changes in J , ✓, Pout and d were

Fig 5. Inferred model parameters by fitting unchallenged S phase data as global replicated fraction
increases. The black circles are the averaged value of the parameter over 100 independent fitting processes and the error
bars are standard-deviations. The green dashed line is the mean value among consecutive parameters which differences are
not statistically significant (S3 Appendix Figure 3).

244

statistically significant (S3 Appendix Figure 3). In particular we found that J increased 245

from 8% to 19% replication and then dropped back at 53% replication. ✓ and Pout 246

increased only from 8% to 19% replication but not later, while d stayed constant 247

between 8% and 19% replication and decreased at 53% replication. 248

These observations suggest that during an unchallenged S phase both the fraction 249

(✓) of the genome with high probability of origin firing and the background probability 250

(Pout) of origin firing outside that fraction increase as S phase progresses. Interestingly, 251

Plocal is higher than Pin and Pout, suggesting that firing of an potential origin 252

significantly favours the firing of nearby potential origins over a distance d, compatible 253

with a chromatin looping process [49]. This fork-related firing process is consistent with 254

the observation that nearby origins tend to fire at similar times, which has been 255

proposed to result from a different regulation of nearby and distant origins by 256

Chk1 [33,35]. 257
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Modeling DNA replication under Chk1 inhibition and over 258

expression 259

To decipher the regulation of origin firing by Chk1, we examined if the MM5 model 260

could also reproduce the replication program observed when the intra-S phase 261

checkpoint was perturbed by the specific Chk1 inhibitor UCN-01 or by Chk1 over 262

expression. We analyzed combed fibres from a replicated sample in the presence of 263

UCN-01 (replicated fraction 22%) and in Chk1 over expression condition (replicated 264

fraction 22%) that had spent the same interval of time in S phase as the control sample 265

(global replicated fraction of 8% for UCN-01 and 46% in presence of Chk1 over 266

expression). The MM5 model reproduced the experimental observations very well (S3 267

Appendix, Figure 4 and Figure 7, GoFglobal = 0.85 for UCN-01 and GoFglobal = 0.65 268

for Chk1 over expression). The two parameters J and ✓, were significantly higher in the 269

UCN-01 treated sample than in the control samples with either the same harvesting 270

time or a similar replicated fraction (22% and 19%, respectively) (Fig 6 and S3 271

Appendix Figure 5). Pout was higher in the UCN-01 treated sample than in the control 272

samples with the same harvesting time but unchanged once comparing similar 273

replicated fraction. In the same manner, J , and ✓, were significantly lower in the Chk1 274

over expressed sample than in the control sample with the same incubation time 275

(Fig 6 b and S3 Appendix Figure 8). However, Pout and the other parameters were 276

unchanged compared to control samples. 277

MM5 belongs to the general family of KJMA models that probabilistically describes 278

the state of a nucleating and growing system [55]. In this framework, probabilities 279

describing the nucleation are analogous to the probabilities of origin firing [56] and their 280

values only depend on the parameters that describe the state of the system that in our 281

case only the global fraction of replicated DNA. Hence, It seems natural that for two 282

samples with the same replication fraction the values of probabilities Pout, Pin and 283

Plocal remain unchanged. 284

These results suggest that upon Chk1 inhibition (i) a fraction ✓ of the genome, 285

where initiation probability is high, increases during S phase; (ii) the probability of 286

origin firing is insensitive to Chk1 within this fraction (Pin is unaltered) but is increased 287

in the rest of the genome (Pout is increased) ; (iii) the import/activation rate of the 288

limiting factor, J , is increased, while the starting number of factors, N0, is unaffected. 289

As was expected, MM5 detected that Chk1 inhibition by UCN-01 increased origin 290

firing [34,35,57–60]. However, upon Chk1 over expression (i) the fraction ✓ of the 291

genome decreases, (ii) Pout is insensitive to Chk1 over expression and (ii) the 292

import/activation rate of the limiting factor, J , is decreased, while the starting number 293

of factors, N0, is unaffected. As was expected, MM5 detected that Chk1 over expression 294

reduced the number of fired origins [35]. 295

In conclusion , the level of Chk1 appears to regulate the kinetics of S phase 296

progression (i) by limiting the genome fraction that escapes its inhibitory action, (ii) by 297

down regulating the probability of origin firing outside this fraction [34, 57, 58, 61] at the 298

start of S phase, and (iii) by controlling the import/activation rate of limiting firing 299

factors [34]. However, no significant differences in the strength of origin regulation by 300

nearby forks (Plocal) was observed after Chk1 inhibition or over expression, suggesting 301

that this local action is not mediated by Chk1 [33,39]. 302

Discussion 303

We explored several biologically plausible scenarios to understand the spatio-temporal 304

organization of replication origin firing in Xenopus egg extracts. We used a quantitative 305

approach to objectively discriminate which model best reproduced the genomic 306
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Fig 6. J , ✓, and the Pout are the only parameters that change when comparing unchallenged, (a) Chk1
inhibited and (b)Chk1 over-expressed S phase The black circle is the averaged value of the parameter over 100
independent fitting processes of unchallenged S phase and the error bars are standard-deviations. The red star (a) is the
averaged value of the parameter over 100 independent fitting processes of Chk1 inhibited sample and the error bars represent
the standard-deviations. The green star (b) is the averaged value of the parameter over 100 independent fitting processes of
Chk1 over-expressed sample and the error bars represent the standard-deviations.
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distributions of replication tracks as analyzed by DNA combing at different stages of S 307

phase. We found that model MM5 with discrete potential origins best reproduced the 308

experimental data with a minimal number of adjustable parameters. This model 309

combines five assumptions [29,31,35,38,43,44,46,49,62,63]: 1) origin firing is stochastic, 310

2) the availability of a rate-limiting firing factor captures the essential dynamics of the 311

complex network of molecular interactions required for origin firing, 3) the speed of 312

replication forks is constant 4) origins fire in a domino-like fashion in the proximity of 313

active forks [49, 64] ; 5) the probability of origin firing is heterogeneous along the 314

genome [31,43]. 315

We used MM5 to model DNA combing data from Xenopus egg extracts in presence 316

or absence intra-S checkpoint inhibition and activation. In all conditions, this model 317

was able to match the experimental data in a satisfactory manner. Furthermore, the 318

inferred parameters values indicated that the global probability of origin firing and the 319

rate of activation/import of the limiting firing factor (J) were increased after Chk1 320

inhibition by UCN-01 [34,59,65] and decreased after Chk1 over expression. Importantly, 321

this model assumes a heterogeneous probability of origin firing and suggests that Chk1 322

exerts a global origin inhibitory action during unperturbed S phase [35] by following two 323

possible mechanisms: (i) the first path corresponds to the regulation of the number of 324

available replication limiting factors by Chk1 protein and (ii) the second path 325

corresponds to the ability of Chk1 protein to reduce the capacity of potential origins to 326

fire outside domains with high probability of origin firing. The strength of the second 327

path decreases from the beginning of S phase to reach its minimal value after the first 328

quarter of S phase. On the other hand, the constancy of the initial number of limiting 329

factors N0 in the presence or absence of UCN-01 or Chk1 over expression suggests that 330

Chk1 does not actively control origins or the available number of replication limiting 331

factors before S phase actually starts [36,66,67]. Interestingly, a better statistical match 332

between the model and the data was obtained by assuming that the rate of DNA 333

synthesis is variable downstream of replication forks. Indeed, the downstream of a 334

replication forks the rate of DNA synthesis depends on the speed of replication fork and 335

the frequency of firing of closeby potential replication origins [55]. Our analysis suggests 336

that this variability cannot be mapped to a model with variable fork speed, but it is 337

compatible with an increased probability of origin firing in the neighbourhood of an 338

active replication fork. These observations indicate that MM5 can deliver a reliable, 339

minimally complex picture of origin firing regulation in Xenopus egg extracts. 340

The global inhibition of origin firing by Chk1 341

We previously showed that Chk1 is active and limits the firing of some potential origins 342

in an unperturbed S phase [35]. Therefore, the earliest origins must be immune to Chk1 343

inhibition while later potential origins are strongly inhibited. The comparisons among 344

the modelling of Chk1 inhibition, over expression and of unperturbed S phase data 345

suggests that i) the probability of origin firing is reduced by active Chk1 in a fraction 346

1� ✓ of the genome, ii) in this Chk1-sensitive fraction the probability of origin firing 347

increases as S phase progresses and iii) the probability of origin firing is unaffected by 348

Chk1 inhibition within the Chk1-immune, ✓ fraction of the genome. Therefore, this 349

model supports the idea that at the start of S phase, some origins fire unimpeded by 350

Chk1, whereas others remain silent. The latter only becomes progressively relieved from 351

Chk1 inhibition as S phase progresses. Indeed, recent works in cultured mammalian 352

cells [68], Drosophila [60] and Xenopus [69] showed that in unperturbed S phase the 353

global origin firing inhibitory effect (by Chk1 and Rif1) is reduced as S phase progresses. 354

Interestingly, a recent study in unperturbed yeast cells suggests that dNTPs are limiting 355

at the entry into S phase, so that, similar to Xenopus [70], the firing of the earliest 356

origins creates a replication stress that activates the Rad53 checkpoint which prevents 357
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further origin firing. Rad53 activation also stimulates dNTP synthesis, which in turn 358

down regulates the checkpoint and allows later origin firing [36]. However, it remains 359

uncertain if this feed-back loop does also exist in Xenopus egg extracts which contain 360

an abundant pool of dNTPs. 361

A key mechanism of our model is the enhancement of origin firing close to active 362

forks. The necessity to introduce this mechanism supports the idea that the rate of 363

DNA synthesis depends on the S-phase time and position of replication forks. During 364

our modelling based on statistical ground we showed that the domino-like view of DNA 365

replication progression [49,64] better describes the measured quantities from combed 366

DNA molecules than the hypothesis of variable fork velocity [71]. It was previously 367

shown in Xenopus egg extracts that the probability of origin firing could depend on the 368

distance between left and right approaching forks [30]. While this could in principle 369

reflect an origin firing exclusion zone ahead of forks [23, 49], our model did not allow for 370

a negative Plocal but the fact that the discrete distribution of potential replication 371

origins better describes the experimental data than the continuous distribution confirm 372

the necessity of the existence of origin firing exclusion zones between two converging 373

replication forks. Other proposed mechanisms for origin clustering include the relief of 374

Chk1 inhibition ahead of active forks by checkpoint recovery kinase polo like kinase 1 375

(Plk1) [35, 39]. However, we find that the range, d, and the strength, Plocal, of origin 376

stimulation by nearby forks, were both insensitive to checkpoint inhibition or activation 377

(Fig 6 a and b). Other potential mechanisms such as propagation of a supercoiling wave 378

ahead of forks may better explain this insensitivity to Chk1 inhibition [72]. 379

Heterogeneous probability of origin firing 380

In this model, the origin firing process in Xenopus egg extracts is not reliably described 381

by a mean-field approximation. In other words, the probability of origin firing is 382

heterogeneous along the genome. Based on this hypothesis, one important outcome of 383

our study is that the genome can be segmented into domains where origin firing 384

probability is either high and immune to Chk1 inhibition or low and subjected to a 385

tight Chk1 control that attenuates as S phase progresses. This picture challenges the 386

common view that the embryonic Xenopus in vitro system would lack the temporal 387

regulation by the intra-S checkpoint at the level of large chromatin domains in contrast 388

to findings in somatic vertebrate cells where Chk1 controls cluster or replication foci 389

activation [61]. However, observations of replicating nuclei in Xenopus system have 390

shown that early replication foci are conserved in successive replication cycles, 391

supporting the heterogeneous domain hypothesis [32]. Furthermore, we found that the 392

fraction of the genome covered by these domains increases and that the inhibitory 393

action of Chk1 decreases over time during an unperturbed S phase (Fig 5 and Fig 6), 394

consistent with the idea that as S phase progresses more regions of the genome evade 395

the checkpoint inhibition of origins. By comparing samples that have spent the same 396

time interval in S phase or that have reached the same replicated fraction in the absence 397

and presence of UCN-01 (Fig 6 a) or have spent the same time interval in S phase in a 398

Chk1 over-expressed condition (Fig 6 b), we noticed that the probability of origin firing 399

in the Chk1-immune domains (Pin) did not change upon Chk1 inhibition or over 400

expression. This further suggests that these domains actually escape the regulation of 401

origin firing by Chk1 that rules the rest of the genome. It is an interesting observation 402

that in Chk1-immune regions where the probability of origin firing is high, the temporal 403

difference between two firing events would be smaller than in other regions of the 404

genome. This leads to an observed synchrony of origin firing and therefore to an 405

effective observed clustering of replication eyes on a single DNA fibre. 406
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Conclusion 407

All together the results of our modelling approach and the existing literature suggest 408

that in the Xenopus system the position of early replicating, Chk1-immune domains is 409

conserved in individual nucleus. However, there is no experimental or numerical 410

evidence that the positions of these domains are conserved in a population of nuclei. 411

Assuming that the position of these domains changes randomly from one nucleus to 412

another would result in a flat mean replication timing pattern and involves that each 413

nucleus has its specific replication regulation process. While we cannot reject such a 414

hypothesis objectively, the recent report of a structured replication timing program in 415

zebrafish early embryos [54] encourages us also to assume the hypothesis that in 416

Xenopus early embryos the position of early replication domains are conserved from one 417

nucleus to another leading not to a flat but structured mean replication timing pattern 418

similar to other eukaryotic systems [6, 8, 51]. 419

Supporting information 420

S1 Appendix. Choosing the best model. In this appendix we describe in detail 421

why MM5 is statistically the best model to describe the data. 422

S2 Appendix. Testing the predictive capacity of MM5. In this appendix we 423

test the predictive capacity of the fitting procedure coupled to MM5. 424

S3 Appendix. Fitting the experimental data with MM5. In this appendix we 425

extract the values of free parameters from experimental data for unchalanged, Chk1 426

inhibited and Chk1 over-expressed S phase and discuss their variations. 427
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21. Hyrien O, Maric C, Méchali M. Transition in Specification of Embryonic
Metazoan DNA Replication Origins. Science. 1995;270(5238):994–997.
doi:10.1126/science.270.5238.994.

22. Hyrien O, Marheineke K, Goldar A. Paradoxes of Eukaryotic DNA Replication:
MCM Proteins and the Random Completion Problem. Bioessays.
2003;25(2):116–125. doi:10.1002/bies.10208.

23. Lucas I, Chevrier-Miller M, Sogo JM, Hyrien O. Mechanisms Ensuring Rapid and
Complete DNA Replication despite Random Initiation in Xenopus Early
embryos11Edited by M. Yaniv. Journal of Molecular Biology.
2000;296(3):769–786. doi:10.1006/jmbi.2000.3500.

24. Herrick J, Stanislawski P, Hyrien O, Bensimon A. Replication Fork Density
Increases during DNA Synthesis in X. Laevis Egg extracts11Edited by M. Yaniv.
Journal of Molecular Biology. 2000;300(5):1133–1142. doi:10.1006/jmbi.2000.3930.

25. Blow JJ, Gillespie PJ, Francis D, Jackson DA. Replication Origins in
XenopusEgg Extract Are 5–15 Kilobases Apart and Are Activated in Clusters
That Fire at Different Times. J Cell Biol. 2001;152(1):15–26.

26. Marheineke K, Hyrien O. Aphidicolin Triggers a Block to Replication Origin
Firing inXenopus Egg Extracts. J Biol Chem. 2001;276(20):17092–17100.
doi:10.1074/jbc.M100271200.

27. Marheineke K, Hyrien O. Control of Replication Origin Density and Firing Time
in Xenopus Egg Extracts ROLE OF A CAFFEINE-SENSITIVE,
ATR-DEPENDENT CHECKPOINT. J Biol Chem. 2004;279(27):28071–28081.
doi:10.1074/jbc.M401574200.

28. Goldar A, Marsolier-Kergoat MC, Hyrien O. Universal Temporal Profile of
Replication Origin Activation in Eukaryotes. PLOS ONE. 2009;4(6):e5899.
doi:10.1371/journal.pone.0005899.

29. Herrick J, Jun S, Bechhoefer J, Bensimon A. Kinetic Model of DNA Replication
in Eukaryotic Organisms. Journal of Molecular Biology. 2002;320(4):741–750.
doi:10.1016/S0022-2836(02)00522-3.

30. Jun S, Herrick J, Bensimon A, Bechhoefer J. Persistence Length of Chromatin
Determines Origin Spacing in Xenopus Early-Embryo DNA Replication:
Quantitative Comparisons between Theory and Experiment. Cell Cycle.
2004;3(2):223–229.

31. Gindin Y, Valenzuela MS, Aladjem MI, Meltzer PS, Bilke S. A Chromatin
Structure-Based Model Accurately Predicts DNA Replication Timing in Human
Cells. Mol Syst Biol. 2014;10(3):722. doi:10.1002/msb.134859.

January 27, 2021 16/20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.06.22.164673doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164673
http://creativecommons.org/licenses/by-nc-nd/4.0/


32. Labit H, Perewoska I, Germe T, Hyrien O, Marheineke K. DNA Replication
Timing Is Deterministic at the Level of Chromosomal Domains but Stochastic at
the Level of Replicons in Xenopus Egg Extracts. Nucleic Acids Research.
2008;36(17):5623–5634. doi:10.1093/nar/gkn533.

33. Ge XQ, Blow JJ. Chk1 Inhibits Replication Factory Activation but Allows
Dormant Origin Firing in Existing Factories. The Journal of Cell Biology.
2010;191(7):1285–1297. doi:10.1083/jcb.201007074.

34. Guo C, Kumagai A, Schlacher K, Shevchenko A, Shevchenko A, Dunphy WG.
Interaction of Chk1 with Treslin Negatively Regulates the Initiation of
Chromosomal DNA Replication. Molecular Cell. 2015;57(3):492–505.
doi:10.1016/j.molcel.2014.12.003.

35. Platel M, Goldar A, Wiggins JM, Barbosa P, Libeau P, Priam P, et al. Tight
Chk1 Levels Control Replication Cluster Activation in Xenopus. PLoS One.
2015;10(6). doi:10.1371/journal.pone.0129090.

36. Forey R, Poveda A, Sharma S, Barthe A, Padioleau I, Renard C, et al. Mec1 Is
Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA
Replication. Molecular Cell. 2020;doi:10.1016/j.molcel.2020.02.021.

37. Zegerman P, Diffley JFX. Checkpoint Dependent Inhibition of DNA Replication
Initiation by Sld3 and Dbf4 Phosphorylation. Nature. 2010;467(7314):474–478.
doi:10.1038/nature09373.

38. Goldar A, Labit H, Marheineke K, Hyrien O. A Dynamic Stochastic Model for
DNA Replication Initiation in Early Embryos. PLoS ONE. 2008;3(8):e2919.
doi:10.1371/journal.pone.0002919.

39. Trenz K, Errico A, Costanzo V. Plx1 Is Required for Chromosomal DNA
Replication under Stressful Conditions. The EMBO Journal. 2008;27(6):876–885.
doi:10.1038/emboj.2008.29.

40. Dimitrova DS, Gilbert DM. Temporally Coordinated Assembly and Disassembly
of Replication Factories in the Absence of DNA Synthesis. Nat Cell Biol.
2000;2(10):686–694. doi:10.1038/35036309.

41. Thomson AM, Gillespie PJ, Blow JJ. Replication Factory Activation Can Be
Decoupled from the Replication Timing Program by Modulating Cdk Levels. The
Journal of Cell Biology. 2010;188(2):209–221. doi:10.1083/jcb.200911037.

42. Hoogenboom WS, Klein Douwel D, Knipscheer P. Xenopus Egg Extract: A
Powerful Tool to Study Genome Maintenance Mechanisms. Developmental
Biology. 2017;428(2):300–309. doi:10.1016/j.ydbio.2017.03.033.

43. Yang SCH, Rhind N, Bechhoefer J. Modeling Genome-Wide Replication Kinetics
Reveals a Mechanism for Regulation of Replication Timing. Molecular Systems
Biology. 2010;6(1):404. doi:10.1038/msb.2010.61.

44. Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The Eukaryotic
Bell-Shaped Temporal Rate of DNA Replication Origin Firing Emanates from a
Balance between Origin Activation and Passivation. eLife. 2018;7:e35192.
doi:10.7554/eLife.35192.

January 27, 2021 17/20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.06.22.164673doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164673
http://creativecommons.org/licenses/by-nc-nd/4.0/


45. Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC.
MCM2–7 Complexes Bind Chromatin in a Distributed Pattern Surrounding the
Origin Recognition Complex in Xenopus Egg Extracts. J Biol Chem.
2002;277(36):33049–33057. doi:10.1074/jbc.M204438200.

46. Gauthier MG, Bechhoefer J. Control of DNA Replication by Anomalous
Reaction-Diffusion Kinetics. Phys Rev Lett. 2009;102(15):158104.
doi:10.1103/PhysRevLett.102.158104.
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Appendix 1

1 Different models 1

To model experimental observations a series of nested models (Table 1) were compared 2

with experimental data. Below are the fits of each model to experimental sample with

Table 1. The nested models and their variables

Model N0 J Pout Pin Plocal ✓ d v
MM1

p p p

MM2
p p p p

MM3
p p p p p

MM4
p p p p p

MM5
p p p p p p p

3

8% global replicated fraction. To assess the goodness of the fit (GoF) we considered the 4

normalised mean square error between the simulated profile and the fitted entity as the 5

indicator of likelihood (GoF = 1� 1
N

PN
i=1

(yi
fit�yi

exp)
2

(yi
exp�hyexpi)2

, where hyexpi represents 6

average value of the experimental data set and N is the number of data points ). GoF 7

costs vary between �1 (bad fit) to 1 (perfect fit). If GoF = 0, yfit is no better than a 8

straight line at matching experimental data. The global cost is calculated as 9

GoFglobal =
1
6

P6
1 GoFi where i represents one fitted entity. All models reproduce with 10

the same accuracy the distribution of replicated fibres, gaps lengths and eyes lengths 11

distributions. The major contributions to score values come from residuals of average 12

fork density, average I (f) and eye-to-eye distances distribution fits. From the value of 13

GoFglobal (Table 2), the model that best described the whole data set is the MM5 with 14

localized distribution of potential origins: its GoFglobal value is closest to one. However, 15

MM5 also has the highest number of fitting variables (7) compared to other models ( 16

MM1 has 3 fitting variables, MM2 has 4 fitting variables,MM3 and MM4 have 5 fitting 17

variables), and facilitating fit to the data. 18

1/12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.06.22.164673doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 1. Modeling experimental data with MM1 model in the case where the potential origins are
continuously distributed along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 2. Modeling experimental data with MM3 model in the case where the potential origins are
continuously distributed along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 3. Modeling experimental data with MM4 model in the case where the potential origins are
continuously distributed along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 4. Modeling experimental data with MM5 model in the case where the potential origins are
continuously distributed along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 5. Modeling experimental data with MM1 model in the case where the potential origins form a discrete
set along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 6. Modeling experimental data with MM2 model in the case where the potential origins form a discrete
set along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 7. Modeling experimental data with MM2 model in the case where the potential origins form a discrete
set along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 8. Modeling experimental data with MM4 model in the case where the potential origins form a discrete
set along the genome. Open circles are experimental data and the red dashed line is the fit.
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Fig 9. Modeling experimental data with MM5 model in the case where the potential origins form a discrete
set along the genome. Open circles are experimental data and the red dashed line is the fit.

Table 2. Values of GoFglobal and fitting residual norm ((yexp � yfit)
2) for each model.

Continuous Discrete Continuous Discrete

model GoFglobal GoFglobal (yexp � yfit)
2 (yexp � yfit)

2

MM1 -0.95 -5.28 0.66 0.56
MM2 -8.34 0.53
MM3 0.85 0.72 0.08 0.10
MM4 0.87 0.88 0.08 0.09
MM5 0.90 0.92 0.08 0.05
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2 Models comparison 19

To address whether the better data fit with MM5 is solely due to the higher degree of 20

complexity of the model, we used two different approaches : a traditional statistical 21

hypothesis testing: the extra sum of squares F test [1] and the Akaike’s criterion 22

(�AIC) that is based on information theory [2]. We can objectively reject MM1 and 23

MM2 as they did not reproduce in a satisfactory manner the averaged fork density, I (f) 24

and eye-to-eye distances distributions (Figures 1, 5 and 6). MM3 and MM4 satisfactorily 25

reproduced all measured quantities (Figures 2 , 3, 7 and 8 ) but with lower GoFglobal 26

value than the MM5 models (Table 2). The discrete MM5 model has higher GoFglobal 27

value than the continuous one, whereas the continuous MM3 and MM4 models were 28

better than or equal to their discrete version, respectively (Table 2). To choose the best 29

model, we compared the discrete MM5 model, continuous MM3, MM4 and MM5 30

corresponding to fits with highest GoFglobal values (Table 2). Comparing the discrete 31

MM5 with the continuous MM3, MM4 and MM5 models led in all cases to F > 1 with 32

p-values p < 10�6 and negative �AIC values (Table 3). To verify if the increase in 33

model’s complexity does always leads to F > 1 and negative �AIC values, we fitted the 34

experimental data with the MM6 model as described in Appendix 2 (Figure 10, 35

GoFglobal = 0.87 and (yexp � yfit)
2 = 0.07) that has 10 adjustable parameters. 36

Fig 10. Modeling experimental data with MM6 model in the case where the potential origins form a
discrete set along the genome. Open circles are experimental data and the red dashed line is the fit.

In this case F < 1 and �AIC > 0 (Table 3), implying that MM6 is overfitting the
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data. The discrete MM5 model is therefore the best model and the observed increase in
GoFglobal is not the consequence of increased complexity of the model.

Table 3. Values of F-test, the associated p-value (p) and the �AIC when the discrete MM5 model is
compared with continuous MM3, MM4 and MM5 model.

model F p �AIC
Continuous MM3 19.3 1.5⇥10�7 -30.2
Continuous MM4 16.9 8.3⇥10�7 -26.6
Continuous MM5 1 Not defined -31.1
MM6 �5.3 1 26.3

References
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Appendix 2

The real DNA replication process is far more complex than any of the considered 1

models. To explore how accurately MM5 can map a more complex process, we built, 2

based on replication process in other eukaryotes [1–7] and our previous model [8], a 3

more elaborate model (MM6) to generate in silico data with 8%, 19% and 53% global 4

replicated fractions. 5

1 The MM6 model used to generate the in silico 6

data 7

In MM6, localized potential origins were distributed with a uniform density ⇢ = 1 kb�1
8

and Ndom domains of size ldom were randomly positioned along a genome of length 9

L = 105 kb. As in previous works, we assumed that at the start to S phase N0 limiting 10

factors were available for origin firing and their number, N (t), increased during the 11

course of S phase as N (t) = N0 + Jt, and that each factor was sequestrated by new 12

forks upon origin activation and released and made available again for origin firing upon 13

coalescence of converging forks. Forks progressed at a constant velocity 14

v = 0.5 kb.min�1. The probability of origin firing by encounter with a limiting factor 15

was higher inside the domains (P0 + Pdom) than outside them (P0). In addition, origins 16

outside but not inside the domains had a non-null probability Pinhib of being inhibited. 17

Two local effects were allowed to act within a distance dfork from active forks: P0 was 18

enhanced by Pfork and origin inhibition was relieved with a probability Pdeinhib. We 19

simulated 300 complete S phases using the 10 parameter values listed in Table 1, and 20

extracted snapshots at 8%, 19% and 53% global replicated fractions. Each snapshot was 21

considered as an independent sample and for each of them: i) the genome was randomly 22

cut following the molecule length distribution presented in Figure 1 of materials and 23

methods, ii) the data were reshaped as described in material and methods to account 24

for the finite experimental resolution and iii) the distributions of I (f), replicated 25

fraction of single fibres, global fork density, eye-to-eye distances, gap lengths and eye 26

lengths were determined.

Table 1. Values of MM5’s parameters. These values are chosen arbitrarily.

Parameter Value
N0 107
J(s�1) 29
P0 0.11
Pinhib 0.96
Pfork 0.28
d(kb) 94.91
Ndom 196
ldom 192.39
Pdeinhib 0.06
Pdom 0.73

27
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2 Fitting the in silico data by MM5 model 28

By independently fitting the simulated profiles of each global replicated fraction, we 29

implicitly assume that samples could originate from separated experiments, hence MM5 30

parameters values are possibly different for each global replicated fraction. This allows 31

us to accurately reproduce observations from each sample (Figures 1, 2 and 3). 32

Fig 1. Modeling 8% global replicated fraction simulated data with discrete MM5 model. Open circles are
simulated data and the red dashed line is the fit. GoFglobal = 0.96
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Fig 2. Modeling 19% global replicated fraction simulated data with discrete MM5 model. Open circles are
simulated data and the red dashed line is the fit. GoFglobal = 0.97
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Fig 3. Modeling 53% global replicated fraction simulated data with discrete MM5 model. Open circles are
simulated data and the red dashed line is the fit. GoFglobal = 0.82
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3 Reduction of MM6 to MM5 33

In the MM6 model origins fire globally with two origin firing probabilities (P0 and 34

P0 + Pdom) eventually increased by a local origin firing probability (Pfork) close to an 35

active fork, and the genome is divided into domains that either support or escape some 36

inhibitory probability of firing (assumed to represent inhibition by the intra-S 37

checkpoint). As the position of these domains is not identical between repeated 38

simulations, we can reduce their description by specifying a fraction ✓ (✓ = Ndomldom
L ) of 39

the genome where origins escape checkpoint inhibition. In these domains, the global 40

origin firing probabilityPin = 1
2 (P0 + Pdom), with the 1

2 pre-factor being due to 41

normalization considerations. The local probability of origin firing (close to a fork) 42

inside a domain is P in
local =

1
2 (P0 + Pdom + Pfork). Outside these domains, the global 43

probability of origin firing is modulated by the probability of origin inhibition 44

Pout =
1
2P0 (1� Pinhib). In the same manner the local probability of origin firing is 45

modulated by the action of intra-S checkpoint and the local cancellation of inhibition 46

process P out
local =

1
2 (P0 + Pfork) [1 + Pinhib (Pdeinhib � 1)]. Local probabilities of origin 47

firing only influence origins over a distance dfork downstream of a fork. The MM5 model 48

contains a unique local probability of origin firing, that corresponds to the average value 49

of the two local probabilities of origin firing, Plocal = ✓P in
local + (1� ✓)P out

local. Therefore, 50

by considering the essential ingredients of the MM6 model, we combined the parameters 51

of the model to retrieve the parameters of MM5 (TABLE 2). The values of these

Table 2. Reducing MM6 to MM5.

MM5 equivalence with MM6

N0 N0

J (s�1) J
✓ Ndomldom

L
Pin

1
2 (P0 + Pdom)

Plocal
1
2 (P0 + Pfork) [1 + (1� ✓)Pinhib (Pdeinhib � 1)] + ✓Pdom

Pout
1
2P0 (1� Pinhib)

d (kb) d

52

parameters can be compared directly to parameters of MM5 model obtained from the 53

fitting of the simulated data for each sample (TABLE 3). To assess if the difference 54

between the expected and the inferred value of a parameter is statistically significant we 55

calculate t = (expected value�inferred value)2

error2 , for t � 1 the difference is statistically 56

significant otherwise it is not. The values of parameters changed as the global replicated 57

fraction increased (Figure 4 and TABLE 3). To assess the level of significance of these 58

variations we calculated �2 = (parameter1�parameter2)
2

error21+error22
coefficient between the values of 59

the same parameter obtained for different global replicated fraction. If �2 < 1 the 60

difference between the two values was not statistically significant otherwise it was 61

significant. Figure 5 shows that the differences of predicted parameters values among 62

the 3 considered samples were not statistically significant, as was expected. All t < 1 63

and �2 < 1 (Figure 5), meaning the constancy of parameters values for all three 64

samples. Therefore, we conclude that the optimization procedure was able to 65

circumscribe the expected parameters values in an accurate manner for each sample. It 66

should be noted that we choose a very conservative criterion to assess if two parameters 67

are different or not. The conditions of �2 = 1 or t = 1 are equivalent to a confidence 68

level of ↵ = 10�7 in the case of a two sided and one sided t statistics. In other words, 69

with our criterion the probability to find that the values of two parameters are different 70

by chance is smaller than 10�7. 71
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Fig 4. The fitting strategy infers accurately the expected values for the reduced MM6 free parameters. The
black circles correspond to the averaged value of the parameter over 100 independent fits and the error bars are the
standard-deviations. The solid blue line is the expected value of the parameter as obtained in TABLE 3. The red dashed line
is the mean value of the parameter obtained by averaging the parameter inferred values over the 3 samples.

Table 3. Comparison between the expected and inferred values of MM5 parameters.

MM5 Input 8% 19% 53%
N0 107 83.86 ± 32 (t < 1) 125 ± 29 (t < 1) 129 ± 26 (t < 1)
J (s�1) 29 43.6 ± 46 (t < 1) 17 ± 9 (t < 1) 27 ± 3.4 (t < 1)
✓ 0.38 0.25 ± 0.2 (t < 1) 0.35 ± 0.16 (t < 1) 0.42 ± 0.1 (t < 1)
Pin 0.42 0.4 ± 0.2 (t < 1) 0.41 ± 0.17 (t < 1) 0.5 ± 0.2 (t < 1)
Plocal 0.22 0.23 ± 0.09 (t < 1) 0.17 ± 0.05 (t < 1) 0.23 ± 0.04 (t < 1)
Pout (⇥ 10�3) 2.2 1.1 ± 1 (t < 1) 1.9 ± 1 (t < 1) 2.3 ± 1 (t < 1)
d (kb) 94.91. 135 ± 86 (t < 1) 119 ± 57 (t < 1) 51 ± 32 (t < 1)

The ability of the fitting procedure i) to circumscribe the values of MM5 model 72

parameters close to the expected ones (TABLE 2) and ii ) to retrieve the constancy of 73

these parameter’s values as the global degree of replication increases (Figure 5) 74

demonstrates the adequacy of our fitting strategy to recover the dynamic of DNA 75

replication during S phase in the framework of MM5 model by setting the null 76

hypothesis as : the values of MM5 parameters do not change as S phase progresses. 77

Therefore, rejection of this hypothesis for a considered parameter means its variation 78

during S phase. 79
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Fig 5. The values of each MM5 model parameter were compared pair-wise between samples with different
global replicated fraction. The statistical significance of their difference was assessed by �2 test and represented as a
binary heat map where not statistically significant differences are coloured in white and statistically significant difference are
coloured in blue. The number in each box is the �2 coefficient.

In conclusion, any variation in parameter value detected by MM5 when analysing 80

samples at different time points independently can be considered as statistically 81

significant. Therefore, MM5 can adequately predict complex DNA replication dynamics 82

using a limited number of processes. 83
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Appendix 3

1 Fitting the experimental profiles by MM5 model : 1

Unchallenged S phase 2

We fitted independently the measured profiles for each global replicated fraction by 3

discrete MM5 model. The fits of observations from 8% global replicated fraction are 4

presented in Appendix 1, Figure 9 and those of 19% and 53% are presented in Figures 1 5

and 2 respectively. In TABLE 1 we give the value of the fitted parameters. The 6

reliability of observed differences among inferred MM5 parameters are assessed 7

statistically by using �2
coefficient as defined in Appendix 2 (Figure 3). 8

Fig 1. Modeling measured sample with 19% global replicated fraction with the discrete MM5 model. Open

circles are simulated data and the red dashed line is the fit. GoFglobal = 0.96
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Fig 2. Modeling measured sample with 53% global replicated fraction with the discrete MM5 model. Open

circles are simulated data and the red dashed line is the fit. GoFglobal = 0.90
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Fig 3. The values of each MM5 model parameter were compared pair-wise between samples with different
global replicated fraction. The statistical significance of their difference was assessed by �2

test and represented as a

binary heat map where the white colour represents no statistically significant difference and the blue colour represents

statistically significant difference. The number in each box is the �2
coefficient.

2 Fitting the experimental profiles by MM5 model : 9

Chk1 inhibited S phase 10

We fitted with the discrete MM5 model a sample that had spent in the presence of 11

UCN-01 the same time interval in S phase as the control sample with 8% global 12

replicated fraction. The global replicated fraction of the of the UCN-01 sample was 22%. 13

The fits are presented in Figure 4 and the obtained parameters values are given in 14

TABLE 1. The reliability of observed differences among inferred MM5 parameters 15

between controls and Chk1 inhibited sample are assessed statistically by using �2
16

coefficient as defined in Appendix 2 (Figure 5). 17

3/8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.06.22.164673doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.164673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 4. Modeling a measured sample with 22% global replicated fraction in presence of UCN-01with
discrete MM5 model. Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.85
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Fig 5. a. Comparing samples that have spent the same time interval in S phase. b. Comparing samples
that have similar global replication fractions. The values of each MM5 model parameter were compared pair-wise

between samples with different global replicated fraction. The statistical significance of their difference was assessed by �2

test and represented as a binary heat map where the white colour represents no statistically significant difference and the blue

colour represents statistically significant difference. The number in each box is the �2
coefficient.
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3 Fitting the experimental profiles by MM5 model : 18

Chk1 over-expressed S phase 19

We fitted with the discrete MM5 model a Chk1 over-expressed sample with the same 20

incubation time than the control sample with 46% global replicated fraction. The global 21

replicated fraction of the of the Chk1 over-expressed sample was 22%. The fits are 22

presented in Figures 6 and 7 and the obtained parameters values are given in TABLE 1. 23

The reliability of observed differences among inferred MM5 parameters between controls 24

and Chk1 over-expressed sample are assessed statistically by using �2
coefficient as 25

defined in Appendix 2 (Figure 8). 26

Fig 6. Modeling a measured sample with 46% global replicated fraction with discrete MM5 model. Open

circles are simulated data and the red dashed line is the fit. GoFglobal = 0.65
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Fig 7. Modeling a measured sample with 22% global replicated fraction where Chk1 is over-expressed with
discrete MM5 model. Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.74
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Fig 8. Comparing samples that have spent the same time interval in S phase. The values of each MM5 model

parameter were compared pair-wise between samples with different global replicated fraction. The statistical significance of

their difference was assessed by �2
test and represented as a binary heat map where the white colour represents no

statistically significant difference and the blue colour represents statistically significant difference. The number in each box is

the �2
coefficient.

Table 1. Values and the corresponding errors of MM5 parameters for the best fit of each sample and each
condition.

MM5 unchallenged: 8% unchallenged: 19% unchallenged: 53% UCN-01: 22% unchallenged: 46% over-expressed: 22%

N0 1064 ± 135 1043 ± 116 1002 ± 106 1006 ±102 880±58.5 784±58.7

J (s�1
) 601 ± 198 1026 ± 196 404 ± 151 1467 ± 89 1190±114 569±82.1

✓ 0.25 ± 0.06 0.43 ± 0.04 0.39 ± 0.05 0.56 ± 0.032 0.50±0.01 0.42±0.02

Pin 0.41 ± 0.07 0.34 ± 0.07 0.32 ± 0.07 0.42 ± 0.07 0.33±0.03 0.36±0.04

Plocal 0.43 ± 0.06 0.43 ± 0.06 0.52 ± 0.06 0.38 ± 0.06 0.37±0.03 0.45±0.03

Pout 0.09± 0.02 0.17 ± 0.04 0.15 ± 0.03 0.23 ± 0.04 0.15±0.02 0.23±0.03

d (kb) 143.8 ± 36.3 91.5 ± 25.6 56.1 ± 23.6 119.3 ± 29.3 139.9±16.9 178.4±18.7
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