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Abstract 

Background: Patients with major depressive disorder (MDD) exhibit concurrent deficits in sensory 
processing and high-order cognitive functions such as self-awareness and rumination. Connectome 
mapping studies have suggested a principal primary-to-transmodal gradient in functional brain networks, 
supporting the spectrum from sensation to cognition. However, whether this principal connectome 
gradient is disrupted in patients with MDD and how this disruption is associated with gene expression 
profiles remain unclear.  
Methods: Using a large cohort of resting-state functional magnetic resonance imaging data from 2,234 
participants (1,150 patients with MDD and 1,084 healthy controls) recruited at 10 sites, we investigated 
MDD-related alterations in the principal connectome gradient. We further used Neurosynth and 
postmortem gene expression data to assess the cognitive functions and transcriptional profiles related to 
the gradient alterations in MDD, respectively.  
Results: Relative to controls, patients with MDD exhibited abnormal global topography of the principal 
primary-to-transmodal gradient, as indicated by reduced explanation ratio, gradient range, and gradient 
variation (Cohen’s d = -0.16~-0.21). Focal alterations of gradient scores were mostly in the primary 
systems involved in sensory processing and in the transmodal systems implicated in high-order 
cognition. The transcriptional profiles explained 53.9% of the spatial variance in the altered gradient 
patterns, with the most correlated genes enriched in transsynaptic signaling and calcium ion binding. 
Conclusions: These results highlight the dysfunction of the core connectome hierarchy in MDD and its 
linkage with gene expression profiles, providing insights into the neurobiological and molecular genetic 
underpinnings of sensory-cognitive deficits in this disorder. 
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Introduction 

Major depressive disorder (MDD) is one of the most common and burdensome psychiatric disorders 
globally (1). In addition to clinical symptoms including low mood, loss of interest and fatigue, 
neuropsychological studies suggest that patients with MDD present with deficits in low-level sensory 
processing and high-order cognitive functions such as self-awareness, rumination, and reward 
processing (2-5). Although many prior studies have reported widespread abnormalities in brain structure 
and function in MDD (6-11), the neurobiological mechanism underlying these deficits in low-level 
sensory processing and high-order cognitive functions remains to be elucidated.   

Hierarchical architecture is one of the fundamental organizational principles of the human brain, 
allowing for information encoding and integration from sensation to cognition (12). Resting-state 
functional magnetic resonance imaging (R-fMRI) (13) and the gradient decomposition framework (14) 
enable researchers to noninvasively investigate the hierarchical architecture of the macroscale functional 
connectome in vivo (14, 15). In healthy adults, the network architecture of the macroscale connectome 
follows a principal gradient along the axis from primary to transmodal systems. Such a pattern provides 
insights into the neural basis of the spectrum from sensory to cognitive processing (14) and is largely 
comparable to cortical microstructural myelination (16). Moreover, the principal primary-to-transmodal 
gradient changes across brain development (17) and is altered in brain disorders such as autism (18). In 
patients with MDD, R-fMRI studies have revealed alterations in functional activity and connectivity 
involving the primary visual and sensorimotor systems (6, 19-21) and transmodal systems such as the 
default mode network (DMN) and frontoparietal network (FPN) (19, 20, 22-24). However, no studies 
have reported whether and how the principal primary-to-transmodal gradient of the functional 
connectome is disrupted in this clinical population. The characterization of the principal connectome 
gradient in MDD would provide insights into the hierarchical network mechanisms underlying the 
interplay between sensory and high-order cognitive processing in MDD patients.  

Notably, much research has indicated that MDD is a moderately heritable disorder (25). Genome-wide 
association studies (GWAS) have identified several risk variants of genes linked to MDD, and some of 
the robustly identified genes play key roles in the biological functions of presynaptic differentiation and 
neuroinflammation (26). To date, measuring gene expression in brain tissue in vivo has been extremely 
difficult. The integration of gene expression profiles in the postmortem brain with connectomes derived 
from neuroimaging data provides an unprecedented opportunity to bridge the gap between the 
microlevel transcriptome profile and the macroscale brain network (27-30). The functional architectures 
of brain connectomes (e.g., network hubs) are associated with gene expression profiles involving ion 
channel activity and oxidative metabolism (28, 31). Distinct gene expression profiles can also explain 
the variances in the spatial patterns of alterations in brain structures in different psychiatric states, 
including schizotypy (32) and autism (33). Therefore, if patients with MDD exhibit disturbances in the 
macroscale connectome gradient, we speculate that these functional brain abnormalities might be 
associated with the transcriptome profiles. The elucidation of such an association would enhance our 
understanding of the molecular genetic underpinnings of the dysfunctional connectome hierarchy in 
MDD. 

To address these gaps in understanding, in the present study we employed a large multisite R-fMRI 
dataset from 2,234 individuals and postmortem gene expression data from the brains of six donors from 
the Allen Institute for Brain Science (AIBS) (27). We investigated the functional connectome gradients 
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in MDD and established their associations with the transcriptome profile. Specifically, we hypothesized 
that (i) the principal primary-to-transmodal gradient is disrupted in patients with MDD, where 
abnormalities exist in both the global gradient topography and the focal gradient scores of primary and 
transmodal systems; (ii) the regions with an altered connectome gradient in MDD are associated with 
multiple functional domains, including low-level sensory processing, such as somatosensory and visual 
perception, and high-order cognitive functions, such as self-referential processing and theory of mind; 
and (iii) the spatial patterns of MDD-related gradient alterations are associated with gene expression 
profiles that are enriched in particular biological processes (e.g., synapse-related functions).  

Materials and Methods 

Imaging Dataset and Preprocessing 

This study included 2,414 participants (1,276 patients with MDD and 1,138 controls) who were 
recruited from 10 research centers through the Disease Imaging Data Archiving - Major Depressive 
Disorder Working Group (DIDA-MDD). All patients were diagnosed according to the Diagnostic and 
Statistical Manual of Mental Disorders IV (DSM-IV) criteria for MDD (34) and did not meet the criteria 
for any other Axis I disorders. The severity of depression was rated using the Hamilton depression rating 
scale (HDRS) (35). The controls did not have a current or lifetime history of any Axis I disorder. The 
exclusion criteria for all participants included MRI contraindications, a history of drug or alcohol abuse, 
concomitant major medical disorders, head trauma with consciousness disturbances, or any neurological 
disorders. After strict quality control for both clinical and imaging data (see Supplement), the final 
sample included 2,234 participants (1,150 patients with MDD and 1,084 controls, Table 1). The study 
was approved by the ethics committees of each research center, and written informed consent was 
obtained from each participant.  

The R-fMRI data were obtained from all participants using 3.0-T MRI scanners with gradient-echo 
planar imaging sequences. During scanning, the participants were instructed to keep their eyes closed 
without falling asleep and to move as little as possible. Detailed scanning parameters for each research 
center are listed in Table S1. R-fMRI data preprocessing was conducted using a standard pipeline as 
described in our previous work (6). See Supplement for details. 

Gene Expression Dataset and Preprocessing 

The microarray-based gene expression data were downloaded from the AIBS website (27). The tissue 
samples in this dataset were collected from the brains of six adult donors (mean age: 42.5 years, 1 
female). Each postmortem hemisphere of the brain was dissected into approximately 500 anatomically 
discrete samples. Each sample was spatially registered to the Montreal Neurological Institute (MNI) 
coordinate space according to the T1-weighted images obtained before dissection. Normalization 
processes were conducted by the AIBS to minimize the potential effects of nonbiological biases and 
ensure that the gene expression data were comparable among samples within and across the brains. We 
performed preprocessing for the gene expression microarray data according to a recommended pipeline, 
including mapping samples to a cortical parcellation with 360 regions (36), probe reannotation and 
selection, and normalization across donors (37). See Supplement for details. 

Connectome Gradient Analysis 
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For each individual, we first constructed the voxelwise functional network (18,933 nodes) and then 
applied the diffusion map embedding approach (14, 18) to estimate the connectome gradient. Briefly, 
the top 10% of the connections were retained for each node, and cosine similarity was calculated 
between each pair of nodes. The similarity matrix was further scaled into a normalized angle matrix to 
avoid negative values (17, 38). Then, diffusion map embedding was applied to capture the gradient 
components that explain the variance in the connectivity pattern of the functional connectome. The 
resultant gradient maps were further aligned across individuals using iterative Procrustes rotation (18). 
The joint embedding alignment (39) was also applied for validation purposes. For each gradient map, we 
calculated three global topographic metrics including the explanation ratio (i.e., the percentage of 
connectome variance accounted for by a given gradient), the gradient range (i.e., the difference between 
the greatest positive and negative regional gradient scores), and the gradient variation (i.e., the standard 
deviation of the gradient scores). Finally, we utilized ComBat harmonization to correct for site effects 
on the gradient maps and metrics (6, 40). The between-group differences in the connectome gradient 
were assessed by using a general linear model (dependent variable, gradient metric; independent 
variable, group) with age and sex as covariates. For global gradient metrics, the statistical significance 
threshold was set to P < 0.05. For regional gradient score maps, the significance threshold was set to P < 
0.001 at the voxel level, followed by Gaussian random field (GRF) correction at the cluster level of P < 
0.05 (41).  

Association Analysis Between Cognitive Functions and Gradient Alterations in MDD 

We used Neurosynth (https://neurosynth.org/) (42) to assess the cognitive functions associated with the 
alterations in connectome gradients in MDD. For each gradient component, the thresholded Z-maps 
derived from the between-group comparisons of regional gradient scores were first divided into MDD-
positive (i.e., MDD > controls) and MDD-negative (i.e., MDD < controls) maps. The resultant maps 
were then analyzed using the “decoder” function of the Neurosynth website. The cognitive terms were 
visualized on a word-cloud plot with the font size scaled according to their correlation with 
corresponding meta-analytic maps generated by Neurosynth.  

Association Analysis Between Gene Expression and Gradient Alterations in MDD 

We used partial least squares (PLS) regression (43) to explore the association between transcriptional 
profiles and alterations in regional connectome gradients in MDD. PLS regression can define several 
components, each of which is a linear combination of the predictor variables that can explain most of the 
variance in the response variables. Here, we first aligned the gene expression data (10,027 genes) and 
between-group difference Z-map of the principal gradient to a cortical parcellation atlas (36). In our PLS 
model, the gene expression data were set as the predictor variables, and the Z-maps of between-group 
differences of the principal gradient were set as the response variables. To determine whether the PLS 
components can significantly explain the variation in the response variables, we adopted a permutation 
test in which the spatial autocorrelations were corrected by generative modeling (44) to examine 
whether the R2 of the PLS component was significantly greater than that expected by chance. Then, for 
each significant component, we used a bootstrapping method to assess the estimation error of the weight 
of each gene and further divided the weight by the estimated error to obtain the corrected weight of each 
gene (45). We ranked the genes according to their corrected weights, which represent their contribution 
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to the PLS regression component. That is, genes were ranked in descending order, beginning with those 
with the most positive relationship and ending with those with the most negative relationship. Both the 
descending and ascending sequences were enrolled for the following gene enrichment analysis. The 
Gene Ontology enrichment analysis and visualization tool (GOrilla, http://cbl-gorilla.cs.technion.ac.il/) 
(46) was used to identify the enriched Gene Ontology terms of the ranked genes. Consistent with 
previous studies (33, 45), we used the Benjamini-Hochberg false discovery rate (FDR)-corrected q-value 
< 0.05 to determine statistically significant enrichment. See Supplement for details. 

Effects of Clinical Factors 

To investigate the effects of categorized clinical factors on the connectome gradient, we classified the 
patients into different pairs of subgroups according to their clinical information, including patients with 
an onset age lower or equal to 21 years vs. higher than 21 years (8), patients suffering from their first 
episode vs. recurrent episodes, and patients receiving medication vs. not receiving medication. Then, we 
compared the gradient metrics between each corresponding pair of subgroups by using general linear 
models.  

Validation Analysis 

We validated our results by considering several potential confounding factors. First, we used a leave-
one-site-out cross-validation strategy to examine whether our findings were influenced by specific sites. 
This was implemented by repeating the between-group comparisons on the data, excluding one site at a 
time. Second, some of the participants were younger than 18 years, which might explain the between-
group differences in brain development. Thus, we repeated the statistical analysis for only adult 
participants (1,002 patients with MDD and 1,034 HCs). Third, to further control for the effect of head 
motion on R-fMRI connectivity measures, we repeated the between-group comparisons with the mean 
framewise displacement as an additional covariate. Finally, the use of a joint embedding framework may 
increase the alignment of individual connectome gradient maps compared to the Procrustes rotation (39). 
Thus, we reperformed the alignment using joint embedding and then repeated the statistical analysis.  

Data Availability 

The core analysis code and result data are publicly available at 
github.com/mingruixia/MDD_ConnectomeGradient.  

Results  

The principal primary-to-transmodal gradient explained 11.9% ± 3.1% of the total connectivity variance 
(MDD, 11.7% ± 3.1%; HC, 12.1% ± 3.0%, Figure S1), which was organized along a gradual axis from 
the primary visual/sensorimotor networks (VIS/SMN) to the DMN (Figure 1A), replicating the recent 
observation of connectome gradients from the primary to the transmodal cortices in healthy adults (14). 
The spatial patterns of the group-averaged principal gradient maps were remarkably similar between the 
MDD and HC groups (Spearman’s ρ = 0.999, P < 0.0001, permutation tests with spatial autocorrelation 
corrected) (Figure S2). Visual inspection of the histogram revealed that the extremes of the primary-to-
transmodal gradient were contracted in MDD relative to the control range (Figure 1B and C). Here, we 
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mainly report the results from the principal connectome gradient. The results from the second and third 
gradients can be found in Figures S3, S4, and S5 and Tables S2, S3, and S4. 

Alterations of Connectome Gradients in MDD  

Between-group statistical comparisons showed that the primary-to-transmodal gradient explained less 
variance in the functional connectome in the MDD group than in the HC group (Cohen’s d = -0.16, P = 
0.0002, Figure 2A and Table S2), suggesting a downgraded status of the hierarchal organization in 
MDD. Moreover, the patients with MDD showed a narrower range of scores (d = -0.21, P = 0.000001) 
and less spatial variation (d = -0.20, P = 0.000003) than the HCs (Figure 2A and Table S2), indicating a 
contracted connectome hierarchy in MDD. Regionally, the MDD group showed lower gradient scores in 
the DMN but higher scores in the VIS and SMN than the HC group (voxel-level P < 0.001, GRF-
corrected P < 0.05) (Figure 2B and Table 2). The identified clusters, particularly the regions in the 
DMN, VIS, and SMN, showed a strong shift from the periphery to the center in gradient space, 
indicating the less-specialized connectivity profiles among these regions in MDD (Figure 2C).  

Cognitive Functions Relating to Gradient Alterations in MDD 

We used Neurosynth to decode the between-group differences in the gradient scores of the primary-to-
transmodal component against cognitive functions. We found that the regions with higher gradient 
scores in MDD were mainly involved in sensorial and perceptional processes, such as visual, 
somatosensory, and acoustic processes, and regions with lower gradient scores were implicated in 
DMN-related functions including self-referential, theory of mind, memory retrieval, and 
autobiographical memory (Figure 2D). These results indicate that the alterations in the principal 
primary-to-transmodal gradient in MDD are related primarily to both sensory processing and high-level 
cognitive functions.   

Gene Expression Profiles Relating to Gradient Alterations in MDD  

PLS regression was applied to investigate the relationship between the between-group Z-map of the 
principal primary-to-transmodal gradient and gene expression profiles. The first two components of the 
PLS regression explained 53.9% of the variance in the MDD-related alterations in the principal gradient 
(P < 0.0001 for component 1 and P = 0.004 for component 2, correcting for spatial autocorrelations by 
permutation test, Figure S6). Component 1 represented a transcriptional profile characterized by high 
expression mainly in the posterior parietal-occipital areas but low expression in prefrontal areas (Figure 
3A). Component 2 revealed a gene expression profile with high expression mainly in the sensorimotor, 
visual and temporal cortices but low expression in the frontoparietal cortices (Figure 3A). The regional 
mapping of these two components positively correlated with the Z-map of the primary-to-transmodal 
gradient map (component 1: r = 0.576, P < 0.0001; component 2: r = 0.456, P < 0.0001, correcting for 
spatial autocorrelations by permutation test, Figure 3B). The Gene Ontology enrichment analysis 
revealed that the genes ranked in ascending order of the PLS component 1 weight were enriched in 
biological processes related to transsynaptic signaling and molecular function of calcium ion binding 
(FDR-corrected q < 0.05, Figure 3C and Table S5). The genes ranked according to the weight of 
component 2 did not show statistically significant enrichment.  

Clinical Relations to Connectome Gradients in MDD 
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Patients with an onset in adolescence (age ≤ 21 years, N = 303) showed a narrower gradient range (d = -
0.28, P = 0.001) and a smaller region variation (d = -0.18, P = 0.026) of the principal primary-to-
transmodal gradient than patients who had an onset age older than 21 years (N = 293) (Figure 4). There 
were no statistically significant differences in the topographic features of the principal gradient between 
patients who were and were not taking medication or patients in their first episode and recurrent patients 
(Table S6). Voxelwise comparisons showed that there was no statistically significant difference in 
regional gradient scores between any of these clinical category pairs after correcting for multiple 
comparisons.  

Validation Results 

Overall, the MDD-related alterations in the principal connectome gradient in different validation 
strategies remained highly similar to our main findings (Figure S7 and S8, and Table S7 and S8).  

Discussion 

Using a large cohort of R-fMRI data, we demonstrated connectome gradient dysfunction in patients with 
MDD, including disrupted global topography and focal alterations of gradient scores in the primary 
areas involved in sensory processing and transmodal areas involved in high-order cognitive processing. 
These gradient changes are tightly associated with transcriptional profiles, and the most correlated genes 
are enriched in transsynaptic signaling and calcium ion binding. These findings provide insights into the 
understanding of the neurobiological mechanisms underlying sensory-cognitive deficits in patients with 
MDD. 

Downgraded and Contracted Connectome Hierarchy in MDD 

We demonstrated less-explained variance in the functional connectome and a narrower distribution 
range of the principal primary-to-transmodal gradient in MDD, which suggests a downgraded and 
contracted connectome hierarchy. Disturbances in the functional architecture of the macroscale brain 
network have recently been considered critical in the pathology of depression (19, 47, 48). Specifically, 
network analysis based on graph theory has revealed a replicable pattern towards a randomized 
configuration of the functional connectomes as characterized by more long-range connections in patients 
with MDD (21, 49, 50). These hyperconnections break the balance between functional integration and 
functional segregation and further affect the hierarchical architecture of the brain networks. Notably, 
such an alteration of the core connectome gradient was not the result of the disconnection of a single 
system but of widely distributed systems from the low-level primary to the high-order transmodal 
cortices.  

We observed that several specific regions in the SMN/VIS and DMN shifted from the periphery to the 
center in the hierarchical space, implying a trend towards dedifferentiated connection profiles between 
these systems. This phenomenon is comparable to previous findings from connectome modular studies 
in MDD, where hyperconnections were found among the primary systems and the transmodal DMN and 
FPN (20, 23, 51). In a hierarchical organization, the primary brain systems receive external stimulation 
signals and process them into abstract representations (52), while the transmodal brain systems integrate 
the processed information with internal control, memory, and emotion to guide interactions with the 
external environment (12, 52). Specifically, the primary sensory cortices, including the primary visual, 
auditory, and somatosensory systems, play a key role in visual, auditory, and tactile perception (53-55). 
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In contrast, the core regions of the DMN, such as the medial prefrontal cortex, posterior cingulate 
cortex, and precuneus, play important roles in self-referential, theory of mind, memory retrieval, and 
autobiographical memory (56-58). The contracted hierarchy involving multilevel systems (i.e., 
overintegration), therefore, may reflect incomplete or blunt bottom-up information processing from the 
primary systems and failures in the corresponding top-down processing from the high-order systems, 
thus resulting in clinical and cognitive impairments in multiple domains in MDD (59). Additionally, the 
degree of downgrade and contraction in the connectome hierarchy increases as the patient onset age 
decreases, indicating that an early onset is linked with more severe changes in the connectome 
hierarchy. Given the close relationship between the pathology of MDD and age, future research focusing 
on the interactive effect between development and depression on the connectome hierarchy is essentially 
important.   

Gene Expression Profiles for Transsynaptic Signaling and Calcium Ion Binding in MDD 

Our connectome-transcriptome association analysis established a link between MDD-related changes in 
connectome gradients and gene expression enriched in transsynaptic signaling and calcium ion binding. 
Transsynaptic signaling is one of the most fundamental biological processes that contributes to a series 
of critical molecular functions, including instructing the formation of synapses, regulating synaptic 
plasticity, and matching pre- and postsynaptic neurons (60, 61). It enables the establishment of complex 
neuronal networks supporting effective information transfer and processing throughout the brain. The 
variation in synaptic signaling across the cerebral cortex has been demonstrated to be organized along 
the axis of the cortical hierarchy, which corresponds well to the principal gradient of macroscale 
functional connectomes (62, 63). Notably, disruptions in transsynaptic signaling in many of the key 
pathways can influence the formation and stability of synapses and have been known to play roles in the 
pathology of depression (64). For example, studies in postmortem tissues and rodent models revealed 
that exposure to chronic stress can disrupt the pathway of brain-derived neurotrophic factor (BDNF)-
tropomyosin-related kinase B (TrkB) receptor signaling by reducing the downstream extracellular 
signal-regulated kinase (ERK) and Akt pathways in the hippocampus and prefrontal cortex (65, 66). 
Disturbances in these pathways can decrease the expression and function of BDNF and further cause 
neuronal atrophy in regions that are implicated in depression (67). Consistent with our findings, a recent 
study combining gene coexpression networks and genome-wide summary statistics also revealed that 
MDD risk genes were enriched in gene modules involving transsynaptic signaling (68). In addition to 
transsynaptic signaling, calcium ion binding is another crucial molecular function for intracellular 
signaling. In particular, calcium ion binding can occur in signal transduction resulting from the 
activation of ion channels or as a second messenger in wide-ranging physiological pathways involving 
synaptic plasticity. In MDD, evidence from postmortem studies suggests that the density of calbindin-
immunoreactive GABAergic neurons is reduced in the dorsolateral prefrontal cortex of patients (69). 
Therefore, our findings provide further evidence that the disrupted connectome hierarchy architecture in 
MDD is associated with the gene expression profile related to these two general molecular mechanisms. 
However, we were unable to determine whether microlevel transcriptional dysregulation resulted in 
macrolevel connectome dysfunction or whether either of these were causally influenced by risk factors 
for MDD, such as environmental risk factors. 

Limitations and Future Research  

First, cognitive performance was not measured in patients, which limited the opportunity to study the 
associations between connectome hierarchy disruptions and different aspects of cognitive domains in 
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MDD. To address this limitation, we examined the associations between the gradient alteration maps 
and the meta-analytic cognitive function maps from the widely used Neurosynth database (42). Second, 
longitudinal information such as clinical response to treatment was not included here. Previous studies 
have suggested that functional brain abnormalities can be normalized after antidepressant (70), 
electroconvulsive therapy (71), or deep brain stimulation surgery (72) in patients with MDD. Future 
studies using longitudinal datasets are required to enhance our understanding of the effects of treatment 
on connectome hierarchy architectures in MDD and to provide imaging biomarkers for evaluating 
treatment effects. Third, several studies reported an abnormal gradient topography of the cerebral cortex 
in the autism spectrum (18) and of the cerebellar cortex in schizophrenia (73). Notably, our study 
showed that patients with MDD exhibited more widespread gradient alterations in the primary sensory 
cortices. Nonetheless, the specificity of gradient alteration for each disorder remains to be further 
elucidated. Fourth, the fMRI signal is bound via neurovascular coupling to neuronal processes, thus 
containing both metabolic and vascular-hemodynamic information. Previous works have suggested 
metabolic or vascular-hemodynamic alterations in MDD, such as alteration of cerebral blood flow (74). 
Future studies combining electrophysiological recordings and metabolic data (e.g., PET/ASL) are 
required to distinguish disruption of neuronal processing from other pathologies in MDD. Finally, the 
gene expression data from the AIBS were sampled from donors without a diagnosis of MDD. Thus, the 
observed association between connectome hierarchy and transcriptome profiles should be considered 
cautiously. Future studies with larger samples of whole-brain genome-wide gene expression data from 
patients with MDD could provide further evidence. Despite these limitations, our study highlights the 
dysfunction of the core connectome hierarchy in MDD and its linkage with gene expression profiles, 
providing insights into the neurobiological and molecular genetic underpinnings of sensory-cognitive 
deficits in this disorder. 
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Figure Legends 

 

Figure 1. Connectome gradient mapping in patients with MDD and controls. (A) The principal gradient 
was organized along a gradual axis from the primary visual/sensorimotor networks to the default mode 
network. (B) Global and (C) system-based histograms show that the extreme values were contracted in 
patients with MDD relative to healthy controls. Surface rendering was generated using BrainNet Viewer 
(www.nitrc.org/projects/bnv/)(75) with the inflated cortical 32K surface (36). VIS, visual network; 
SMN, sensorimotor network; DAN, dorsal attention network; VAN, ventral attention network; SUB, 
subcortical regions; LIB, limbic network; FPN, frontoparietal network; DMN, default mode network. 
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Figure 2. Statistical comparison of gradient metrics. (A) Case-control differences in global gradient 
metrics. ***, P < 0.001. (B) Voxelwise statistical comparisons between healthy controls and patients 
with MDD, with higher/lower values in MDD presented as warm/cold colors. The statistical significance 
level was set as voxel-level P < 0.001 and Gaussian random field cluster level-corrected P < 0.05. (C) 
Scatter plot for the first two gradients in healthy controls and patients with MDD illustrates a contracted 
distribution of gradient scores in MDD. Each dot represents a voxel, and its color indicates the 
corresponding system. The circles represent the peak of the clusters with case-control differences, and 
their arrows indicate their displacement in gradient space. (D) Word clouds of cognitive functions 
associated with brain regions that exhibited higher (red) or lower (blue) gradient scores in MDD. The 
font size of the cognitive terms corresponds to the strength of the correlation of corresponding meta-
analytic maps generated by Neurosynth. 
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Figure 3. Association between MDD-related gradient alterations and gene expression. (A) The first PLS 
component (PLS 1) identified a gene expression profile with high expression mainly in the posterior 
parietal-occipital areas but low expression in prefrontal areas. The second PLS component (PLS 2) 
revealed a gene expression profile with high expression mainly in the sensorimotor, visual and temporal 
cortices but low expression in the frontoparietal cortices. (B) The transcriptional profiles were positively 
correlated with the between-group Z-map of the principal gradient (permutation tests with spatial 
autocorrelation corrected, 10,000 times). The shadow indicates 95% confidence intervals. Each dot 
represents a region. (C) Genes ranked in ascending order of PLS 1 weight were enriched in the 
biological process of transsynaptic signaling and molecular function of calcium ion binding (FDR q < 
0.05).  
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Figure 4. Effects of onset age on gradient topography. The range and variance of the principal gradient 
were significantly lower in patients with an onset age ≤ 21 years than in those with an onset age > 21 
years.  
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Tables 

Table 1. Demographic and clinical characteristics of participants. 

Center Group Age, mean 
(SD), yr 

Sex (M/F) Duration of illness, 
mean (SD), yr 

Medicated 
(Yes/No) 

HDRS*, 
mean (SD) 

Mean FD, 
mean (SD), 
mm 

CMU,  Patient (N=125) 27.91 (9.70) 39/86 1.65 (3.17) 49/76 21.44 (8.67) 0.115 (0.072) 
Shenyang Controls (N=249) 27.24 (8.20) 103/146      0.107 (0.057) 
  t or χ2/P 0.70/0.484 3.33/0.068      1.07/0.286 
         
CSU,  Patient (N=177) 36.28 (10.21) 77/100 2.52 (3.83)  N.A. 31.39 (7.82) 0.141 (0.073) 
Changsha Controls (N=108) 32.31 (7.96) 62/46      0.134 (0.064) 
  t or χ2/P 3.45/0.001 5.19/0.023      0.88/0.382 
        
GCMU1, Patient (N=34) 29.41 (8.27) 9/25 0.65 (0.70) 0/34 21.85 (2.25) 0.094 (0.030) 
Guangzhou Controls (N=34) 30.09 (10.88) 10/24    0.096 (0.033) 
 t or χ2/P -0.29/0.774 0.07/0.787    -0.32/0.750 
        
GCMU2, Patient (N=66) 29.48 (9.91) 25/41 0.76 (1.00) 0/66 22.30 (3.57) 0.089 (0.057) 
Guangzhou Controls (N=66) 29.33 (10.12) 31/35    0.086 (0.042) 
 t or χ2/P 0.29/0.774 1.12/0.291    0.29/0.770 
        
KMU, Patient (N=41) 34.20 (9.37) 20/21 1.13 (1.28) N.A. 23.61 (4.64) 0.186 (0.083) 
Kunming Controls (N=50) 39.72 (11.97) 28/22    0.167 (0.064) 
 t or χ2/P -2.47/0.015 0.47/0.492    1.26/0.211 
         
PKU,  Patient (N=75) 31.51 (7.86) 44/31 0.52 (0.47) 0/75 25.35 (4.77) 0.175 (0.063) 
Beijing  Controls (N=73) 31.90 (9.01) 42/31       0.185 (0.067) 
  t or χ2/P -0.29/0.775 0.02/0.889       -0.91/0.363 
         
SCU,  Patient (N=50) 34.44 (12.90) 25/25 1.17 (1.60) 25/25 22.88 (4.25) 0.111 (0.067) 
Chengdu Controls (N=41) 34.83 (17.69) 17/24       0.122 (0.072) 
  t or χ2/P -0.12/0.904 0.66/0.416       -0.71/0.479 
         
SWU,  Patient (N=282) 38.74 (13.65) 99/183 4.20 (5.52) 124/125 20.78 (5.88) 0.125 (0.054) 
Chongqing Controls (N=254) 39.65 (15.80) 88/166       0.134 (0.063) 
  t or χ2/P -0.72/0.472 0.01/0.911       -1.68/0.094 
        
YMU,  Patient (N=105) 57.05 (16.21) 63/42 1.21 (1.54) 79/26 11.66 (6.99) 0.139 (0.082) 
Taipei Controls (N=109) 51.12 (11.70) 69/40       0.128 (0.058) 
  t or χ2/P 3.06/0.003 0.25/0.619       1.17/0.243 
        
ZZU,  Patient (N=195) 18.40 (5.54) 97/98 1.28 (1.48) 0/195 22.43 (5.71) 0.100 (0.045) 
Zhengzhou Controls (N=100) 22.43 (4.49) 47/53       0.088 (0.039) 
  t or χ2/P -6.29/<0.001 0.20/0.655       2.16/0.032 
        
All data Patient (N=1150) 33.78 (14.99) 477/673 2.10 (3.60) 277/622  0.125 (0.067) 
 Controls (N=1084) 34.00 (13.87) 468/616    0.123 (0.063) 
 t or χ2/P -0.37/0.712 0.66/0.418    0.72/0.475 

Abbreviations: SD, standard deviation; M, male; F, female; HDRS, Hamilton depression rating scale; FD, framewise 
displacement; CMU, China Medical University; CSU, Central South University; GCMU, Guangzhou University of Chinese 
Medicine; KMU, Kunming Medical University; PKU, Peking University; SCU, Sichuan University; SWU, Southwest 
University; YMU, National Yang-Ming University; ZZU, Zhengzhou University; N.A., not available. 
*The 17-item HDRS was used in the research centers of CMU, GCMU, KMU, PKU, SCU, SWU and ZZU. The 21-item 
HDRS was used in the research center of YMU. The 24-item HDRS was used in the research center of CSU. 
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Table 2. Clusters with significant between-group differences in the principal primary-to-
transmodal gradient  

No. Region x y z t Cohen’s d Size (mm3) 
MDD > Controls       
1 Right fusiform/lingual gyri, BA37 24 -48 -12 5.69 0.24 35968 
2 Bilateral postcentral gyri, BA3 -20 -40 68 4.53 0.19 12608 
3 Left fusiform/lingual gyri, BA19 -24 -60 -16 4.91 0.21 11840 
4 Left Rolandic operculum, BA13 -40 -28 20 5.60 0.24 9856 
5 Right Rolandic operculum, BA13 64 -4 12 5.20 0.22 7488 
6 Right precentral gyrus, BA4 44 -16 40 4.88 0.21 3392 
7 Right middle occipital gyrus, BA19 44 -80 8 4.30 0.18 1728 
MDD < Controls       
8 Bilateral middle frontal gyri/superior frontal gyri, medial part, BA6 -32 8 52 -5.83 -0.25 51136 
9 Bilateral posterior cingulate gyri/precuneus, BA31 -8 -44 28 -5.54 -0.23 13824 
10 Left angular gyrus, BA39 -44 -60 28 -5.29 -0.22 8000 
11 Right supramarginal gyrus, BA40 48 -40 40 -4.54 -0.19 2816 
12 Right thalamus 4 -12 0 -4.20 -0.18 2304 
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