
 
 

     
Supplementary Table S1 
 
MFPT From d to a 
          
  Wild No Gamma No Beta No Gamma, Beta 
Dense Inference 1.077405 0.96467 1.74165 2.537465 
Dense Naive 1.112255 1.077785 1.345095 1.905235 
Sparse Inference 1.135825 NA NA NA 

     
MFPT From a to d      
  Wild No Gamma No Beta No Gamma, Beta 
Dense Inference 0.553195 1.037265 0.854175 1.465245 
Dense Naive 0.59218 0.855405 0.767095 1.22421 
Sparse Inference 0.823185 NA NA NA 



Supplemental Table 2. Fission yeast strains used in this study 

Strain no.  Strain genotype Source  Related to 

KR342 h+ leu1-32 otr1R (SphI)::ura4+ ura4-D18 
ade6-M210 

Moazed lab Figure 1B 

KR407 h+ leu1-32 otr1R (SphI)::ura4+ ura4-D18 
ade6-M210 clr4D::kanMX6 

Moazed lab Figure 1B 

KR823 h+ leu1-32 otr1R (SphI)::ura4+ ura4-D18 
ade6-M210 PAmCherry-swi6 

This study Figure 1B,  

KR778 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6   

This study Figure 1E-H, 
5B,D, S1A 

KR836 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6 clr4D::kanMX6 

This study Figure 2A-B 
and S2B 

KR1425 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6hinge-hphMX6 

This study  Figure 2C-D 

KR1665 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6 clr4D:13-myc-clr4 F449Y-
natMX6  

This study  Figure 2E-F 

KR1428 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6 mst2D::ura4+ 
epe1D::kanMX6 cut11-mCitrine-natMX6  

This study  Figure 2G-H 

KR1096 h90 leu1+:mNeonGreen-swi6-kanMX6 ade6-
M216 ura4-D18  swi6D:PAmCherry-swi6 
CDmut-hphMX6  

This study Figure 4B 

KR1097 h90 leu1+:mNeonGreen-swi6-kanMX6 ade6-
M216 ura4-D18  swi6D: PAmCherry-swi6 
CSDmut-hphMX6 

This study Figure 4C 

KR1884 h90 leu1+:mNeonGreen-swi6-kanMX6 ade6-
M216 ura4-D18 swi6D:PAmCherry-swi6 hinge 
CDmut-hphMX6  

This study Figure 4D 

KR1711 h90 leu1+:PAmCherry-2xCD GST-kanMX6 
ade6-M216 ura4-D18 swi6D::natMX6  

This study Figure 5C-F 

KR1092 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6 CDmut-hphMX6 

This study  Figure S2A 
  



 

KR858 h90 leu1-32 ade6-M216 ura4D-18 swi6D: 
PAmCherry-swi6 mst2D::kanMX6 cut11-
mCitrine-natMX6 

This study Figure S2C 

 

KR856 h90 leu1-32 ade6-M216 ura4D-18 swi6D: 
PAmCherry-swi6 epe1D::kanMX6 cut11-
mCitrine-natMX6 

This study Figure S2D 

 

KR1432 h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-swi6 clr4D::hphMX6 
mst2D::ura4+ epe1D::kanMX6 cut11-mCitrine-
natMX6  

This study Figure S2E 

 

KR1882
  

h90 leu1-32 ade6-M216 ura4-D18 swi6D: 
PAmCherry-1xCD GST-natMX6 

This study Figure S5A-C 
 

KR1878 h90 leu1+:PAmCherry-2xCD GST-kanMX6 
ade6-M216 ura4-D18 swi6D::natMX6 
clr4D::hphMX6 

This study Figure S5D 

 

KR1880 h90 leu1+:PAmCherry-2xCDARK GST-kanMX6 
ade6-M216 ura4-D18 swi6D::natMX6  

This study Figure S5E 



Supplementary text- Fine-grained chemical rate constant inference 

Our Monte Carlo chain used five move proposal types to sample the range of possible kinetic 

parameters:  

(i) Single move: change a single rate constant by multiplying it by eT*σ1, where T is a t-distributed 

variable with 10 degrees of freedom and σ1 is an arbitrary scaling factor (currently equal to 0.02) 

which we tune for optimal convergence. 

(ii) Paired move: change a pair of rate constants which encode opposite reactions (e.g., the rate 

constant of a Swi6 molecule moving from the α state to the β state and the rate constant of a 

Swi6 molecule moving from the β state to the α state) by multiplying them both by eT*σ2 (σ2 was 

optimized to 0.02 for the calculations given here to yield ideal transition rates; note that the 

value of σ2 and similar parameters on move sizes affect only sampling efficiency, and not the 

equilibrium distribution of parameters). T is a t-distributed variable with 10 degrees of freedom. 

(iii) Global rescale: multiply every rate constant by a factor eT*σ3. T is a t-distributed variable with 

10 degrees of freedom and σ3 was optimized to be 0.00125. 

(iv) Local randomize: pick one rate constant and replace it from a draw from a Gamma 

distribution. This distribution was picked based on the experimental data. For a rate constant 

denoting transition from state X to state Y, where M is the experimental probability that a Swi6 in 

state X would stay in state X, the shape parameter for this distribution was (-ln(M)/0.04)1/2 and 

the scale parameter was (-ln(M)/0.04)3/2. 

(v) Global randomize: replace all rate constants with random draws from Gamma distributions 

identical to the ones in move iv. 

For the clr4D model, we discovered that the reaction rate constants corresponding to opposite 

reactions can be highly correlated: in particular, the rates to and from the δ state and the β state 

were correlated to the point of the inference being unable to resolve after a disproportionate 

amount of computation. We therefore decided to transform the rates using the following 

bijection: instead of conceiving of each pair of reactions as having independent rate constants, 

we consider the reactions as having a magnitude and an equilibrium constant. We considered 

the forward direction of reaction to be the one which increases the level of binding (e.g., from d 

to a or g to b) The magnitude parameter was set as the natural logarithm of the rate of the 

reverse reaction, and the equilibrium was set as the natural logarithm of the Keq. We used the 

following Monte Carlo moves for this parameterization: 



(i) Move one magnitude: change a single magnitude by adding T*σ1, where T is a t-distributed 

variable with 10 degrees of freedom and σ1 is an arbitrary scaling factor (currently equal to 0.2) 

which we tune for optimal convergence. 

(ii) Move all magnitudes: add T*σ3 to all magnitudes. T is once more a t-distributed variable with 

10 degrees of freedom, and σ3 was optimized to be 0.0222. 

(iii) Move one equilibrium constant: change a single equilibrium by adding T*σ1, where T is a t-

distributed variable with 10 degrees of freedom and σ1 is an arbitrary scaling factor (currently 

equal to 0.2) which we tune for optimal convergence. 

(iv) Move all equilibrium constants: add T*σ3 to all equilibria. T is a t-distributed variable with 10 

degrees of freedom, and σ3 was optimized to be 0.0222. 

(v) Randomize one magnitude: pick one magnitude and replace it from a draw from a t 

distribution with σ = 1 and 10 degrees of freedom. 

(vi) Randomize all magnitudes: replace all magnitudes from a draw from a t distribution with σ = 

1 and 10 degrees of freedom. 

(vii) Randomize one equilibrium: pick one equilibrium constant and replace it from a draw from 

a t distribution with σ = 1 and 10 degrees of freedom. 

(viii) Randomize all magnitudes: replace all equilibrium constants from a draw from a t 

distribution with σ = 1 and 10 degrees of freedom. 

To evaluate the prior likelihoods, we transformed the state of our model back to the rate 

constant formulation described previously and evaluated using the same priors as for the WT 

model. Thus, the equilibrium distribution of parameters will be unaffected by the 

reparameterization; only the convergence properties of the Monte Carlo sampling are changed. 

For any of the model parameterizations described above, at each Monte Carlo move, we accept 

or reject the new set of constants based on the Metropolis-Hastings criterion: we divide the 

probability of the new rates co-occurring with the data by the probability of the old rates co-

occurring with the data. To implement the Metropolis-Hastings criterion for symmetrical moves, 

we set this equal to the odds ratio. For asymmetrical moves, we must also multiply the 

probability we would have proposed the old rates and divide by the probability that we propose 

the new rates to derive our odds ratio. If our odds ratio is greater than 1, we accept the new 

rates. If our odds ratio is less than 1, we accept the new rates still with a probability equal to the 



odds ratio. The sampling process was repeated with four independent until convergence of the 

posterior distribution, when the Ř metric for the parameters is less than 1.2 (Gelman and Rubin, 

1992). We discarded the first part of the inference as a burn-in period, where the parameter set 

was influenced by initial conditions more than the posterior. We determined this burn-in based 

on plotting the likelihood evaluations: the likelihoods approached a final value roughly 

asymptotically, and so we removed the sharply increasing likelihoods as burn-in. 

For the five-state model, we discovered that the remaining rate constants could not be easily 

directly deduced by Monte Carlo inference: they were very highly correlated. When we analyzed 

the transition rates mathematically, the issue was found to be that there were only four 

parameters which could vary independently, given the information we had: p, the equilibrium 

proportion of b-Swi6 in wild type which was bound to nonmethylated histone (a state we will call 

bu-Swi6); q, the proportion of the rate of a-Swi6 transitioning to b-Swi6 which was the result of 

transitions to bu-Swi6; R, the rate constant in units 1/sec, at which bu-Swi6 transitions to b-Swi6 

bound to methylated histone (which we will call bs-Swi6); and S, the rate constant in units 1/sec, 

at which bu-Swi6 transitions to a-Swi6. These four parameters plus the parameters given by 

both the wild type simulation and the clr4D simulation recapitulate all 20 of the rate constants in 

the five-state model by the following calculation, which preserves all of our observed transitions 

and equilibria from the four-state wild type inference: 

1) The rates of transition involving the a, g, and d states exclusively are taken directly from the 

wild type simulation 

2) The rates of transition between d and bu and g and bu were taken directly from the clr4D 

simulation 

3) The rate of transition from bu to a was set as S, and the rate of transition from bu to bs was set 

as R. 

4) The rate of transition from a to bu was set as q*the rate of transition from a to b from the wild 

type inference, and the rate of transition from a to bs was set as (1-q)*the rate of transition from 

a to b from the wild type inference 

5) The rate of transition from bs to a (g, d) was set as 1/(1-p) times difference of the observed 

rate of transition from b to a (g, d) and p times the rate of transition from bu to a (g, d) 



6) The rate of transition from bs to bu is set as the unique number which preserves the 

equilibrium proportions of the a, g, and d states from the wild type transitions, and which sets the 

equilibrium proportions of the bu and bs populations at p * the equilibrium proportion of b from 

the wild type transitions and (1-p)* the equilibrium proportion of b, respectively.  

So long as any parameter set p, q, S, and R induces a set of rate constants which are all 

nonnegative, they are considered a valid parameter set. This constraint forces this set into a 

space which is bounded above and below for all four parameters. With the new information 

enforced by this constraint, we have no special a priori reason to prefer any set of four 

parameters over any others, so we choose a new joint prior which has uniform finite positive 

density K for all valid parameter sets, and zero density for invalid sets. We do not need to 

explicitly calculate the prior density K: it will be cancelled out for any comparison between any 

two valid parameter sets, and the program will automatically reject any parameter set forbidden 

by the prior.  

Because of the smaller dimensionality of the model, instead of exploring the posterior with 

MCMC, we instead calculated the likelihood function explicitly across the grid of valid 

parameters. The parameter p was calculated from 0.50 to 0.555 in increments of 0.005, q from 

0.35 to 0.79 in increments of 0.01, S from 0.10/sec to 3.05/sec in increments of 0.01/sec, and R 

from 0.15/sec to 0.45/sec in increments of 0.05/sec and from 1/sec to 12/sec in increments of 

0.5/sec. These grid points mostly avoided parameters which resulted in invalid rates or whose 

likelihood was sufficiently small that we could safely ignore that part of the landscape. Some 

invalid parameter sets did occur near the boundaries of this grid, but were omitted. Because of 

the approximate nature of our likelihood computation, we used the R package “polspline” to 

smooth the likelihood landscape.  
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