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Abstract

The correspondence between the activity of artificial neurons in convolutional

neural networks (CNNs) trained to recognize objects in images and neural

activity collected throughout the primate visual system has been well docu-

mented. Shallower layers of CNNs are typically more similar to early visual

areas and deeper layers tend to be more similar to later visual areas, pro-

viding evidence for a shared representational hierarchy. This phenomenon

has not been thoroughly studied in the auditory domain. Here, we com-

pared the representations of CNNs trained to recognize speech (triphone
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recognition) to 7-Tesla fMRI activity collected throughout the human audi-

tory pathway, including subcortical and cortical regions, while participants

listened to speech. We found no evidence for a shared representational hi-

erarchy of acoustic speech features. Instead, all auditory regions of interest

were most similar to a single layer of the CNNs: the first fully-connected

layer. This layer sits at the boundary between the relatively task-general in-

termediate layers and the highly task-specific final layers. This suggests that

alternative architectural designs and/or training objectives may be needed

to achieve fine-grained layer-wise correspondence with the human auditory

pathway.

Keywords: CNNs, similarity analysis, 7T fMRI, subcortical, speech,

auditory cortex

Highlights

• Trained CNNs more similar to auditory fMRI activity than untrained

• No evidence of a shared representational hierarchy for acoustic features

• All ROIs were most similar to the first fully-connected layer

• CNN performance on speech recognition task positively associated with

fmri similarity

1. Introduction1

The use of deep neural networks (DNNs) as models of biological neural2

networks has been discussed as an opportunity for synergy between neuro-3

science and artificial intelligence (Barrett et al., 2019, Marblestone et al.,4
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2016, Richards et al., 2019). The paradigm of comparing DNN activity to5

neural activity has been most thoroughly explored in research on the pri-6

mate visual system. Seminal work by DiCarlo & Cox proposed that visual7

object recognition is accomplished via successive layers of nonlinear trans-8

formations that effectively untangle visual inputs, linearizing the boundaries9

between object manifolds (DiCarlo and Cox, 2007). Similar language has10

been used to describe how DNNs accomplish recognition tasks (Bengio et al.,11

2013). Several studies have now reported that state-of-the-art (SOTA) ma-12

chine learning systems, trained only to maximize their performance on a13

specific task, without any explicit goal to mimic neural activity, appear to14

learn representations that are similar to those found in the brains of animals15

engaged in a similar task (Kriegeskorte, 2015). For example, the output layer16

of Alexnet (Krizhevsky and Hinton, 2012) has been found to be highly pre-17

dictive of spiking responses to natural images in inferior temporal cortex and18

intermediate layers to be highly predictive of V4 responses (Cadieu et al.,19

2014, Yamins et al., 2014). Similar comparisons have been made between20

modern convnets and the human visual system as recorded with functional21

magnetic resonance imaging (fMRI) (Khaligh-Razavi and Kriegeskorte, 2014,22

Agrawal et al., 2014, Eickenberg et al., 2017, Güçlü and van Gerven, 2016).23

The most convincing demonstration that modern convnets learn representa-24

tions that are meaningful to neurons in the primate visual system is work25

from Bashivan et al. (2019) showing that task-optimized DNNs can be used26

to control the activity of macaque V4 neurons. They found that stimuli syn-27

thesized to maximally activate specific units in the DNN also drove activity28

of matched sites in V4 well beyond their maximum firing rate in response to29
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natural images.30

Comparisons of DNNs to biological sensory pathways often come with31

claims of shared representation hierarchy. Regions of interest (ROIs) along32

some pathway are mapped to layers of a DNN based on their similarity. Early33

layers in the network tend to be more similar to early ROIs in the pathway34

and late layers to late ROIs (Cichy et al., 2016, Güçlü and van Gerven, 2015).35

These results suggest that DNNs are not just learning representations that36

are similar to single regions, but rather that they constitute models of an37

entire hierarchy of sensory processing. However, not all studies have found38

evidence of shared hierarchy. Cadena et al. (2019) compared representations39

at several layers of a convnet trained on ImageNet to neural activation in the40

mouse visual cortex. While they found their network outperformed classical41

predictive models, they found no evidence for a shared hierarchy and no42

benefit over a random network whose weights had never been trained. The43

authors suggest that networks trained on more ethologically valid tasks may44

be required to capture the functional organization of the rodent visual cortex.45

Relatively few experiments have compared DNNs trained on acoustic46

tasks to biological auditory systems. Kell et al. (2018) trained convnets47

on speech and music tasks and compared their learned representations to48

fMRI responses in human auditory cortex. They found that intermediate49

DNN representations explained more variance in auditory cortex responses50

than a spectrotemporal modulation-based baseline model. To assess the exis-51

tence of a shared hierarchy, they looked only at voxels that showed a reliable52

response to sound and layers of their network which were predictive of voxel53

activity across auditory cortex. They found that the most predictive layers54
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of primary auditory cortex were intermediate layers, while the most predic-55

tive layers of secondary auditory cortex were deeper layers. From this, they56

conclude that the hierarchical distinction between primary and secondary57

auditory cortex is mirrored in their convnet (Kell et al., 2018). Güçlü et al.58

also reported evidence for a shared hierarchy in human auditory cortex, but59

they only analyzed the superior temporal gyrus (STG). They used represen-60

tational similarity analysis (RSA) to compare representations learned in a61

DNN trained to predict tags from excerpts of musical audio.1 They found a62

gradient of complexity across STG where anterior voxel clusters were more63

similar to early layers while posterior voxel clusters were more similar to late64

layers (Güçlü et al., 2016). While both of the above studies report evidence65

for a shared hierarchy between human auditory cortex and DNNs trained on66

sound, they report different spatial patterns of similarity gradients.67

Several different analysis tools are used to compare representations. The68

ultimate goal of these analyses is to quantify the similarity of two represen-69

tations, but similarity is an ambiguous term that must be defined by the70

experimenter. In many of the aforementioned studies, an encoding analysis71

is performed where firing rate or voxel activity is predicted by a regularized72

linear model of the neural network activity. According to this approach, a73

representation is similar to another to the extent that it can be linearly pre-74

dicted from the other. There are other notions of representational similarity75

that have been explored to study DNNs. Singular value canonical correla-76

tion analysis (SVCCA) and projection-weighted canonical correlation anal-77

1Tags are descriptive text annotations like genre or instrumentation labels.
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ysis (pwCCA) have been used to characterize how network representations78

change over training, to compare representations in different architectures,79

and to understand the difference between networks that memorize and net-80

works that generalize (Raghu et al., 2017, Morcos et al., 2018). Kornblith et81

al. recently proposed that, given two networks of identical architecture and82

training, differing only in their random initialization, a meaningful notion83

of similarity should find their corresponding layers to be most similar (i.e.84

layer 1 in network A should be most similar to layer 1 in network B). Of85

the tested metrics, which included SVCCA, pwCCA and linear regression,86

Centered Kernel Alignment (CKA) was the only method which found that87

corresponding layers were most similar to each other, achieving an accuracy88

of 99.3% on the layer identification task. The next best metric, linear re-89

gression, achieved only 45.4%. This result may be related to the fact that90

CKA is only invariant to orthogonal transformations and isotropic scaling,91

unlike canonical correlation analysis (CCA), which is invariant to any linear92

invertible transformation, and linear regression, which is invariant to any93

linear invertible transformation of the predicted variables (Kornblith et al.,94

2019). Representational similarity analysis (RSA) (Kriegeskorte et al., 2008),95

commonly employed in fMRI analysis, is similar to CKA with a linear ker-96

nel except that CKA is based on dot-product similarity and RSA typically97

uses correlation-based metrics. CKA provides a general framework with in-98

terpretable units, proven convergence rates, and the option to use different99

kernels.100

Here, we use CKA to quantify the similarity between representations101

learned in convnets trained on speech and activity throughout the human102
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auditory pathway during speech listening, as measured with 7-Tesla (7T)103

fMRI. The high spatial resolution of 7T fMRI allows us to simultaneously104

measure activity from auditory cortex as well as subcortical auditory regions,105

which are often omitted from auditory fMRI analyses due to their small size.106

Since significant auditory processing occurs in brainstem and midbrain re-107

gions, this provides us with several distinct regions with a relatively known108

connectivity structure with which to compare the convnet representations.109

To the best of our knowledge, ours is the first study to compare DNN repre-110

sentations to activity throughout the human subcortical and cortical auditory111

pathway. If there exists a shared hierarchy between the convnets and the hu-112

man auditory pathway, the pattern of similarity should at least distinguish113

between cortical and subcortical regions. We visualized the results of the114

similarity analysis as similarity matrices with network layers as the rows and115

auditory ROIs as the columns. Evidence of a shared hierarchy would man-116

ifest as a diagonal pattern in one such similarity matrix, where shallower117

layers are more similar to early regions and deeper layers more similar to118

later regions. While we found that our trained networks were more similar119

to the brain than an untrained network, we found no such diagonal pattern.120

Instead we found that, on average, nearly all ROIs are most similar to the121

first fully-connected layer.122

2. Material and methods123

2.1. Participants124

Six healthy participants (aged 28–31, three women, three men) with nor-125

mal hearing and no known neurological disorders were recruited to partici-126
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pate. All participants provided written informed consent prior to the first127

MRI session. All participants also consented to their data being made pub-128

licly available.2 The native languages of the participants were English (one129

subject), German (three participants) and Dutch (two participants).130

2.2. Experimental Stimuli131

To facilitate comparison with the convnets, we selected utterances from132

the same corpus that the networks were trained on. Such a comparison is133

complicated by the fact that, although the networks were only trained on134

phonetic labels, human listeners will perceive the meaning and higher-level135

structure of speech, even if not instructed to do so. Therefore, to make the136

experimental conditions as similar as possible for both human and network137

listeners, we transformed the natural speech to remove higher-level structure138

while preserving the original phonemes. This quilting procedure, described139

below, allowed us to focus our comparison on representational transforma-140

tions only up to the sub-word level in both the convnets and the human141

auditory system.142

The audio corpora from which the stimuli were constructed were the143

same datasets that were used in (Thompson et al., 2019a) and (Thompson144

et al., 2019b), which are owned by Nuance Communications. Each of the145

three datasets, one for English, Dutch and German, contained 64–83 hours146

of spoken text read by several native speakers in a quiet room. The datasets147

also included phonetic transcriptions established in a forced alignment with148

text transcriptions.149

2MRI data will be made available on openneuro.org at publication time.
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The quilting procedure, adapted from (Overath et al., 2015), chops a150

sound file into small segments and reorders the segments according to a151

heuristic designed to hide the seams of the quilt (the segment boundaries).3152

A random segment is chosen as the first segment in the quilt. Subsequent seg-153

ments are chosen to best match the segment-to-segment boundaries in the154

chochleogram of the original audio. In this way, temporal patterns longer155

than the segment length are destroyed while minimizing the artefacts intro-156

duced by reordering the segments.157

Instead of using fixed segment lengths, as in (Overath et al., 2015), we158

used the provided phonetic boundaries to divide the speech into variable159

length segments containing single phonemes. The resulting quilts are out-160

of-order sequences of phonemes, preserving phonetic information while de-161

stroying the words and semantic content of the speech. The larger the input162

corpus relative to the desired quilt length, the more effectively the seams of163

the quilt will be hidden. Therefore, we selected the 60 speakers (30 women164

and 30 men) with the longest set of utterances in each language. Given all the165

utterances from a single speaker as input, the quilting procedure generated166

a one-minute quilt. The experimental stimuli consisted of 180 one-minute167

speech quilts (60 per English, Dutch and German). The final stimuli were168

filtered to account for the frequency response profile of the foam-tip ear-169

phones over which the stimuli were presented in the scanner.170

3Original sound quilting code can be found here:

http://mcdermottlab.mit.edu/downloads.html.

9
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2.3. Experimental Protocol171

The experimental procedures were approved by the ethics committee of172

the Faculty for Psychology and Neuroscience at Maastricht University (ap-173

proval code ERCPN-167 09 05 2016). Magnetic resonance images were col-174

lected over two sessions on separate days, each consisting of 10 functional175

runs. Nine speech quilts were presented in each run, grouped into blocks176

of three quilts from the same language. Within a block, the quilts were177

presented one after another with no interruption. Blocks were separated by178

short periods of rest which were sometimes followed by a question asking179

participants to identify the language of the speech presented in the preced-180

ing block. The purpose of this question was to ensure that participants were181

awake and paying attention to the stimuli. Participants used a button box182

to indicate their response. To save time, this vigilance question was not183

asked after every block. However, the design was such that the participants184

could not easily predict whether they would be questioned and so had to185

pay attention during every block. Each run contained one block for each186

language. The stimuli were presented in a different pseudo-random order for187

each participant.188

2.4. MRI Acquisition Parameters189

Images were acquired at Maastricht University, Maastricht, Netherlands190

on a 7T Siemens MAGNETOM scanner (Siemens Medical Solutions, Erlan-191

gen, Germany), with 70 mT/m gradients and a head RF coil (Nova Medical,192

Wilmington, MA, USA; single transmit, 32 receive channels). Foam pads193

were used to minimize head motion.194

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.26.428323doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/


2.4.1. Anatomical195

At the start of each session, a T1-weighted (T1w) image and a proton196

density weighted (PDw) image were acquired using a 3D MPRAGE se-197

quence [voxel size=1.0mm isotropic; repetition time (TR)=2370 ms; echo198

time (TE)=2.31 ms; flip angle=5°; generalized auto-calibrating partially199

parallel acquisitions (GRAPPA)=3 (Griswold et al., 2002); field of view200

(FOV)=256 mm; 256 slices, phase encoding direction: anterior to posterior,201

inversion time (TI) for T1w only=1500 ms].202

2.4.2. Functional203

Functional MRI data were acquired with a 2-D Multi-Band Echo Planar204

Imaging (2D-MBEPI) sequence (Steen Moeller et al., 2010, Setsompop et al.,205

2012). In order to include the entire brainstem and thalamus as well as206

primary and secondary auditory cortex, slices were arranged in a coronal207

oblique orientation (TR=1700 ms; TE=20 ms; flip angle=70°; GRAPPA=3;208

Multi-Band factor=2; FOV=206 mm; 1.7 mm isotropic voxels; phase encode209

direction inferior to superior).210

2.5. MRI Preprocessing211

The MRI preprocessing was performed using fMRIPrep 1.4.1 (Esteban212

et al. 2018a; Esteban et al. 2018b; RRID:SCR 016216), which is based on213

Nipype 1.2.0 (Gorgolewski et al. 2011; Gorgolewski et al. 2018; RRID:SCR 002502).214

The following description was prepared by fMRIPrep.215

2.5.1. Anatomical data preprocessing216

T1-weighted (T1w) images were corrected for intensity non-uniformity217

(INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with218
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ANTs 2.2.0 (Avants et al., 2008, RRID:SCR 004757). The T1w-reference was219

then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh220

workflow (from ANTs), using OASIS30ANTs as target template. Brain tis-221

sue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-222

matter (GM) was performed on the brain-extracted T1w using fast (FSL223

5.0.9, RRID:SCR 002823, Zhang et al., 2001). A T1w-reference map was224

computed after registration of 2 T1w images (after INU-correction) using225

mri robust template (FreeSurfer 6.0.1, Reuter et al., 2010). Brain surfaces226

were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR 001847,227

Dale et al., 1999), and the brain mask estimated previously was refined with228

a custom variation of the method to reconcile ANTs-derived and FreeSurfer-229

derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR 002438,230

Klein et al., 2017). Volume-based spatial normalization to one standard231

space (MNI152NLin2009cAsym) was performed through nonlinear registra-232

tion with antsRegistration (ANTs 2.2.0), using brain-extracted versions233

of both T1w reference and the T1w template. The following template was234

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical tem-235

plate version 2009c (Fonov et al. 2009, RRID:SCR 008796; TemplateFlow236

ID: MNI152NLin2009cAsym).237

2.5.2. Functional data preprocessing238

For each of the 20 BOLD runs per subject (across all sessions), the239

following preprocessing was performed. First, a reference volume and its240

skull-stripped version were generated using a custom methodology of fM-241

RIPrep. The BOLD reference was then co-registered to the T1w reference242

using bbregister (FreeSurfer) which implements boundary-based registra-243
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tion (Greve and Fischl, 2009). Co-registration was configured with nine244

degrees of freedom to account for distortions remaining in the BOLD ref-245

erence. Head-motion parameters with respect to the BOLD reference (trans-246

formation matrices, and six corresponding rotation and translation parame-247

ters) are estimated before any spatiotemporal filtering using mcflirt (FSL248

5.0.9, Jenkinson et al., 2002). BOLD runs were slice-time corrected using249

3dTshift from AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR 005927).250

The BOLD time-series, were resampled to surfaces on the following spaces:251

fsaverage5. The BOLD time-series (including slice-timing correction when252

applied) were resampled onto their original, native space by applying a sin-253

gle, composite transform to correct for head-motion and susceptibility distor-254

tions. These resampled BOLD time-series will be referred to as preprocessed255

BOLD in original space, or just preprocessed BOLD. The BOLD time-series256

were resampled into standard space, generating a preprocessed BOLD run in257

[‘MNI152NLin2009cAsym’] space. First, a reference volume and its skull-258

stripped version were generated using a custom methodology of fMRIPrep.259

Several confounding time-series were calculated based on the preprocessed260

BOLD : framewise displacement (FD), DVARS and three region-wise global261

signals. FD and DVARS are calculated for each functional run, both using262

their implementations in Nipype (following the definitions by Power et al.,263

2014). The three global signals are extracted within the CSF, the WM, and264

the whole-brain masks. Additionally, a set of physiological regressors were265

extracted to allow for component-based noise correction (CompCor, Behzadi266

et al., 2007). Principal components are estimated after high-pass filtering the267

preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-268
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off) for the two CompCor variants: temporal (tCompCor) and anatomical269

(aCompCor). tCompCor components are then calculated from the top 5%270

variable voxels within a mask covering the subcortical regions. This subcorti-271

cal mask is obtained by heavily eroding the brain mask, which ensures it does272

not include cortical GM regions. For aCompCor, components are calculated273

within the intersection of the aforementioned mask and the union of CSF274

and WM masks calculated in T1w space, after their projection to the native275

space of each functional run (using the inverse BOLD-to-T1w transforma-276

tion). Components are also calculated separately within the WM and CSF277

masks. For each CompCor decomposition, the k components with the largest278

singular values are retained, such that the retained components’ time series279

are sufficient to explain 50 percent of variance across the nuisance mask (CSF,280

WM, combined, or temporal). The remaining components are dropped from281

consideration. The head-motion estimates calculated in the correction step282

were also placed within the corresponding confounds file. The confound time283

series derived from head motion estimates and global signals were expanded284

with the inclusion of temporal derivatives and quadratic terms for each (Sat-285

terthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD286

or 1.5 standardised DVARS were annotated as motion outliers. All resam-287

plings can be performed with a single interpolation step by composing all the288

pertinent transformations (i.e. head-motion transform matrices, susceptibil-289

ity distortion correction when available, and co-registrations to anatomical290

and output spaces). Gridded (volumetric) resamplings were performed us-291

ing antsApplyTransforms (ANTs), configured with Lanczos interpolation to292

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded293
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(surface) resamplings were performed using mri vol2surf (FreeSurfer).294

2.6. Regions of Interest295

We extracted blood oxygenation level-dependent (BOLD) signal at spe-296

cific regions of interest (ROIs) along the auditory pathway: cochlear nucleus297

(CN), superior olivary complex (SOC), inferior colliculus (IC), medial genic-298

ulate nucleus (MGN), Heschl’s gyrus (HG), planum temporale (PT), planum299

polare (PP), superior temporal gyrus anterior portion (STGa), and superior300

temporal gyrus posterior portion (STGp). We used the subcortical region301

definitions from the atlas recently published by Sitek et al. (2019)4. Corti-302

cal regions were defined using the Harvard-Oxford parcellation included in303

FSL 5.0 and accessed through nilearn 0.5.2 (Abraham et al., 2014). ROI304

definitions included both left and right hemispheres. A simple General Lin-305

ear Model (GLM) sound vs no-sound contrast was calculated using nistats306

0.0.1b1 to select cortical voxels that respond to sound for subsequent anal-307

ysis. Nilearn’s NiftiMasker was used to extract multi-voxel activity from308

each of the ROIs. The masks for the cortical regions took the intersection309

with the subject’s brain mask, as prepared by fMRIPrep, and the map of sig-310

nificant (p < .05 uncorrected) voxels in the sound vs no-sound contrast. To311

improve the signal-to-noise-ratio (SNR), the NiftiMasker detrended, stan-312

dardized, and removed confounding variables (as calculated by fMRIPrep313

4Due to the small size of CN and SOC and the difficulty of inter-subject alignment

of the brainstem, we cannot be completely certain that the activity we extracted truly

corresponds to activity in these small brainstem regions. However, the participants in the

present study were also participants in the auditory fMRI sessions reported in (Sitek et al.,

2019), providing some assurance that these region definitions are reasonable.
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and described above).314

2.7. Convolutional Neural Network Activations315

The convnets analyzed here are a subset of those analyzed in (Thomp-316

son et al., 2019a). All networks were trained to perform context-dependent317

phone (triphone) classification. Here we look only at the nine freeze-trained318

networks, which outperformed all other models in Thompson et al. (2019a).319

These nine networks consisted of three monolingual networks for each of320

the three languages (English, Dutch and German) and six transfer networks321

which were first trained on one language and then freeze-trained on another.322

In all cases, all parameters were updated for 100 epochs and then the net-323

works were freeze-trained for an additional 100 epochs. Freeze training refers324

to the procedure by which layers are gradually removed from the set of train-325

able variables over the course of training and in order of depth. Previous326

work has shown that freeze training can speed up training (Raghu et al.,327

2017) and facilitate transfer across related tasks (Thompson et al., 2019a).328

All networks were of identical architecture and consisted of nine convolu-329

tional layers followed by three fully connected layers. The layers were as330

follows, where triplets specify the filter size and number of feature maps in331

each convolutional layer and the singletons specify how many units in each332

fully connected layer: (7, 7, 1024), (3, 3, 256), (3, 3, 256), (3, 3, 128), (3, 3,333

128), (3, 3, 128), (3, 3, 64), (3, 3, 64), (3, 3, 64), (600), (190), (9000). The334

input data were 45-dimensional mel-frequency filterbank features calculated335

at a rate of one frame every 10 ms.336

For every network, the activation in response to the original (unquilted)337

speech stimuli was recorded. For convolutional layers, the average activation338
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within each feature map was recorded. For fully connected layers, the acti-339

vation at each unit was recorded. Only the activation in response to every340

second frame of the audio features was saved. Subsequently, the network341

activations were segmented according to the same phonetic boundaries and342

were quilted according to the same segment order that was used when gen-343

erating the experimental stimuli. This produced 180 sequences of network344

activations for each network, corresponding the 180 speech quilts presented345

in the scanner.346

2.8. CKA Similarity Analysis347

CKA is a matrix correlation method, similar to representational similar-

ity analysis (RSA) or canonical correlation analysis (CCA). CKA takes two

matrices X and Y as input: in this case, one for the BOLD responses and

one for the convnet responses to the same stimuli. CKA can be expressed as

a normalized version of the Hilbert-Schmidt Independence Criterion (HSIC)

(Cortes et al., 2012).

CKA(K,L) =
HSIC(K,L)

HSIC(K,K)HSIC(L,L)
(1)

where Kij = k(xi,xj) and Lij = l(xi,xj) correspond to two kernels. Gretton

et al. (2005) proved that HSIC converges to the population value at a rate

of 1/
√
n. The standard HSIC varies between 0 and 1 where 0 indicates

independence between X and Y . When using a linear kernel, CKA is simply:

CKA(X, Y ) =

∥∥Y >X∥∥2

F

‖X>X‖2F ‖Y >Y ‖
2
F

(2)

which is equivalent to the RV-coefficient (Robert and Escoufier, 1976).348
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Here we calculated CKA with a radial basis function (RBF) kernel and349

an unbiased estimator of the dot product similarity. The choice of the RBF350

kernel is based on several preliminary network-to-network and brain-to-brain351

comparisons where the representational hierarchy is known. As described in352

the Supplemental Material, RBF CKA was most sensitive to the represen-353

tational similarities of interest. To make CKA less biased, the dot product354

stimilarity in the standard CKA is replaced with the unbiased HSIC, as de-355

scribed in Song et al. (2007) and as implemented in the Google colab that356

was released with Kornblith et al. (2019). This unbiased RBF CKA metric357

varies between -1 and 1.358

The matrices X and Y to be compared must have the same number of359

rows, corresponding to time points or observations, but can differ in the num-360

ber of columns, corresponding to voxels or units. Since the temporal rate of361

fMRI is much slower than that of our acoustic features, temporal rescaling362

and alignment is required. The preprocessed BOLD timeseries from each363

ROI and each run were upsampled to match the frame rate of the network364

activations (one frame every 20 ms) using pandas (McKinney, 2010, 2011).365

This strategy allowed us to preserve the temporal resolution of the network366

activations without need for summary or binning. The quilted network ac-367

tivations were then aligned to the corresponding BOLD timeseries, setting368

timepoints when no stimulus was presented to zero. Since the timing of the369

experimental runs and the stimuli presentation order was different for each370

subject, this resulted in one matrix per subject per run for each layer of each371

convnet.372

The Glover model of the hemodynamic response function (HRF) (kernel373
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length=32 seconds), as implemented in nistats 0.0.1b0, was convolved with374

the network activations. We extracted and concatenated only the time seg-375

ments corresponding to the blocks of continuous auditory stimulation from376

both the fMRI and network activity. The first six seconds of each block were377

excluded from the analysis to allow for the HRF to ramp up. Thus, the to-378

be-analyzed fMRI activity does not include the on/off response at the onset379

of the stimulus blocks. Responses to each block were trimmed to exactly380

8599 frames, which, when concatenated, resulted in matrices with 515940381

rows for both the fMRI and neural network activity. CKA similarity was382

then calculated for all ROI-layer pairs383

2.8.1. Neural similarity score384

To quantify the similarity between a given ROI and network layer, we

also calculate the CKA similarity between each ROI and the layers of an

untrained network. This untrained network has the same architecture as the

trained models, but its parameters have been randomly initialized and never

updated. If training has increased the correspondence to the brain, the CKA

scores for a trained network should be greater than that of the untrained

network. We capture the effect of training on similarity by calculating the

difference of standardized CKA scores between a trained network of interest

and an untrained network, which we refer to here as the neural similarity

score for brevity. Within each subject, the CKA scores are standardized

using the mean µs and standard deviation σ2
s calculated over all models and

ROI-layer pairs. The CKA scores of the untrained network are standardized

using the same mean and standard deviation. The neural similarity score φs
m

is a difference of z-scores which reflects the similarity achieved by model m
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in subject s relative to the untrained model.

φs
m =

ckam − µs

σ2
s

− ckauntrained − µs

σ2
s

(3)

Thus a neural similarity score of 1 indicates that the similarity achieved by385

the trained model is 1 standard deviation greater than that achieved by the386

untrained network. As previous work has shown, it is crucial to compare387

trained networks to a random network to verify that the observed similarity388

can be attributed to the optimization and is not inherited from the similarity389

of the input features and/or architecture alone (Kell et al., 2018, Cadena390

et al., 2019).391

3. Results392

We calculated the CKA similarity for each network, subject, and ROI-393

layer pair. The results of these analyses can be summarized in similarity394

matrices whose rows correspond to layers of a network and whose columns395

correspond to the auditory ROIs. Figure 1 shows the grand mean similarity396

matrix (left), the mean similarity matrix for the untrained network (middle),397

and the mean neural similarity score matrix (right). Training increased net-398

work similarity to the auditory ROIs, as evidenced by the fact the the neural399

similarity scores for the trained layers are all positive (Figure 1c). However,400

we find no evidence of a shared hierarchy, which would manifest itself as401

a diagonal pattern of high neural similarity scores where shallow layers are402

more similar to early ROIs and deeper layers are more similar to later ROIs.403

This hypothesized diagonal pattern also does not occur in the raw CKA sim-404

ilarity scores, neither for the trained nor untrained networks (Figure 1a–b).405
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Instead, for all ROIs, the first fully connected layer (fc1) achieves the highest406

raw CKA similarity and the highest neural similarity score. This pattern407

does not occur in the similarity matrix for the untrained network, suggesting408

that it was introduced by training and not by the architecture.409

(a) Trained (b) Untrained (c) Neural Similarity Score

Figure 1: Grand Average Similarity. No shared representational hierarchy is observed.

(Left) Raw CKA similarity averaged over participants and networks. (Middle) Raw

CKA similarity for the untrained network, averaged over participants. (Right) Neural

similarity score averaged over participants and networks. The similarity matrix contains no

negative values, showing that training increased correspondence, but there is no diagonal

pattern to indicate a shared hierarchy. Instead, for all ROIs, the first fully connected layer

(fc1) is most similar.

We calculated the average neural similarity score matrix for each net-410

work to investigate how the different training curricula would affect the cor-411

respondence. Figure 2 displays nine similarity matrices arranged in a grid.412

The monolingual models, which were only ever trained on one language, are413

along the diagonal of the grid. The off-diagonal matrices correspond to the414

transfer networks which were first trained on one language and subsequently415
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freeze trained on another. The patterns observed in the grand average are416

largely replicated in the network-specific similarity matrices. Layer fc1 gen-417

erally achieves high neural similarity scores and none of the networks show418

any clear evidence for a shared hierarchy. The neural similarity score for419

layer fc2 is near or below 0 for the monolingual networks but well above zero420

for the transfer networks. Receiving training on two languages rather than421

one increased the correspondence between layer fc2 and the auditory ROIs.422

We hypothesized that the differences between models observed in Figure 2423

may be related to the models’ accuracy on the phone classification task on424

which they were trained. In Figure 3, we plot the peak neural similarity score425

as a function of triphone classification accuracy. The lines show the linear426

regression fit for each language-subject pair. All slopes are positive, indicat-427

ing a positive relationship between model accuracy on the speech recognition428

task and the peak similarity with the human auditory pathway.429

4. Discussion430

Our experimental results clearly demonstrated that training our convnets431

on the triphone recognition tasks increased their representational similarity432

to the collected auditory fMRI activity. This demonstrates that our experi-433

mental design and analysis was sufficiently sensitive to reveal training-related434

effects on representational similarity. However, unlike the previous results of435

Kell et al. (2018) and Güçlü et al. (2016), this similarity did not manifest in436

a pattern of shared hierarchy; shallower layers were not most similar to early437

regions and deeper layers were not more similar to later regions. Instead, the438

first fully-connected layer, fc1, achieved the highest similarity score across all439
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Figure 2: Average Neural Similarity Score. Each similarity matrix shows the effect of

training on CKA similarity averaged over the six participants. The subtitles of the form

“Language 1 to Language 2” indicate that the network was first trained on Language 1

and then freeze trained on Language 2. Training generally increased the correspondence

between brain and networks. Layer fc1 shows the highest neural similarity score and there

is little evidence for shared hierarchy (no diagonal pattern). In some layers of certain

networks, training did not affect or actually reduced the ROI-layer similarity (shown in

white and blue). Layer fc2 yields greater neural similarity for the networks that were

trained on two languages, which also performed better on the triphone recognition task.
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Figure 3: Peak Neural Similarity Score vs Model Accuracy. There are nine points

per subject for the nine different network models. Lines show the linear regression fit

to the three models (one monolingual and two transfer) for each language and subject.

Triphone classification accuracy indicates the top-1 test accuracy achieved by each model.

For all language-subject pairs, there is a positive relationship between model accuracy

and the correspondence to the human brain. However the effect is largest for the German

models, owing to the lesser neural similarity score for the German monolingual model.

Parenthetical in the legend indicate the native language of each subject. The regression

statistics are reported in the Supplemental Information.
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ROIs, followed by the second fully-connected layer, fc2.440

This apparent discrepancy may be best explained by reference to the dif-441

ferent cost functions employed and stimuli classes presented. In fact, our re-442

sults are not inconsistent with previously reports of shared hierarchy. Rather,443

our work constitutes a stricter test of the shared hierarchy hypothesis and444

our results suggest the limits of such claims. While we focused specifically445

on the purely acoustic transformations between spectrogram features and446

triphones for exclusively speech stimuli, both Kell et al. (2018) and Güçlü447

et al. (2016) trained networks on tasks at a higher level of abstraction such448

as word and musical genre recognition and used on a wide variety of natural449

sounds, effectively analyzing a broader span of auditory features from low-450

level spectral features up to high-level semantic categories. Recall that the451

primary evidence of shared representational hierarchy in Kell et al. (2018)452

was a relatively coarse grain distinction between primary auditory cortex,453

which was better predicted by shallower layers and secondary auditory cor-454

tex, which was better predicted by deeper layers. It is possible that we may455

have also found a similar distinction had we trained our networks to rec-456

ognize words. Future work will need to continue to probe the granularity457

of any shared representational hierarchy, for example by testing the shared458

hierarchy hypothesis on subsets of network layers.459

There is a large diversity of experimental design and analysis approaches460

employed for the evaluation of representational models. We were inspired by461

previous fMRI studies which used continuous acquisition during continuous462

stimulation, for example natural movies, as in the studyforrest dataset. It’s463

been shown that single trial (i.e. without repetition) measurements during464
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movie watching contain sufficient information to train successful decoding465

models (Hu et al., 2017) and that functional alignment across subjects based466

on such single trial measurements can improve decoding performance rela-467

tive to single-subject decoding (Haxby et al., 2011, Bazeille et al., 2020).468

Experimental designs of this type sacrifice reliable responses to individual469

conditions in favor of maximizing the diversity of stimuli presented (which470

aids generalization) and the number of brain volumes collected. Similarity471

analyses like CKA benefit from a large number of observations differently472

than a classical GLM contrast analysis where a robust, reliable response to a473

small number of conditions is most important. In this way, the optimal design474

for a similarity analysis may be similar to that of functional alignment. In475

order to align two representational spaces, either between two brains or be-476

tween model and brain, the stimulus trajectory should maximally explore the477

stimulus space of interest. This is why we opted for a continuous stimulation478

paradigm and approximately two hours of unique speech stimuli, in contrast479

to previous studies which presented a much smaller number of sounds and480

analyzed responses averaged over several repetitions. A systematic compari-481

son of different experimental design and analysis methods is needed to tease482

apart the effect of such choices.483

We found that all layers were most similar to fc1 on average. Kell et al.484

(2018) similarly found that the median variance explained across auditory485

cortex was maximal at deep but not the deepest layers. This common486

observation may be related to the notion of dimensionality expansion and487

compression in DNNs. Recent work describes a two-stage process by which488

trained DNNs perform a task. The first stage, which might be call ‘fea-489
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ture extraction’, is characterized by increasing intrinsic dimensionality (di-490

mensionality expansion) in the early layers of the network. The second,491

dimensionality compression, is characterized by decreasing intrinsic dimen-492

sionality in the last layers of the network, as the network projects the data493

to a low-dimensional manifold from which the target can be linearly decoded494

(Recanatesi et al., 2019, Ansuini et al., 2019). Our layer fc1 may be the last495

‘expansion’ layer before the ‘compression’ of the final layers. From Thompson496

et al. (2019a), we know that layer fc1 is at the barrier between the interme-497

diate layers which are largely transferable between languages, and the final498

layers which are highly task specific. In Thompson et al. (2019b), layer fc1499

was the deepest layer to show a high degree a similarity in networks trained500

on different languages. The last layers of networks trained on narrowly de-501

fined tasks such as triphone recognition may simply learn representations502

that are more task-specific than any representations employed by the hu-503

man brain, whose ultimate goal during speech listening is typically natural504

language understanding, not phoneme recognition. However, fc2 was also505

found to be relatively similar, but only for the models which were trained506

on two languages rather than one. These networks benefited from twice the507

amount of training data as the models trained on only one language and dis-508

played superior generalization as a result. Our analysis revealed that these509

more generalizable, less language-specific penultimate representations were510

also more similar to activity in the auditory brain.511

Alternative architectures, cost functions, training procedures, or measure-512

ment modalities may be required to achieve a layer-to-ROI correspondence for513

low-level acoustic speech features. Given the low temporal-resolution of fMRI514
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and the temporal nature of sound, incorporating faster measurements such as515

electroencephalography, magnetoencephalography, or electrocorticograpahy516

may reveal common patterns that cannot be detected with fMRI. Future517

work may want to explore non-convolutional model architectures as there518

are a number of reasons why convnets may not be ideal architectures for519

audio spectrogram features. Auditory objects display differently in spectro-520

grams than visual objects in images. In particular, auditory objects tend to521

be less local than visual objects; the part of the spectogram corresponding522

to a particular sound object is often distributed across several frequencies523

and time points. Additionally, auditory objects do not occlude each other524

as visual objects in images do. Instead, overlapping auditory objects in a525

spectrogram will combine additively. In this way, the inductive bias of con-526

volutional filters is less appropriate for traditional spectrogram-like features527

(Wyse, 2017) and thus perhaps less likely to yield brain-like representations.528

Recurrent or autoregressive architectures, which have been very successful in529

audio synthesis (Oord et al., 2016), may be ideal candidates to investigate in530

future work.531
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