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Abstract

Human observers use cues to guide visual attention to the most behaviorally relevant parts of the visual world.

Cues are often separated into two forms: those that rely on spatial location and those that use features, such

as motion or color. These forms of cueing are known to rely on different populations of neurons. Despite

these differences in neural implementation, attention may rely on shared computational principles, enhancing and

selecting sensory representations in a similar manner for all types of cues. Here we examine whether evidence for

shared computational mechanisms can be obtained from how attentional cues enhance performance in estimation

tasks. In our tasks, observers were cued either by spatial location or feature to two of four dot patches. They

then estimated the color or motion direction of one of the cued patches, or averaged them. In all cases we found

that cueing improved performance. We decomposed the effects of the cues on behavior into model parameters

that separated sensitivity enhancement from sensory selection and found that both were important to explain

improved performance. We found that a model which shared parameters across forms of cueing was favored by

our analysis, suggesting that observers have equal sensitivity and likelihood of making selection errors whether

cued by location or feature. Our perceptual data support theories in which a shared computational mechanism is

re-used by all forms of attention.
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Significance Statement

Cues about important features or locations in visual space are similar from the perspective of visual cortex, both

allow relevant sensory representations to be enhanced while irrelevant ones can be ignored. Here we studied these

attentional cues in an estimation task designed to separate different computational mechanisms of attention.

Despite cueing observers in three different ways, to spatial locations, colors, or motion directions, we found that

all cues led to similar perceptual improvements. Our results provide behavioral evidence supporting the idea that

all forms of attention can be reconciled as a single repeated computational motif, re-implemented by the brain in

different neural architectures for many different visual features.
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Introduction1

The visual world presents human observers with an overload of sensory information, only part of which is relevant2

to behavioral goals at any given moment in time. Observers manage this complexity by prioritizing specific aspects3

of vision, such as basic features or spatial locations. These forms of attention can be operationalized by providing4

observers with cues about the relevance of location (Cohen & Maunsell, 2011), color (Jehee, Brady, & Tong,5

2011), direction of motion (Huk & Heeger, 2000; Saenz, Buracas, & Boynton, 2002; Serences & Boynton, 2007),6

orientation (Rossi & Paradiso, 1995; Cohen & Maunsell, 2011) or object category (Harel, Kravitz, & Baker, 2014)7

among others. These cues improve response times (Eriksen & Hoffman, 1972; Posner, Snyder, & Davidson,8

1980) as well as the ability of observers to detect and discriminate visual stimuli (Carrasco, 2011). Spatial and9

feature-based attention rely on different kinds of cues and must have their effects on different populations of10

neurons tuned to these visual properties. While the effects of spatial cues are local (Alvarez & Cavanagh, 2005;11

Cohen & Maunsell, 2011) the effects of featural ones spread across the entire visual field (Saenz et al., 2002;12

Saenz, Buraĉas, & Boynton, 2003; Serences & Boynton, 2007; Treue & Martinez-Trujillo, 1999; Jehee et al.,13

2011; Störmer, Cohen, & Alvarez, 2019; Liu & Mance, 2011; Cohen & Maunsell, 2011). The effects of both forms14

of cueing also appear to combine in an additive manner (Hayden & Gallant, 2009; Treue & Martinez-Trujillo,15

1999; White, Rolfs, & Carrasco, 2015; Andersen, Fuchs, & Müller, 2011) with small differences in timing (Liu,16

Stevens, & Carrasco, 2007; Hayden & Gallant, 2005), further evidence that they operate in parallel.17

Despite having their effects on different neural populations, spatial and feature-based attention may share a com-18

putational mechanism, thus providing a unified view of how different cue types enhance behavioral performance.19

Computational mechanisms of attention can be split into two general categories by whether they act to enhance20

sensory representations (Treue & Martinez-Trujillo, 1999; Luck, Chelazzi, Hillyard, & Desimone, 1997; Mitchell,21

Sundberg, & Reynolds, 2007; Itthipuripat, Cha, Byers, & Serences, 2017; Noudoost, Chang, Steinmetz, & Moore,22

2010; Eckstein, Peterson, Pham, & Droll, 2009; Müller et al., 2006) or select and reinforce the transmission of23

attended features through the visual system (Desimone & Duncan, 1995; Briggs, Mangun, & Usrey, 2013; Fries,24

Reynolds, Rorie, & Desimone, 2001; Pestilli, Carrasco, Heeger, & Gardner, 2011; Birman & Gardner, 2019; Lee,25

Itti, Koch, & Braun, 1999; Pelli, 1985; Palmer, Verghese, & Pavel, 2000; Hara & Gardner, 2014). Whether26

spatial or featural cues use either of these mechanisms has been studied in a variety of psychophysical tasks. For27

example, using a masking paradigm Baldassi and Verghese (2005) showed that the effects of spatial and featural28

cueing are selective for properties of the mask that are congruent with the cue and suggest a model with shared29

mechanisms of sensitivity enhancement. Paltoglou and Neri (2012) used a psychophysical white noise paradigm30

and showed a similar set of results, where gain changes explained the effects of both cue types. However, Ling,31
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Liu, and Carrasco (2009) showed using an external noise paradigm that the effects of spatial and feature-based32

attention do differ, but only under conditions of high noise. This finding suggests that feature and space differ in33

their sensitivity to irrelevant sensory information. These various findings might be reconciled by recognizing that34

the effects of attention differ under conditions of low and high competition. White et al. (2015) showed that the35

behavioral effects of spatial and feature-based cues are additive under conditions of low competition but subject36

to a non-linear selection effect at high competition, consistent with a two-step process of independent sensitivity37

enhancement followed by a selection mechanism. However, this has not been directly tested behaviorally because38

existing paradigms (using masking, reverse-correlation, or external noise) did not explicitly model sensitivity and39

selection.40

Here we used a cued estimation task and modeling to test whether spatial and feature-based cues share an41

implementation through a combination of sensitivity enhancement and sensory selection. To do this, the form of42

cueing must be manipulated without a change in task or stimulus. We therefore developed a set of tasks in which43

cueing by location, color, and motion could be directly compared on shared metrics. We found that observers were44

able to use all forms of cues with similar efficacy. When broken down into sensitivity enhancement and sensory45

selection we found that both mechanisms played a role for spatial and feature-based cues and that a model with46

shared parameters for all cue types was preferred over one with separate parameters for each cue. Our results47

suggest that spatial and feature-based attention are more similar than different and support theories of a shared48

top-down computational mechanism (Treue & Martinez-Trujillo, 1999; Ni & Maunsell, 2019; Maunsell & Treue,49

2006).50

Results51

To measure the effect of cueing by feature or location on perceptual sensitivity we asked observers to perform a52

cued motion direction averaging task (Fig. 1). Briefly, observers were asked to report the average motion direction53

of two out of four random dot patches. The two selected patches were cued either by their common location or54

color, randomly interleaved across trials. This task thus engages either spatial or feature-based attention according55

to the current cue. In addition, the task does not require working memory, which avoids potential confounds56

introduced by storing perceptual information during a delay.57

By examining known stimulus manipulations we first showed that our task provided a good measure of perceptual58

sensitivity. As expected, we found that estimates of average direction were more precise on easier trials. This59

was true both for trials with a smaller angle difference between the two cued patches (Fig. 2a) and for trials60
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Fixation (0.5 s)

Cue (0.75 s)

Inter-stimulus interval (0.75 s)

Stimulus (variable: 0.25 - 0.75 s)

Delay (1 s)

Time (s)

Cue: color (yellow) Cue: side (right)

or

Response (inf)

Feedback (0.75 s)

ITI (0 - 2 s)

Figure 1: Motion direction averaging task. Observers were asked to select two out of four random dot patches
and average their directions of motion. Observers initiated trials by fixating a central cross (Fixation). During
this initial period and until stimulus presentation the dots in the four patches moved incoherently. A cue was
shown at the fixation cross indicating which two dot patches should be averaged (Cue): a line to the left or
right of fixation indicated selection by side or a mini-patch of dots colored yellow or blue indicated selection by
feature. After a brief delay (Inter-stimulus interval) the four dot patches moved coherently in random directions
for a variable duration (Stimulus). After another brief delay (Delay) observers used a rotating wheel to report the
average direction of motion for the two dot patches they were asked to select. Feedback was given by indicating
the true average motion direction.
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with longer duration (Fig. 2b). To quantify this, we fit a model of perceptual sensitivity in estimation tasks (the61

“target confusability competition” model, see Schurgin, Wixted, and Brady (2020) and Methods) which fits a62

parameter d′ in a manner analogous to signal detection. Increasing the stimulus duration from a mean of 0.35 s63

to 0.625 s made the task easier and increased the average d′ across observers from 1.53 to 1.77 (+0.24 95% CI64

[0.17, 0.30]). Reducing the angle between the two dot patches from a mean of 100◦ to 30◦ also made the task65

easier, increasing the average d′ from 1.48 to 1.84 (+0.36 95% CI [0.28, 0.43]).66

Having validated our perceptual sensitivity measure, we next tested whether performance was better for spatial67

or feature-based cues and found that spatial cues provided only a modest benefit to performance (Fig. 2c).68

Estimates of average direction were more accurate when observers selected dot patches by their common spatial69

location (on the left or right) compared to by feature (yellow or blue). The d′ across observers was 1.72, 95%70

CI [1.51, 2.05] for selection by side and 1.52 [1.33, 1.69] for selection by color. This modest increase in d′ was71

found for 6/7 observers, averaging 0.19 [0.08, 0.43]. Splitting d′ out by all four selection conditions: select yellow,72

select blue, select left, and select right, d′ = 1.60 [1.41, 1.73], 1.48 [1.30, 1.69], 1.73 [1.48, 1.98], and 1.75 [1.52,73

2.20], respectively. Our data therefore show that changing the form of cueing has an almost negligible effect on74

averaging. The small advantage of spatial cueing that we did observe may in fact be explained by the known75

effect of stimulus distance on the accuracy of averaging (see e.g. Maule and Franklin (2015) among others).76

Although the performance difference between spatial and color cues was small, the mechanism by which subjects77

used the cue could have been quite different. For example, cues could have improved performance by making78

perception more precise, or performance could also have improved if observers became more accurate in selecting79

the cued dot patches. These two different ways of improving performance, enhancing sensitivity and reducing80

selection errors, both could have resulted in similar response distributions. We next set out to separate these two81

computational mechanisms.82

To separate changes in sensitivity from selection we devised a cued estimation task using the same stimulus as83

the cued averaging task (Fig. 3). In the estimation task, observers reported the properties of only a single dot84

patch. The advantage of this change is that a computational model can be used to separate the effects of a85

change in sensitivity from a change in selection. If an observer’s response is close to the angle of the target dot86

patch, then it is likely that the observer correctly selected the target and reported it back. If their response is87

instead close to the angle of one of the other dot patches, there is some likelihood that the observer made a88

mistake and mis-selected a non-target patch, i.e. an error in selection. This task allowed us to decompose these89

different possible explanations into model parameters fit to large numbers of trials.90

We tested our hypothesis on two variations of the cued estimation task to ensure our results were robust to the91

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.26.428350doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428350
http://creativecommons.org/licenses/by/4.0/


Response distance from true average (psychophysical distance / degs)

Pr
op

or
tio

n 
of

 re
sp

on
se

s 
(%

) Cue side Cue color

0

0.1

0.2

0.3c

a b

0

0.2

Pr
op

or
tio

n 
of

 re
sp

on
se

s 
(%

)

easier (0 − 67.5 deg)
harder (67.5 − 135 deg)

Response distance from true average (psychophysical distance)

harder (0.2 − 0.5 s)
easier (0.5 − 0.75 s)

0 01 1
0

0.2

0.2 (13°) 0.4 (24°) 0.6 (40°) 0.8 (67°) 1 (180°)0

Figure 2: Estimation error during the averaging task. (a) A histogram displaying the proportion of responses at
each absolute distance from the true average motion direction (rotated to 0) is shown, averaged across observers.
Data are split by the angular distance between the motion direction of the two dot patches which were cued.
Note that the x-axis in all panels has been re-scaled from degrees to psychophysical distance, see Methods. (b)
Conventions as in (a), data are split by the duration of the stimulus. (c) Conventions as in previous panels.
Selection by spatial location (i.e. averaging the two patches on the right or left) is shown in yellow, and selection
by color (i.e. averaging the two yellow or blue patches) is shown in blue. The two inset plots show the same
histogram in a circular space, with a red dashed line indicating the true average. In all panels lines indicate
the average normalized histogram of response counts across observers and shaded regions the 95% confidence
interval.
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Fixation (0.5 s)

Cue (0.75 s)

Inter-stimulus 
interval (0.75 s)

Stimulus
(0.25 - 0.3 s)
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Response (inf)

Feedback (0.75 s)
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(yellow)
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Report direction
a b
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No-distractorCue 2: feature
(up)

Cue 2: side
(left)Uncued

Figure 3: Estimation task. (a) Observers began each trial by fixating a central cross (Fixation). A pre-cue (Cue)
was then shown at fixation to indicate to observers which of the four dot patches they should select. A brief
delay (Inter-stimulus interval) followed. Up to this point all four dot patches were colored white and moving
incoherently. The dots then became colored and coherent for a variable duration (Stimulus). After another brief
delay (Delay), observers were shown a second cue which was used to disambiguate the target stimulus (Post-cue).
For example, if the observer was cued to remember the two stimuli on the left, the post-cue could be yellow to
indicate that of the two patches that were cued (blue and yellow, left side) only the motion direction of the target
(the yellow patch on the left) should be reported. Observers were given unlimited time to respond (Response)
and received feedback before the next trial (Feedback). (b) A second variant of the same task was also run in
which the cues were side (left or right) or motion direction (up or down) and observers reported about the color
of the dot patches.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.26.428350doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428350
http://creativecommons.org/licenses/by/4.0/


particular cued features. In one variant observers were cued by location or color and had to report the motion92

direction of a dot patch (Fig. 3a). In the other, observers were cued by location or motion direction while93

reporting color (Fig. 3b).94

We first evaluated the cued estimation task on two reference conditions: trials in which no cue was given and95

trials where no distractors were shown. These two references provide a lower bound (Uncued condition, Fig. 3)96

and an upper bound (No-distractor, Fig. 3) on performance. The no-distractor condition is an upper bound97

because the stimulus to report appears in the absence of distracting information. This should be equivalent to98

the optimal performance of an observer cued to select a single dot patch.99

The reference conditions showed that observers could perform this task and that indeed, the absence of distractors100

improved estimates of motion direction. In both variations the observers’ estimates were less precise in the101

uncued condition (black markers have a wider distribution compared to grey markers, Fig. 5), indicating poorer102

performance. We next decomposed these responses into the separate sensitivity and selection parameters to103

understand what caused the deteriorated performance in the presence of distractors.104

To decompose the responses in the cued estimation task we extended an existing observer model (Schurgin et al.,105

2020) to fit separate parameters to capture sensitivity (d′) and selection (β) (Fig. 4). On each trial, the observer106

model encodes the four stimulus patches (Fig. 4a,b) by a set of noisy channels (Fig. 4c). A parameter, d′,107

controls the maximum value of the channels and the sensitivity of the observer (Fig. 4d). In this model, the108

channel with the maximum response “wins” and becomes the observer’s estimated angle for that dot patch (red109

dashed line, Fig. 4e). The reported angle is then sampled from the estimated angles for the four dot patches110

in proportion to the β parameters (Fig. 4f,g). By computing the probability of each channel winning we can111

generate the full response likelihood for each dot patch (color distributions, Fig. 4e), i.e. how likely the observer112

was to make a particular response having seen that patch. When weighted by the β parameters, which fit the113

probability of choosing to report each patch, we get the distribution of response likelihoods for that trial, given114

all stimuli (Fig. 4h). Thus, in our model the β parameters control how selection occurs while the d′ parameter115

controls the observer’s precision of report.116

We first confirmed that the model captured the perceptual sensitivity of the observers in the two reference117

conditions. The model accounted for the qualitative aspects of the data well (curves track the markers, Fig.118

5a,b). For the report-color task the average R2
pseudo over observers was 0.84, 95% CI [0.71, 0.90] (uncued119

reference) and 0.88 [0.85, 0.91] (no-distractor reference). For the report-direction task 0.85 [0.74, 0.89], and120

0.90 [0.88, 0.92], respectively. We also confirmed that every model we fit was a better fit to the true data than121

a data set in which we permuted the response array. Averaged over the two task variations the improvement in122
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Figure 4: Estimation task model. (a-c) On a trial, stimuli of varying angles are encoded by many independent
channels (each channel is represented by a single colored tuning curve). Each channel’s tuning profile is defined
by the psychophysical distance function (see Methods) relative to that channel’s preferred angle. (d) The channel
responses for a trial are noisy, so for a particular presented stimulus each channel will have a response sampled
(black markers) from a normal distribution with a mean set by the height of the tuning curve at the stimulus
angle (colored markers indicate mean and error bars ±1 standard deviation). The model’s predicted response to a
dot patch is found by taking the channel with the maximum sampled response and reporting its preferred angle.
These winning angles are shown as a red vertical dashed line in (e) along with the probability distribution of each
channel having the maximum response. A free parameter d′ sets the spread of this distribution by multiplicative
scaling of the peak responses of the channels, in a manner analogous to signal detection (see Methods). (f) The
selection parameters (β) control the probability that each dot patch will influence an observer’s report. (g) From
a discrete sampling perspective, the β values sets the proportion of trials where the observer will report about the
estimated angles of particular dot patches, e.g. here the estimated target angle is reported. (h) To fit the model
we computed the full likelihood distribution for each trial. We then optimized the model parameters to maximize
the likelihood of each observer’s actual reports across all trials.
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cross-validated log-likelihood for real data compared to the permuted data was 39.01, [26.43, 56.74] (uncued)123

and 98.60, [84.31, 115.08] (no-distractor).124

Looking at the sensitivity parameter we found that without distractors observers consistently made more precise125

reports (Fig. 5c). The average d′ across observers for no-distractor trials in the report-direction task 2.21 [1.91,126

2.46] and the report-color task was 2.05 [1.88, 2.35]. By comparison, in the presence of distractors d′ was only127

0.79 [0.58, 1.02] for the report-direction task and 1.28 [0.95, 1.49] for report-color. These differences show that128

adding distractors to the scene caused observers to recall the color or motion direction of a single dot patch with129

far more estimation error.130

We also found that uncued responses were characterized by a large proportion of selection errors (all Uncued β131

values non-zero, Fig. 5d). This indicates that the presence of distractors not only reduced the accuracy of reports132

but caused observers to report about the incorrect patches. In the report-direction task 44% of reports were about133

the wrong dot patch, most often the dot patch on the same side but of the wrong color (33% [28, 38]), but also134

often about the feature-matched patch on the wrong side (8% [2, 17]). In the report-color task observers made135

35% of reports about the wrong dot patch. Most often about the patch on the same side (19% [12, 31]) but136

sometimes about the feature matched patch (6% [1, 12]) or the distractor (10% [4, 19]). In summary, adding137

distractors decreased the precision of estimates and caused observers to report about the entirely wrong dot patch138

for about one in every three trials.139

Returning to the main hypothesis, we next looked at whether the cued trials caused a change in sensitivity or140

selection when compared to baseline performance. In the cued trials, observers selected dot patches by their141

common spatial location (left or right) or common feature (yellow/blue color, or up/down motion for the two task142

variants, respectively) (Fig. 3). Although cued to two dot patches, observers still reported only the properties of a143

single dot patch at the end of each trial, uniquely identified by the post-cue. As expected, we found performance144

on these trials to be intermediate between the reference conditions (Fig. 6a,b). Again, we confirmed that the145

model fits explained a substantial portion of the variance, finding an R2
pseudo of 0.90 [0.86, 0.93], 0.89 [0.88,146

0.91] for the report-direction variant and 0.91 [0.88, 0.92] (spatial cued), 0.87 [0.80, 0.92] for the report-color147

variant. We also confirmed that the models far exceeded the fit to permuted data sets, with an average increase148

in cross-validated likelihood of 231.49, [162.04, 315.85].149

Although both the uncued and cued trials had distractors present, we found that cueing reduced the impact of150

the distractors, both improving sensitivity and reducing selection errors. To quantify this, we combined trials from151

the two cued conditions and looked at the values of d′ (Fig. 6c) and β (Fig. 6d). Cueing, by spatial location or152

feature, increased d′ in both task variants (Fig. 6c). This increase was modest, the uncued d′ was 0.93 [0.79,153
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Figure 5: Baseline estimation performance. (a) A histogram of observer responses, relative to the true target
motion direction is shown averaged across observers for the uncued and no-distractor conditions. Markers indicate
the mean and error bars the 95% confidence intervals. Lines are the average fit of the model. (b) As in (a) for
the report-color variant. (c) The d′ parameter is shown for individual observers (gray) and the average (black) for
each condition and task variant. (d) The β parameters are shown averaged across observers for each condition and
task variant. βtarget refers to the dot patch which was post-cued (here left side, moving up), βside is the patch
on the same side as the post-cued patch (left side, moving down), βfeature is the patch on the other side with
the matched feature (right side, moving up), and βdistractor is the patch on the other side with a mis-matched
feature (right side, moving down).
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Figure 7: Spatial and feature-based cueing share model parameters (a) Diagram showing how parameters were fit
for the three models we compared. Each row are the trials for the two cued conditions and the uncued condition.
Each column shows how parameters were fit to the different sets of data. (b) The relative cross-validated likelihood
of the Cued and Spatial/Feature model are shown compared to the Shared model for individual observers (grey
markers) and the average (black marker). Some markers are hidden by others.

1.05] and 1.27 [1.10, 1.44] for the report-direction and report-color variants, respectively. In the cued model these154

were 1.26 [1.09, 1.51] and 1.38 [1.21, 1.62]. Taking the uncued condition as a baseline and the no-distractor155

condition as ceiling, this improved sensitivity corresponds to 23.4% and 17.5% of the no-distractor increase. We156

found that a model with separate d′ parameters for cued and uncued trials better accounted for our data compared157

to a model which combined these trial types: the average increase in cross-validated likelihood was 2.82 [0.82,158

5.06] for report-direction and 6.70 [3.52, 11.73] for report-color. We also observed substantial reduction in errors159

of selection. Comparing uncued to cued, observers increased their selection of the target dot patch by 15% [9, 23]160

and reduced incorrect selection of the same-side by 7% [-14, -1], same-feature by 6% [-12, -2], and distractor by161

2% [-7, 3] for the report color variant. For the report direction variant we found that observers increased target162

selection by 18% [8, 25], same-side decreased by 6% [-17, 2], same-feature by 3% [-9, 0] and distractor by 9%163

[-18, -3]. Again, we found that a model with separate β parameters for cued and uncued trials better accounted164

for our data: the average increase in cross-validated likelihood was 2.89 [0.10, 5.74] for report-direction and 4.84165

[1.15, 10.20] for report-color. These data show that cueing has a substantial impact on performance in this task,166

improving sensitivity and reducing the probability that observers will misreport about the irrelevant dot patches.167

Because the change in d′ and β that we observed were small we performed a model recovery simulation to confirm168

that our dataset was sufficient to detect these effects with high power (Fig. 6e,f). Briefly, we simulated data169

sets with various d′ and β parameters using the range of values observed in the cued and uncued conditions170

(Fig. 6c,d). We generated 200 such data sets for every combination of parameters and fit these with our analysis171

pipeline. We then bootstrapped the resulting values to compute the model’s true positive rate (sensitivity), i.e.172

the probability that the model would recover a difference in d′ or β when a real difference was simulated with173

noise (see Methods: Model recovery for details). We found that the effects we observed were well within the174

range that we would expect to be able to detect (observed effect sizes are all above 90% sensitivity, Fig. 6e,f).175
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While the averaging task data showed that human observers could use spatial and featural cues with similar176

efficacy, this could be done by similar or different computational mechanisms. Testing this hypothesis by fitting177

our model with either shared or separate parameters for the Uncued, Cue spatial, and Cue feature conditions178

(Fig. 7a), revealed that spatial and featural cues employ a shared computational mechanism. We first fit a Null179

model which used the same parameters for all three conditions, testing the null hypothesis that cueing had no180

effect. We then compared this to a Cued model which separated the spatial and feature cueing conditions from181

the uncued condition (the parameters from this model are reported in Fig. 6c,d). Finally, we fit a model in which182

all three conditions had separate parameters. We found that separately fitting cued trials improved model fit (Fig.183

7b), but there was no additional improvement to fitting spatial and feature-based conditions separately. Adding184

separate cued parameters increased the cross-validated likelihood by 4.11 [1.14, 7.34] and 8.69 [4.17, 13.93] for185

report direction and color, respectively. Further separating spatial and feature-based trials did not further improve186

the fits: change in average cross-validated likelihood 3.28 [-0.49, 6.21] and 0.71 [-2.22, 7.50]. Note that real, but187

small, differences between spatial and feature cueing would be unlikely to have been detected at our power (i.e.188

a difference in d′ < 0.05 or β < 0.01 Fig. 6e,f). In summary, because the improvements in perceptual sensitivity189

and reduction in selection errors were shared between cueing by location, color, and motion direction, our results190

suggest that spatial and feature-based selection share a common computational mechanism that both enhances191

sensitivity and reduces errors of selection.192

Discussion193

We found that spatial and feature-based cues changed perception in similar ways across a set of cued estimation194

tasks. In one task observers averaged motion directions cued either by location or color, a perceptual judgment195

with low working memory load. We found that observers were able to use both cues with similar efficacy, suggesting196

that they had similar effects on sensitivity. Although this measurement put each cue on the same scale it did not197

demonstrate computational similarity: observers might, for example, use sensory enhancement more when cued to198

a spatial location. We designed a set of tasks to separate sensitivity enhancement from errors of selection through199

the use of estimation (Prinzmetal, Nwachuku, Bodanski, Blumenfeld, & Shimizu, 1997; Prinzmetal, Amiri, Allen,200

& Edwards, 1998) and a computational model. Our data showed that all cues improved perceptual sensitivity201

and reduced errors of selection. Model comparison revealed that a model with shared parameters for spatial and202

feature-based cues was preferred over models in which perceptual improvements were separated by cue type. In203

other words, in our experiments the exact nature of the cue, whether spatial location, color, or motion direction,204

did not change the effects.205
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Several previous studies have also looked at how perceptual data inform us about the mechanisms of spatial and206

feature-based attention. Although many of these studies used different tasks or stimuli between cueing conditions207

we can nevertheless make indirect comparisons about the underlying computational mechanisms. For example,208

Ling et al. (2009) asked observers to judge motion directions under varying amounts of noise. They showed that209

at low noise both spatial and featural cues improved performance, but only featural cues improved performance210

in the presence of high external noise. The low noise comparison confirms that sensitivity enhancement is shared211

between different forms of cueing (Martinez-Trujillo & Treue, 2004; Cohen & Maunsell, 2011). Although the212

authors reported differences between cues under high noise conditions, this may be the result of using the same213

feature dimension for cue, report, and noise. Observers were cued to a motion direction, then reported whether214

a stimulus was rotated relative to the cue under conditions of decreasing motion coherence. In general, changes215

in tuning functions reappear whenever feature-based cues are matched with the dimension of report (Ling et al.,216

2009; Paltoglou & Neri, 2012; Baldassi & Verghese, 2005) while gain combined with a sensory selection step,217

as we propose, is sufficient to explain attentional effects cued by orthogonal features (White et al., 2015; Ni &218

Maunsell, 2019) such as those in our tasks.219

In another comparison, Baldassi and Verghese (2005) measured perceptual thresholds for oriented stimuli in the220

presence of masks. These masks varied in their distance and similarity to the target, defining a set of tuning221

functions. They found that an exogenous location cue at the target improved perception regardless of the mask222

distance or difference from the target, while exogenous orientation cues only provided a benefit when the mask223

was close to or similar to the detected orientation. Their data and ours are consistent with models in which tuned224

filters increase their precision according to their similarity to the cue (Treue & Martinez-Trujillo, 1999). Their225

data also points to the possibility that exogenous cueing relies on a different set of mechanisms that may be226

specific to spatial cues (Busse, Katzner, & Treue, 2006; Donovan, Zhou, & Carrasco, 2020).227

Several previous studies used task designs in which a direct comparison was possible. In one, Liu et al. (2007)228

looked for differences in timing between spatial and featural cueing. They found a small advantage to spatial229

cueing when the cue preceded the stimulus by 0.2 s, with both forms of cueing becoming equivalent at a 0.5 s230

delay. This result suggests that spatial attention can be deployed faster than featural attention (Goddard, Carlson,231

& Woolgar, 2019), a finding that explains in part why spatial attention is sometimes considered “primary” over232

featural attention (Wolfe, 1994). We interpret the faster deployment of spatial attention in the same way the233

authors do, as a difference in the neural architecture of top-down attentional control. Timing differences alone234

are insufficient to suggest that computational differences exist between spatial and featural attention. Because235

the performance enhancement of cueing is otherwise identical, both our results and theirs support the possibility236

of similar computational mechanisms.237
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Another direct comparison was performed by White et al. (2015). The authors looked for evidence of independent238

mechanisms by examining whether location cues and featural cues combine in an additive manner. In a low-239

competition condition they found that cues combined in a manner consistent with two independent additive240

mechanisms. In a high competition condition they found that a second selection step was necessary to explain241

the effects of combined cues. They perform this step in their model by divisive normalization. Our model used242

proportional sampling as a way to approximate these more complex biophysical mechanisms, but the end result243

is the same: there is a winner-take-all effect in which the stronger cued responses are more likely to out-compete244

weaker uncued ones.245

In the cued estimation task we used a post-cue to reveal the target in each trial. This afforded us the flexibility246

to cue different dimensions of the stimuli while still allowing us to measure an observer’s knowledge about any247

of the stimuli on the screen, providing us with the data necessary to separate sensitivity from selection. To248

avoid observers treating cued and uncued targets differently (Rahnev et al., 2011) we chose not to include invalid249

targets, i.e. we never asked the observers to report about a dot patch that was not part of the pre-cued set.250

One consequence of this is that we don’t know how much information observers retained about stimuli in the251

absence of attention. Many previous reports about dual task performance (Lee et al., 1999; Reddy, Wilken, &252

Koch, 2004; Lee, Koch, & Braun, 1997) and unattended stimuli (Li, VanRullen, Koch, & Perona, 2002; Birman253

& Gardner, 2019) show that visual information is processed and retained even at low levels or in the absence of254

attention. What our design did allow us to measure was that errors of selection decrease with attention. This255

is consistent with models in which some stimuli are prioritized for processing over others (Baldassi & Verghese,256

2005; Ling et al., 2009; White et al., 2015) but does not preclude the possibility that information is retained257

about all stimuli.258

One alternative to our model is that observers might encode an “ensemble” representation of the stimulus259

(Utochkin & Brady, 2020) instead of encoding the four dot patches independently and sampling from them260

(Emrich & Ferber, 2012; Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011). Some researchers have261

shown evidence for ensemble representations by measuring bias toward the mean of large sets of stimuli (Utochkin262

& Brady, 2020; Brady & Alvarez, 2011). In the task used by Utochkin and Brady (2020) stimulus angles are263

sampled from a distribution with an informative mean, making an ensemble representation an optimal strategy.264

The mean angle in our task was uninformative across trials, even though on a small number of trials with clustered265

stimuli it could have provided useful information. This key difference, if recognized by observers, likely played a266

role in which strategy they used to solve each task. In addition, our model represents the ensemble statistics in267

an implicit manner because of how the channels encode the stimuli. To see this, consider Figure 4 for a trial with268

four dot patches of similar color. The channel responses would all peak at nearby values, causing an ensemble-like269
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effect in which the mean angle becomes more likely to be reported than any individual dot patches’ true color270

angle. We expect that this behavior in the model should account for the effect reported by Utochkin and Brady271

(2020), but an ideal comparison could be performed by designing a stimulus set in which the ensemble is either272

informative or uninformative across different blocks of trials.273

Our results are consistent with a single shared computational mechanism of attention implemented by a different274

neural architecture depending on the feature (Cohen & Maunsell, 2011). This view is supported by the similarity of275

neural effects for different forms of attention (Cohen & Maunsell, 2011; Treue & Martinez-Trujillo, 1999; Patzwahl276

& Treue, 2009; Ling, Jehee, & Pestilli, 2015; Jehee et al., 2011; Martinez-Trujillo & Treue, 2004), the additive or277

multiplicative advantage of combining multiple cues (Hayden & Gallant, 2009; White et al., 2015; Andersen et al.,278

2011; Goddard et al., 2019), and the similar top-down sources in prefrontal cortex from which attention signals are279

thought to originate (Corbetta & Shulman, 2002; Moore & Armstrong, 2003; Zhou & Desimone, 2011; Bichot,280

Xu, Ghadooshahy, Williams, & Desimone, 2019; Liu & Hou, 2013). From this perspective, spatial location is just281

another feature and spatial attention is a special form of feature-based attention (Treue & Martinez-Trujillo, 1999).282

Like color or motion direction, location is a dimension in the possible space of stimulus properties and neuron283

tuning. Although all features are treated identically in most ways, the topological representation of space in early284

visual cortex leads to one important difference: any local computation, e.g. response normalization (Carandini &285

Heeger, 2011), will have spatially-tuned effects. Consistent with this, Ni and Maunsell (2019) recently showed286

that the neural effects of different cue types are consistent with a common top-down mechanism combined with287

spatial response normalization.288

A common mechanism combined with normalization predicts that the shift in spatial attention in our task, between289

selecting two overlapped dot patches or two separated patches, will lead to a change in the pool of activity that290

drives normalization early in visual cortex. Changes in the relative size of stimuli and the normalization pool291

are known to affect performance for low level features such as contrast discrimination (Herrmann, Montaser-292

Kouhsari, Carrasco, & Heeger, 2010). Other work has shown that for overlapping stimuli, as in our design,293

contrast normalization in early visual cortex leads to a biased representation of lower-level features but this bias294

does not occur for higher-level features such as motion direction (Wiesner, Baumgart, & Huang, 2020). This295

is consistent with our results, where we showed no difference in performance despite a change in the size of296

the normalization pool (from two dot patches for spatial cues to four for featural cues) and confirms that the297

representations of higher-level features are not affected by spatial normalization in the same manner as low-level298

ones.299

Researchers studying visual search have long held that visual features are extracted and processed in a parallel300
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step where spatial information is prioritized (Treisman & Gelade, 1980; Wolfe, 1994). Physiology experiments,301

in turn, have gone on to separate the neural effects of spatial and feature cues using different tasks. Because302

of these operational differences, many studies have found that spatial and featural cues have unique behavioral303

and neural properties—while a parallel literature of computational models (Treue & Martinez-Trujillo, 1999; Ni304

& Maunsell, 2019) has shown that all forms of cueing can be reconciled. The similar behavioral effects of cueing305

location, direction of motion, and color in our experiments demonstrate that perceptual data also provide support306

for a single shared mechanism of attention.307

Methods308

Observers309

In total 16 observers were subjects for the experiments (9 female, 7 male, mean age 25 y, range 19 - 37). All310

observers except one (who was an author) were naïve to the intent of the experiments. Three observers were311

excluded during the initial training sessions and one after data collection due to an inability to maintain appropriate312

fixation (see eye-tracking below). Potential observers were not considered for inclusion in the study if they self-313

reported any anomaly of color vision (e.g. color-blindness). At the start of the experiment observers completed314

the Ishihara test for color vision (Ishihara, 1987) and one observer was excluded due to anomalous responses.315

Observers wore lenses to correct vision to normal if needed. Procedures were approved in advance by the Stanford316

Institutional Review Board on human participants research and all observers gave prior written informed consent317

before participating.318

Seven of the observers completed the estimation task, performing on average 1428 trials (range 880 - 2123) in319

two to four 60 minute sessions. Seven of the observers performed the averaging task, completing on average 1010320

trials (range 280 - 1475) in two to four 90 minute sessions. One observer participated in both tasks. Observers321

were trained for one hour on their first day and then performed at most two sessions on subsequent days, returning322

several times to complete the experiment.323

Hardware setup for stimulus and task control324

Visual stimuli were generated using MATLAB (The Mathworks, Inc.) and MGL (Gardner, Merriam, Schluppeck,325

& Larsson, 2018). Stimuli were displayed on a 22.5 inch VIEWPixx LCD display (resolution of 1900x1200,326
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refresh-rate of 120 Hz) at a 60 cm viewing distance. Output luminance and spectral luminance distributions were327

measured for the LCD display with a PR650 spectrometer (Photo Research, Inc.). The gamma table for the328

display was adjusted to linearize the output luminance separately for each color channel. The luminance spectra329

of the monitor was used to compute a transformation matrix from the CIELAB color space to the RGB output of330

the screen, such that the a* and b* dimensions could be separately manipulated without changing the luminance331

(L*) (C.I.E., 1978). Experiments were performed in a darkened room where extraneous sources of light were332

minimized. Observers used a rotating response device to provide their responses (Powermate USB, Griffin Audio).333

Eye tracking334

Eye-tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink 1000; SR Research).335

Calibration was performed at the start of each session to get a validation accuracy of less than 1 degree average336

offset from expected, using a thirteen-point calibration procedure. Calibrations were repeated as needed after337

breaks. During training, trials were initiated by fixating the central cross for 0.5 s and canceled on-line when an338

observer’s eye position moved more than 1.5 degree away from the center of the fixation cross for more than 0.3339

s. Observers were excluded prior to data collection if we were unable to calibrate the eye tracker to an error of340

less than 1 degree of visual angle or if their canceled trial rate did not drop to near zero. During data collection341

the online cancellation was disabled and trials were excluded if observers made saccades outside of fixation (>342

1.5deg) during the stimulus period.343

Experimental design344

Stimuli for both the averaging and estimation task consisted of two pairs of overlapped dot patches, to the left345

and right of a central fixation cross (0.5 x 0.5 deg). The dot patches were circular regions centered 8 degrees346

eccentric with a diameter of 10 deg, covering from ±3 to ±13 deg along the horizontal axis and ±5 deg along347

the vertical axis. Each circular region contained two dot patches which differed in color and motion direction.348

Dots within a patch (0.3 deg diameter, 0.2 dots / deg2) were given an identical color and moved in the same349

direction at 3.5 deg / s. Each dot had a lifetime of 0.25 s, before being redrawn at a new random location. In350

the averaging task one patch on each side was colored yellow and one blue (90 deg and 270 deg, in a* b* space,351

with L* = 60).352
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Averaging task353

On each trial in the averaging task observers were asked to report the average motion direction of two dot patches354

(Fig. 1). Before stimulus presentation a cue indicated to observers the features they would use to select the two355

dot patches. There were two ways that observers were instructed to select these dot patches out of the four on the356

screen: they could either be the two on the same side (left/right) or the two with the same color (yellow/blue).357

Observers were instructed at the beginning of each block of 20 trials about which form of selection would be358

cued, by the phrase “cue side” or “cue color”. In cue-side blocks, a line to the left or right directed observers to359

average the two dot patches on the corresponding side. In cue-color blocks, a miniature patch (0.2 dots / deg2,360

0.1 deg diameter) of yellow or blue colored dots directed them to average those patches. The cues thus uniquely361

identified the pair of dot patches that the observer needed to select and report. Each trial was initiated by the362

observer fixating the central cross for 0.5 s. This was followed by the 0.75 s cue. After a 0.75 s delay the stimulus363

was shown.364

During the stimulus the four dot patches moved coherently in random directions. The two cued patches were365

constrained to move in directions that were less than 135 degrees apart. This avoids response confusion because366

for two patches that are 180 degrees apart there are two possible responses. Observers were shown the stimulus for367

0.25 - 0.75 s (randomly sampled from a uniform distribution), then allowed unlimited time to rotate the response368

wheel and click it to make a response. Response direction was indicated by a small line, which rotated as the369

observer turned the wheel. Feedback was given by showing the actual average motion direction (small green line,370

Fig. 1). Each trial was followed by a brief inter-trial interval (0 - 2 s, uniformly distributed).371

Estimation task372

On each trial in the estimation task observers were asked to report about either the color or motion direction of a373

single dot patch (Fig. 3). Before each block of 40 trials, observers were told which feature would be reported with374

either the phrase “report color” or “report direction” appearing on the screen. On each side during report-direction375

blocks one dot patch was colored blue and the other yellow and all four dot patches moved in random directions376

(0 to 359 deg, uniformly distributed). During report-color blocks the stimulus properties were inverted. On each377

side one dot patch moved upwards and the other downwards and the four dot patches were colored using angles378

in L*a*b* space (L* = 60, a*= cos θ, b*= sin θ, θ sampled from 0 to 359 deg, uniformly distributed).379

Before stimulus presentation a pre-cue indicated to observers the features of the target patch or gave no infor-380

mation, depending on the type of trial. There were two ways that observers were instructed to select dot patches381
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out of the four on the screen: they could either be the two on the same side (left or right) or the two with the382

same feature (yellow or blue in cue-color blocks, up or down in cue-direction blocks).383

These pre-cues were the same as in the averaging task, either lines (cueing left or right) or patches of dots (cueing384

either color or motion direction). The pre-cues were blocked, so that the same cue type was repeated for twenty385

trials (i.e. cue side trials repeated, sampled randomly between cue left and cue right). A post-cue always indicated386

the specific patch that needed to be reported. Each trial consisted of the following sequence (Fig. 3): a fixation387

period (0.5 s), a pre-cue (0.75 s), an inter-stimulus interval (0.75 s), stimulus presentation (0.25 or 0.3 s), a388

delay (1 s), a post-cue resolving which dot patch should be reported (0.75 s) and then unlimited time to report389

a response. The inter-trial interval was 0 - 2 s, uniformly distributed. The stimulus duration (0.25-0.3 s) was390

chosen based on the averaging task to make the estimation task difficult for participants.391

We also included uncued and no-distractor conditions as references. Comparing cued to uncued trials let us test for392

improved performance due to cueing, while trials without distractors gave us a measurement of the performance393

ceiling. In the uncued condition (Uncued, Fig. 3) observers were shown an uninformative pre-cue, then shown a394

post-cue which resolved which dot patch should be reported. In the no-distractor condition only the target patch395

was shown and observers reproduced the color or motion direction without interference. These control conditions396

were otherwise identical in timing to the regular trials and were also blocked in twenty trial sets. In total, 30%397

of trials were cue side, 30% cue feature, 20% uncued, 10% no-distractor, and an unused condition accounted for398

the last 10%.399

Statistical Analyses400

Psychophysical distance401

We designed our analyses to avoid conflating poor sensitivity with high lapse rates by converting angular to402

psychophysical distance (Schurgin et al., 2020). When observers estimate motion direction or color in angular403

space, including in our data, they often make a large number of responses far from the target angle. At first404

glance, these appear to be guesses on lapse trials (Zhang & Luck, 2008). Previous work has demonstrated that405

instead observers are making these low-probability responses with high confidence (Schurgin et al., 2020; Bays,406

2014). This result is consistent with a continuous view of working memory (Ma, Husain, & Bays, 2014; Taylor407

& Bays, 2020) and can be explained by recognizing that observers are not encoding angles in degree space but408

in an unknown internal representation. In this representation, which we refer to as psychophysical space, angular409

distances that are far apart or very similar are compressed. We approximate this with a sigmoidal function:410
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p(θ) = α
θκ

θκ + γκ
(1)

This equation transforms an angular distance θ to the normalized psychophysical distance p(θ), measured in411

perceptual units. The free parameters controlling the shape (α = 1.1, κ = 1.5, and γ = 35) were set according412

to data available in Schurgin et al. (2020) and the results are robust to small changes (on the order of 20%) in413

the parameters.414

The parameters set above imply that an observer perceives the difference between p = 0 and p = 0.5 (x = 0 and415

x = 31 deg, respectively) as equal to the difference between p = 0.5 and p = 1 (x = 31 and x = 180 deg). In416

this way, the psychophysical space is approximately a log compression of the original degree space.417

Averaging task analysis418

To quantify the observer accuracy in the averaging task we fit a simple model of perceptual sensitivity for angular419

estimation tasks, the “target confusability competition” model (Schurgin et al., 2020). In the following sections420

we will build up this model of observer behavior.421

The model takes into account two aspects of sensory representations to predict observer behavior. First, the model422

takes into account the “confusability” of stimuli by transforming angular distances into psychophysical distance423

(Eq. 1). In a second step, noisy internal channels tuned according to the psychophysical distance independently424

“compete” to represent a stimulus in a manner analogous to signal detection (Fig. 4a). On each trial the model425

proceeds according to the following steps.426

First, the stimulus angles are encoded by the channels. The tuning profile of each channel takes the form of the427

normalized psychophysical distance function (Eq. 1). An example from the estimation task is shown in Figure 4.428

For a single trial with four dot patches (Fig. 4a) of varying color (θtarget, θside, θfeature, and θdistractor, Fig. 4b)429

a small set of channels (Fig. 4c) would be activated as in Figure 4d. The mean activation and range of noise are430

shown (colored markers and error bars) as well as examples of samples from those distributions (black markers).431

We use 100 channels in the full model, but the exact number of channels is an arbitrary hyperparameter. More432

channels provide better resolution to account for the data, up to some ceiling. In simulations we found that more433

than 100 provided a marginal benefit because correlations quickly accumulate in nearby channels.434

Each channel’s response (Fig. 4d) is normally distributed around the mean (µ) determined from the tuning profile435

with standard deviation (σ) set to one:436
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Cθpref
(θ) = N (µ = d′ × (1− p(θ − θpref )), σ = 1) (2)

Where θpref is the preferred orientation for that channel, p is the function described in Eq. 1, and d′ controls the437

maximum amplitude of the response.438

Next, we take the channel with the maximum response. The preferred orientation of this channel is the angle439

reported by the modeled observer (Fig. 4d). Because each channel has independent normally-distributed noise,440

the probability of any channel being reported can be computed as the conditional probability of that channel441

exceeding all of the other channels (Fig. 4e). We approximate this distribution by numerically integrating over442

channel responses a:443

P (θ|θstimulus) =
∫ m

−m
P (Cθ(θstimulus) = a)

∏
j 6=θ

P (Cj(θstimulus) < a)da (3)

This equation computes the probability that channel Cθ’s response will exceed all the other channels and be chosen444

as the observer’s response, given that they observed a dot patch with angle θstimulus. a indexes the response of445

the channels according to Eq. 2. To compute the likelihood distribution across all angles we numerically evaluate446

Eq. 3 for each channel. We evaluate a in the range m = ±5
d
based on simulations which showed that this range447

was more than sufficient to capture the range of channel response values, but still be computationally tractable.448

The likelihood distributions are normalized as probability density functions, such that:449

∑
i

P (θi|θstimulus) = 1 (4)

A free parameter d′ controls the maximum amplitude of the channel responses (Fig. 4d) and therefore the width450

of the likelihood distributions.451

This model behaves in a manner analogous to signal detection. In the simplified case of a 2-AFC task the entire452

model simplifies to signal detection. In such a task, an observer might be looking for a dot patch moving at453

an angle θ = 0. On each trial two items would be presented: for example, one dot patch moving in the target454

direction θ = 0 and a second in the opposite direction θ = 180, or p(θ) = 0 and p(θ) = 1, respectively. The455

channel corresponding to the target direction, C0 would then have a response sampled from a normal distribution456

according to the response to each dot patch. If d′ = 1 these would be C0(0) = N (µ = d′ = 1, σ = 1) and457
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C0(1) = N (µ = 0, σ = 1). In this simplified scenario with only a single channel the d′ parameter is equivalent458

to signal detection: d′ = µsignal − µnoise
σ

, since it scales the distance between two normal distributions with459

σ = 1. The full model has 100 channels that are correlated to each other (due to the tuning functions), but the460

analogous behavior to signal detection holds.461

For the averaging task we fit d′ to the responses of individual observers by maximizing the likelihood of the462

observed data using Bayesian adaptive direct search (Acerbi & Ma, 2017). Note that the β parameters are used463

to fit the estimation task. For the averaging task we simply set βtarget = 1 and the others to 0. We cross-validated464

the models by separating the data into ten folds using nine to fit the model and evaluating the likelihood on the465

left out fold. We repeated this leave-one-fold-out procedure to obtain the likelihood of the full dataset.466

To account for motor error we convolved the likelihood functions (Eqn. 3) with an additional 2◦ full-width half467

maximum normal distribution (Fig. 4f). We also tested models with 1 and 3◦ distributions to ensure the results468

were robust to this parameter.469

Estimation task analysis470

To understand how observers encoded the stimulus during the estimation task, we expanded the model to separate471

sensitivity (how precise an observer’s reports were) from errors of selection (how likely observers were to report472

about the target or an erroneous patch). The estimation task model generalizes the averaging task model to473

account for the presence of four stimuli, allowing all four to modify an observer’s reports.474

To model the observer’s trial-by-trial response, we assumed that four likelihood distributions (one for each of the475

four dot patches) were sampled according to different probabilities. The dot patches shared a sensitivity parameter476

(d′, Fig. 4d). We then modeled responses as probabilistic samples from the four distributions according to a set477

of bias (β) parameters:478

P (θ|θtarget, θside, θfeature, θdistractor) =

βtargetP (θ|θtarget) + βsideP (θ|θside) + βfeatureP (θ|θfeature) + βdistractorP (θ|θdistractor) (5)

P refers to the probability distribution (Eq. 3) where θ are the possible response angles and the subscripted θ479

parameters are the angle of each dot patch (either motion direction or angle in color space). The subscript terms480
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target, side, feature, and distractor correspond to the dot patch that was post-cued on the trial (orange), the481

patch on the same side (blue), the patch on the opposite-side with matched-feature (pink), and the patch on the482

opposite-side with mismatched-feature (green), respectively (Inset panel, top right, Fig. 4a,b).483

The actual bias (β) values were calculated from three intermediate values:484

βtarget = βs ∗ βf (6)

βside = βs ∗ (1− βf ) (7)

βfeature = (1− βs) ∗ (1− βd) (8)

βdistractor = (1− βs) ∗ βd (9)

These are computed in a simple hierarchy: first βs controls whether the correct side is sampled. Second, the485

parameters βf and βd determine whether the patch with the feature matching the target or the distractor is486

sampled. We constrained βs, βf , and βd to the range [0, 1], which then also constrains βtarget + βside +487

βfeature + βdistractor = 1. In this way, the fit value of βtarget will correspond to the proportion of trials in488

which an observer’s response angle could be best attributed as having come from the target dot patch. βside will489

correspond to the proportion of trials attributed to the dot patch on the same side as the target, and similarly for490

βfeature and βdistractor.491

The output of this model is then a full likelihood distribution (Fig. 4h), i.e. the probability that any given angle492

will be chosen as a response given the condition and stimulus (Eqn. 5).493

In sum, we fit one sensitivity parameter (d′) and three intermediate bias parameters (βs, βf , βd) for the data set494

in which each observer selected by location or color (and reported motion direction) and separately for the data495

set in which they selected by location or motion direction (and reported color). Each model thus fit four free496

parameters using approximately 700 trials of data.497

Model statistics498

To compare any two variants of the models we computed their cross-validated log-likelihood ratio (i.e., the499

difference in total log-likelihood). We use this statistic rather than other information criterions (e.g. Akaike infor-500

mation criterion (Akaike, 1987)) because the cross-validation procedure already penalizes models with additional501
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parameters for over-fitting.502

To evaluate the quality of model fits for the estimation task we computed a measure of variance explained. We503

binned the proportion of responses at equal degree intervals (32 bins, 11.25◦each) generating a distribution of504

response angles and compared these to the model’s predicted distribution using the formula:505

R2
pseudo = 1− SSres

SStotal
(10)

Where SSres and SStotal are the unexplained variance and total variance, computed from the proportion of506

responses y and the model predictions y′:507

SSres =
∑
i

(y′i − yi)2 (11)

SStotal =
∑
i

y2
i (12)

To obtain a measure of statistical significance we randomly permuted the responses made by each observer within508

their data and refit the models, then repeated this permutation procedure 100 times. After the subtracting509

the mean, the resulting distribution of log-likelihoods had a 95% CI of [-2.22, 2.54]. This matches the common510

suggestion that when an information criterion statistic differs by more than two it should be considered statistically511

significant, while a difference larger than 10 would indicate a substantial improvement in model fit. For all512

parameter comparisons we used permutation tests to compute confidence intervals on their differences.513

Model recovery514

To estimate the statistical power of our data set and analysis we performed a model recovery simulation. Our515

focus was on estimating our statistical sensitivity (i.e. true positive rate) for various effect sizes of the d′ and516

β parameters. To estimate the sensitivity of the d′ parameter, we set up a series of simulated data sets each517

consisting of 700 trials (i.e. equivalent to the data of one observer, for one task variant). These datasets were518

constructed by sampling response angles according to the same model used to fit the data, including the addition519

of motor noise (Fig. 4). We simulated a d′ of 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.10, and 1.20, consistent with520

the range of d′ values observed in the uncued and cued data. We set βtarget = 1 for these data sets. For each521
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d′ value we generated 200 simulated data sets and fit these with our analysis pipeline. We then compared the fit522

d′ values against the distribution of values for the dataset with d′ = 1.00. A hit was counted if the fit value for a523

simulated data set with d′ > 1.00 was larger than the fit value for the data with d′ = 1.00. We bootstrapped the524

comparisons 10,000 times to estimate our sensitivity and report this (markers, Fig. 6e) relative to the observed525

effects. The fit of a saturating exponential function (black line) which captures the simulations well is also shown.526

We next set up a similar test to recover the β parameters. We simulated data starting from the uncued β527

values (βtarget = 0.50, βside = 0.35, βfeature = 0.10, and βdistractor = 0.05) and going up to the cued values528

(βtarget = 0.75, βside = 0.25, βfeature = 0.00, and βdistractor = 0.00) in 10% increments (i.e. for βtarget: 0%529

= 0.50, 10% = .525, ..., up to 100%=0.75). Again we generated 200 simulated data sets for each combination530

of parameters, fit the model to each, and compared the parameters of each 10% increment against the fit to the531

0% data, bootstrapping these 10,000 times. We calculated the proportion of simulations in which the cued β532

went in the right direction relative to the uncued β and report the results for the βtarget parameter in Figure 6f.533

The other β parameters all shared this same sensitivity curve.534
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