Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells

Joël Lemièrea, b, d *, Yuan Rena, b, *, Julien Berroa, b, c, §

* Authors contributed equally
§ Contact: julien.berro@yale.edu
Abstract

During clathrin-mediated endocytosis in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms that enable the actin machinery to adapt to varying membrane tension remain unclear. Here, we used quantitative microscopy to determine that, upon increased membrane tension, the endocytic actin machinery of fission yeast cells rapidly adapts. We also demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction of the rate of endocytosis for 2 to 6 minutes, and an increase in the rate of exocytosis for at least 5 minutes allow cells to add large pools of membrane to the plasma membrane. Our study sheds light on the tight connection between membrane tension regulation, endocytosis and exocytosis.

Introduction

During clathrin-mediated-endocytosis (CME), the cell plasma membrane undergoes a dramatic change in topology to form an invagination that is subsequently pinched off into a vesicle. During this process, the endocytic machinery has to overcome the forces produced by membrane tension and the osmotic pressure that oppose membrane deformation and engulfment. In yeast cells, these resisting forces are particularly large because their internal turgor pressure is high, ranging from ~0.6 MPa for Saccharomyces cerevisiae to more than 1 MPa for Schizosaccharomyces pombe (Davi et al., 2018; Minc et al., 2009; Schaber et al., 2010). Consequently the formation of a vesicle requires several thousands of pN (Dmitrieff and Nédélec, 2015; Ma and Berro, 2020).

Previous studies have shown that actin dynamics are required for productive endocytosis in yeast (Aghamohammadzadeh et al., 2014; Basu et al., 2013; Carlsson and Bayly, 2014; Lacy et al., 2018; Palmer et al., 2015) and in mammalians cells when membrane tension is high (Aghamohammadzadeh and Ayscough, 2009; Boulant et al., 2011; Hassinger et al., 2017), or when membrane scission proteins are absent (Ferguson et al., 2009). Actin assembly at the endocytic site is believed to provide the forces that overcome turgor pressure and membrane tension to deform the plasma membrane, but the precise mechanisms of force production remain unknown. We also lack a quantitative understanding of the regulation of actin dynamics in response to membrane tension and turgor pressure changes. We expect that a better quantitative characterization of this response will allow us to infer the molecular mechanisms of force production and force sensing during clathrin-mediated endocytosis.

In this study, we applied hypotonic shocks to fission yeast cells to determine how the actin machinery responds to increased membrane tension and turgor pressure during clathrin-mediated endocytosis. After a hypotonic shock, the difference in osmolarity inside and outside the cell instantaneously increases the turgor pressure and the membrane tension. Since cell membranes are virtually unstretchable, yeast cells must rapidly adapt their membrane tension while they let
water flow inward to equilibrate their cytosol osmolarity to the new environment (Hohmann, 2015, 2002; Suescún-Bolívar and Thomé, 2015).

The mechanisms by which membrane tension is regulated are not fully understood. The yeast cell wall is believed to buffer abrupt changes in turgor pressure thanks to its high stiffness of ~50 MPa (Atilgan et al., 2015). In addition, similarly to mammalian cells’ caveolae which change shape or disassemble in response to increased membrane tension, yeast eisosomes can also disassemble when cells without a cell wall, called protoplasts, are placed in low osmolarity media (Kabeche et al., 2015; Parton et al., 2019; Sinha et al., 2011). However, it remains unknown how eisosomes may regulate plasma membrane tension in intact cells, and whether eisosomes disassembly directly influences cellular processes such as CME.

Fission yeast is an ideal model system to quantitatively study the regulation mechanisms of membrane tension and its influence on the endocytic machinery. First, because yeast turgor pressure is high, actin is required for CME. Second, contrary to mammalian cells, yeast cells are devoid of any adhesion machinery or actin cortex, which usually complicates membrane tension manipulation and result interpretation. Last, quantitative microscopy methods developed in fission yeast are able to uncover fine regulations of the endocytic machinery (Arasada and Pollard, 2011; Berro et al., 2010; Berro and Lacy, 2018; Berro and Pollard, 2014a, 2014b; Chen and Pollard, 2013; Sirotkin et al., 2010).

To probe the contribution of each possible mechanisms of membrane tension regulation and their influence on CME, we submitted yeast cells with or without a cell wall to different hypotonic shocks. Using quantitative fluorescence microscopy, we showed that, on the one hand, actin assembly adapts to increased membrane tension to allow endocytosis to proceed, and, on the other hand, yeast cells rapidly reduce their membrane tension by a) disassembling eisosomes, b) reducing their rate of endocytosis and c) increasing their rate of exocytosis.
Results

Clathrin-mediated endocytosis in wild-type walled cells is robust over a wide range of chronic and acute changes in media osmolarity

To monitor actin dynamics during clathrin-mediated endocytosis, we imaged fission yeast cells expressing the actin filament crosslinking protein fimbrin (Fim1p) tagged with a monomeric enhanced green fluorescent protein (mEGFP), hereafter called Fim1p-mEGFP (Figure 1A, 1B and 1C). Fimbrin is a bona fide marker for endocytosis in yeast since it has spatial and temporal co-localization with the classical endocytic marker End4p (the fission yeast homolog of mammalian Hip1R and budding yeast Sla2) during endocytosis (Figure 1D, 1E). Fimbrin's time of appearance, disappearance, peak number of molecules and spatial localization follows those of actin in wild-type and all mutants tested so far (Arasada et al., 2018; Berro and Pollard, 2014b; Chen and Pollard, 2013; Sirotkin et al., 2010). Fimbrin is the most abundant endocytic proteins that is fully functional when tagged with a fluorescent protein at either N- or C-terminal, which makes it a more robust marker for actin dynamics than tagged actin or actin-binding markers such as LifeAct or calponin-homology domains, because they require over-expression which is difficult to control precisely in fission yeast, and potentially creates artifacts (Courtemanche et al., 2016; Suarez et al., 2015). We optimized our imaging protocols, and improved tracking tools and temporal super-resolution alignment methods (Berro and Pollard, 2014a) to a) easily collect hundreds of endocytic events in an unbiased manner and b) achieve high reproducibility between different samples, fields of view and days of experiment (Figure 1F, 1G). These improvements in our quantitative microscopy protocol have allowed us to detect small differences between mutants or conditions that would be missed with previous methods. We confirmed that Fim1p accumulates at endocytic sites for about 10 seconds, and then disassembles while the vesicle diffuses away from the plasma membrane (Figure 1F, 1G) (Sirotkin et al., 2010; Skau et al., 2011). As a convention, the peak of Fim1p is set to time 0 s and corresponds to vesicle scission in intact wild-type cells (Berro and Pollard, 2014a, 2014b; Sirotkin et al., 2010). In the rest of the paper, intact cells with a cell wall will be referred to as “walled cells”, and cells devoid of a cell wall will be referred to as “protoplasts”.

We aimed to increase the tension of cells’ plasma membrane by rapidly reducing media osmolarity, referred to as acute hypotonic shock. To prevent artifacts due to nutrient concentration changes, we supplemented Edinburgh Minimum Media (EMM5S) with varying sorbitol concentrations (0 to 1.2 M). Before performing hypotonic shocks, we exposed cells to this media for more than 15 minutes. In the rest of the paper, we will refer to this experimental condition as steady state at X M or chronic exposure to X M sorbitol, where X is the sorbitol concentration. To perform acute hypotonic shocks, we used a microfluidic system to rapidly exchange the steady state media with media containing a lower sorbitol concentration, hereafter noted ΔP=-Y M where Y is the difference in media osmolarity (note that the pressure P* in Pascal is related to P in Molar as $P^* = P \cdot RT \sim 2.45 \cdot 10^6 \cdot P$, where R is the gas constant and T the absolute temperature) (Figure 2A). For all tested osmolarities at steady state in walled wild-type cells, we observed no significant difference in the dynamics of fimbrin recruitment or disassembly, maximum molecule number or endocytic patch movements (Figure 2B). Our results indicate that wild-type walled cells have adaptation mechanisms for chronic exposure to a wide range of osmolarities, which allows them to perform CME in a highly reproducible manner.
We then tested the robustness of the endocytic actin machinery when cells experienced a hypotonic shock, which aimed to abruptly increase the tension of their plasma membrane. To observe the highest possible effect, we imaged cells grown at steady state in 1.2 M sorbitol and rapidly exchanged the media with a buffer free of sorbitol (Figure 2A and 2E), therefore performing an acute hypotonic shock of \(\Delta P = -1.2 \text{M} \). Despite the high hypotonic shock, which represents a ~3 MPa drop in pressure, CME proceeded quite similarly to steady state conditions (Figure 2C, 2D and 2E). The maximum number of fimbrin proteins was the same before and after the hypotonic shock, but fimbrin assembly and disassembly were ~15% faster after the shock (Figure 2E).

Eisosomes mitigate the response of the endocytic machinery to acute and chronic changes in media osmolarity

The robustness of the endocytic process under a wide range of chronic and acute exposure to different media osmolarity suggests that fission yeast has mechanisms that rapidly regulate plasma membrane tension. Previous studies proposed that eisosomes, furrows at the inner surface of the plasma membrane, have a mechanoprotective role under increased membrane tension in fungi, similar to the protective role of caveolae in endothelial cells (Cheng et al., 2015; Kabeche et al., 2015; Lo et al., 2016; Sens and Turner, 2006; Sinha et al., 2011). Because loss of Pil1p, the core eisosome component, is sufficient to prevent eisosome assembly (Kabeche et al., 2011; Olivera-Couto et al., 2011; Ziółkowska et al., 2011), we repeated our experiments in cells lacking the gene coding for Pil1p (\(\text{pil1} \Delta \)) (Figure 3). Dynamics of Fim1p during CME for wild-type and \(\text{pil1} \Delta \) walled cells at steady state in media free of sorbitol were identical (Figure 3 Supplement 1). However, at steady state in media with high sorbitol concentration, cells lacking eisosomes recruited slightly fewer fimbrin molecules to endocytic patches than wild-type cells (Figure 3A and B). The maximum number of Fim1p assembled at CME sites in \(\text{pil1} \Delta \) cells in buffer containing 0.8 M and 1.2 M sorbitol was 10% and 17% lower, respectively. Within the first two minutes of an acute hypotonic shock from 1.2 M sorbitol to 0 M (\(\Delta P = -1.2 \text{M} \)), the maximum number of Fim1p increased by 30%, while its timing was shortened by ~30% compared to steady-state (Figure 3C & 3D). Four minutes after the hypotonic shock, the dynamics of fimbrin stabilized at its steady state dynamics in 0 M sorbitol (Figure 3B & 3D). Overall, our data show that the endocytic actin machinery in cells lacking eisosomes is more sensitive to acute and chronic changes in media osmolarity than in wild-type cells.

Eisosomes participate in the regulation of protoplasts’ membrane tension during hypotonic shocks

The yeast cell wall plays a role in the maintenance of cell integrity under extreme conditions, thanks to its high stiffness of ~50 MPa (Atilgan et al., 2015). We hypothesized that the cell wall prevents large variations in membrane tension under hypotonic shocks, which would explain why endocytosis in wild-type walled cells remains virtually unchanged in the extreme conditions we tested (Figure 2E). Hence, to exclude the effect of the cell wall, we reiterated our experiments using protoplasts instead of intact cells. First, we characterized how the removal of the cell wall affects eisosomes’ reorganization and CME. We used a protocol that allowed us to manipulate protoplasts for up to ~1 hour after their formation, since they remain void of cell wall for about 3 hours (Flor-Parra et al., 2014). Because protoplasts are more fragile than
walled cells, they were prepared in media containing 0.25 to 1.2 M sorbitol to balance turgor pressure and prevent cells from bursting (Basu et al., 2013; Kabeche et al., 2015; Stachowiak et al., 2014), and were imaged ~15 minutes later, once they reached steady state.

Our data show that endocytic patches and eisosomes in protoplasts at steady state in 1.2 M sorbitol are qualitatively similar to those in walled cells (Figure 4A) and the cellular concentration of Pi1lp is the same in both conditions (Figure 4 – Supplement 1A). However, the surface area of the protoplasts’ plasma membrane covered by eisosomes decreased with decreasing media osmolarity at steady state (Figure 4B and 4C), and correlated with increasing cell volume (Figure 4 – Supplement 1B). This result confirms previous results (Kabeche et al., 2015) showing that eisosomes are disassembled in media with low osmolarity and the disassembly of eisosomes may reduce membrane tension.

To test whether membrane tension is indeed buffered by eisosomes, we measured membrane tension using a micropipette aspiration assay (Figure 4D). At steady state in 0.8 M sorbitol, the membrane tension was 4.5±1.4 10^{-4} N·m^{-1} for wild-type protoplasts and 3.9±1.3 10^{-4} N·m^{-1} for pil1Δ protoplasts (Figure 4E). We then repeated these measurements within 5 minutes after inducing a hypotonic shock of ΔP=-0.2 M. We observed a 1.6-fold increase in membrane tension for wild-type protoplasts (7.3±2.1 10^{-4} N·m^{-1}) and a 4.5-fold increase for protoplasts lacking eisosomes (17.4±6.1 10^{-4} N·m^{-1}). This result demonstrates that eisosomes participate in the adjustment of plasma membrane tension.

To confirm that eisosomes disassemble in protoplasts after a hypotonic treatment (Kabeche et al., 2015), and quantitatively characterize this disassembly, we measured the temporal evolution of the decrease in surface area covered by eisosomes after an acute hypotonic shock of ΔP=-0.2 M (Figure 4H and 4I). Eisosomes disassembled rapidly after hypotonic shock, dropping to ~50% of the surface area covered by eisosomes before the shock within 5 min, indicating a fast response to counteract changes in membrane tension.

CME in protoplasts is sensitive to chronic changes in osmolarity

Endocytosis in wild-type protoplasts at steady state in medium containing 0.4 or 0.8 M sorbitol was able to proceed normally by recruiting almost the same number of fimbrin molecules as in walled cells, but with a slightly longer timing (Figure 4F). In contrast, in medium with 1.2 M sorbitol, the timing of fimbrin recruitment was dramatically longer, and endocytosis failed to proceed normally, as reported by the virtually null speed of patches during the entire time fimbrin was present at the endocytic site (Figure 4F). Cells lacking eisosomes showed very similar phenotypes but endocytosis started failing at 0.8 M sorbitol (Figure 4G).

At 0.25 M sorbitol, both wild-type and pil1Δ protoplasts were able to perform endocytosis but required a larger amount of Fim1p (Figure 4F and 4G). In these conditions, the eisosomes covered only half of the plasma membrane surface area they cover at 0.4M sorbitol (Figure 4B and C) and our data suggest the plasma membrane was under high tension (Figure 4E). This result indicates that during CME the actin machinery is able to adapt to mechanical cues by mechanisms that are independent of the cell wall.

For both wild-type and pil1Δ protoplasts in 0.4 M sorbitol, the temporal evolution of the number of fimbrin molecules and the speed of patches were close to the same metrics measured in walled cells in media without sorbitol (Figure 4F and 4G). These results suggest that the osmotic pressure at these concentrations, which are

CC-BY-NC-ND 4.0 International license
equivalent to a pressure of 1 MPa, is close to the naturally maintained turgor pressure of walled fission yeast cells, in good agreement with previous measurements (Minc et al., 2009). Therefore, to keep protoplasts in conditions close to walled cells, the steady state media used in our following experiments on protoplasts contained 0.4 M sorbitol.

In protoplasts, eisosomes buffer moderate hypotonic shocks, and the endocytic actin machinery rapidly adapts to increases in membrane tension

To characterize the adaptation of the endocytic actin machinery to a rapid increase in turgor pressure and membrane tension, we repeated our acute hypotonic shocks ($\Delta P=-0.05 \text{ M}, -0.1 \text{ M} \text{ or } -0.2 \text{ M}$) on protoplasts initially at steady state in media containing 0.4 M sorbitol. After low ($\Delta P=-0.05 \text{ M}$) and medium ($\Delta P=-0.1 \text{ M}$) acute shocks in wild-type protoplasts, we did not observe any stalled endocytic events – when cells started the recruitment of the actin machinery, endocytosis proceeded to successful completion (Figure 5A, 5B, 5C and Figure 5 Supplement 3). The recruitment of fimbrin did not significantly change over time. In contrast, two minutes after a $\Delta P=-0.2 \text{ M}$ shock, endocytic sites recruited 20% more fimbrin and it took ~25% longer to perform endocytosis (Figure 5C, 5D, and Figure 5 Supplement 3). The actin machinery restored its steady state behavior less than 4 minutes after the shock (Figure 5D).

We repeated these experiments with pil1Δ protoplasts to eliminate the role of eisosomes in the reduction of membrane tension during hypotonic shocks. Immediately (0 minutes) after the lowest hypotonic shock tested ($\Delta P=-0.05 \text{ M}$), fimbrin recruitment took slightly longer and the number of proteins recruited was higher than at steady state (Figure 5E, 5F and 5G, Figure 5 Supplement 4). While fimbrin restored its steady-state dynamics in less than 4 minutes after high acute hypotonic shock ($\Delta P=-0.2 \text{ M}$) in wild-type protoplasts (Figure 5D), recovery of fimbrin dynamics to its steady state behavior in pil1Δ protoplasts occurred over 10 minutes, even for the most modest hypotonic shock, $\Delta P=-0.05 \text{ M}$ (Figure 5G). The changes in fimbrin dynamics in pil1Δ protoplasts became increasingly larger for $\Delta P=-0.1 \text{ M}$ and $\Delta P=-0.2 \text{ M}$ hypotonic shocks – endocytic sites assembled a peak number of fimbrin respectively ~25% and ~50% larger and took ~85% and ~50% longer. In addition, most cells were unable to survive more than two minutes after these high hypotonic shocks (Figure 6A, 6B, 6C and Figure 6 Supplement 1), which prevented us from determining how the actin machinery recovers after large hypotonic shocks in pil1Δ protoplasts.

Wild-type protoplasts at steady state in 0.25 M sorbitol contain significantly fewer assembled eisosomes despite expressing normal amounts of Pil1p (Figure 4B and 4C). We took advantage of this condition to test whether the absence of eisosomes structures at the plasma membrane and not the absence of the protein Pil1p is responsible for changes in actin dynamics after an acute hypotonic shock. We subjected wild-type protoplasts at steady state in 0.25 M sorbitol to an acute hypotonic shock of $\Delta P=-0.1 \text{ M}$ (Figure 5H and 5I). Two minutes after the shock, endocytic sites accumulated 73% more fimbrin and took ~60% longer (Figure 5H, Figure 5 Supplement 5A). This behavior was nearly identical to fimbrin dynamics in pil1Δ protoplasts under the same conditions (Figure 5I, Figure 5 Supplement 5B). Moreover, most wild-type and pil1Δ protoplasts were unable to survive longer than 4 minutes after these high hypotonic shocks (Figure 5 Supplement 5C). This result further demonstrates that the presence of assembled eisosomes at the plasma
membrane is indeed responsible for the adaptation of cells to acute hypotonic shocks, and the presence of Pil1p in the cytoplasm is not sufficient for this response.

Altogether, these series of experiments demonstrate that a) eisosomes protect protoplasts from changes in their membrane tension, but only to a small extent, b) without eisosomes, protoplasts can withstand only minor increase in their membrane tension, c) the endocytic actin machinery adapts to compensate the increase in membrane tension, and d) actin dynamics restores its steady state behavior within a few minutes, providing the protoplasts survived the hypotonic shock.

Eisosomes protect the integrity of walled cells during consecutive osmotic shocks

We observed that a significant number of both wild-type and pil1Δ protoplasts died after osmotic shocks, and the percentage of pil1Δ protoplasts that remained alive was significantly smaller than for wild-type protoplasts even under moderate shocks ΔP of -0.05 M, -0.1 M and -0.2 M (Fig. 6A-C). In contrast, we found that both wild-type and pil1Δ walled cells can survive a single hypotonic shock of ΔP=-1.2 M, which initially led us to think that eisosomes only have a minor protective role in walled cells. However, we noticed that subsequent osmotic shocks lead to higher mortality of pil1Δ compare to wild-type walled cells. While almost all the wild-type walled cells remained alive after several shocks, around 10% of pil1Δ walled cells died after each subsequent shock (Fig. 6D-F; supplementary video 1 and 2). These results demonstrate that, even in walled cells, eisosomes exert a protective role, likely by buffering sudden changes in membrane tension.

Membrane tension and eisosomes modulate the rate of endocytosis in cells

The fast recovery of the actin machinery after an acute change in turgor pressure and membrane tension (Figures 5D and 5G) cannot be explained by the sole release of membrane via eisosome disassembly which happens on a slightly shorter timescale and releases only a small surface area of membrane (Figure 4H and 4I). We hypothesized that a decrease in the number of endocytic events happening in the cell over the same period of time would gradually increase the surface area of the plasma membrane, and therefore reduce membrane tension. We measured the endocytic density, i.e. the number of endocytic events in a cell normalized by the cell length, in wild-type and pil1Δ cells after a hypotonic shock using a ratiometric method (Berro and Pollard, 2014a). For all shocks tested in wild-type (ΔP=-0.05 M, -0.1 M, -0.2 M) and pil1Δ protoplasts (ΔP=-0.025 M, -0.05 M, -0.1 M) initially at steady state in 0.4 M sorbitol, the endocytic density in protoplasts significantly decreased immediately after the hypotonic shock (Figure 7A). The difference increased for increasing hypotonic shocks, up to 36% for wild-type protoplasts after a ΔP=-0.2 M shock, and 79% for pil1Δ protoplasts after a ΔP=-0.1 M shock (Figure 7B). These abrupt changes in the endocytic density were followed by a 2- to 6-minute recovery back to the steady-state endocytic density, and recovery time depended on the magnitude of the hypotonic shock. The temporal variations of the endocytic density after hypotonic shocks mirrored the changes in Fim1p dynamics in endocytic patches in similar conditions (Figure 5C, 5D, 5F and 5G). Note that the change in cell volume (Figure 7A & 7B, insets) could not exclusively account for the observed decrease in the endocytic density as the volume increased faster than the change in endocytic density.

Building on these results in protoplasts, we wondered whether the endocytic density in walled cells also adapts to hypotonic shocks. Indeed, immediately after the
largest shock tested (ΔP=-1.2 M), we observed a similar decrease in the endocytic density for both wild-type and pil1Δ walled cells, 36% and 46% respectively (Figure 7C). Recovery to steady-state endocytic densities occurred in less than 2 minutes in both wild-type and pil1Δ walled cells, faster than in protoplasts (Figure 7A, 7B and 7C). These results were surprising because we detected virtually no difference in the dynamics of fimbrin recruitment to endocytic sites in both strains (Figure 2E). Our data show that the cell wall limits but does not completely cancel the effect of hypotonic shocks. They also suggest that the regulation of the endocytic density supplements the regulation performed by the eisosomes to reduce membrane tension and enable normal actin machinery dynamics at endocytic sites.

Wild-type and pil1Δ walled cells had a very similar adaptation after hypotonic shocks. However, we noticed a difference in the endocytic density at steady state in different sorbitol concentrations. For all concentrations tested (0 to 2 M), wild-type cells maintained roughly the same endocytic density. In contrast, the steady state endocytic density in pil1Δ cells increased with increasing media osmolarity, up to 56% in 2 M sorbitol (Figure 7D). Our results suggest that eisosomes participate in maintaining a constant density of endocytosis independently of the media osmolarity, not only after an abrupt change in membrane tension, but also when they are at steady state in different osmolarity.

The exocytosis rate increases after a hypotonic shock in protoplasts but not in walled cells

Reciprocal to the decrease in the number of endocytic events observed after a hypotonic shock, we wondered whether the rate of exocytosis increases in the meantime to provide more surface area to the plasma membrane, as it has been observed in mammalian cells (Gauthier et al., 2009).

To measure the rate of exocytosis in different conditions, we used the cell impermeable styryl dye FM4-64, whose fluorescence dramatically increases when it binds to membranes, to measure the increase of cell surface area due to vesicle fusion (Cochilla et al., 1999; Gachet and Hyams, 2005; Richards et al., 2000). After FM4-64 is introduced to the media, fusion of unstained intracellular vesicles to the plasma membrane results in an increase of total cell fluorescence, because after each fusion event new unstained membrane is exposed to the dye. Note that endocytic events do not increase the total cell fluorescence because they transfer already stained patches of the plasma membrane into the interior of the cell (Figure 8A). Note also that the increase in total cell fluorescence could also be due to putative transfer of lipids by non-exocytic mechanisms but for simplicity and by lack of further evidence, onwards we will interpret the increase in fluorescence to an increase in the exocytosis rate.

Staining of wild-type fission yeast with 20 µM FM4-64 in EMM5S (Figure 8B) showed that after a brief phase of rapid staining of the cell surface, the total cell fluorescence intensity grows linearly for at least 20 minutes, and the slope of the normalized intensity corresponds to the exocytosis rate as a percentage of the plasma membrane surface area per unit of time (see materials and methods) (Gauthier et al., 2009; Smith and Betz, 1996; Vida and Emr, 1995). Using this method, we measured that wild-type walled cells at steady state in EMM5S exocytose 4.6% of their plasma membrane surface area per minute (Figure 8B). FM4-64 staining did not seem to affect the endocytic and exocytic membrane trafficking of yeast cells, since stained vesicles are successfully released after washing cells with fresh media (Figure 8B).
We measured the exocytosis rates in the conditions that had the largest
effects on endocytosis while keeping most cells alive, i.e. we used protoplasts at
steady state in 0.4 M and performing a ΔP=-0.2 M shock for wild-type and ΔP=-0.05
M shock for pil1Δ. At steady state in 0.4M sorbitol (Figure 8C and 8E), wild-type
protoplasts had an exocytosis rate similar to walled cells in EMM5S in 0 M (k0-
5=4.4±0.2% min⁻¹). After a ΔP=-0.2 M shock, the exocytosis rate increased by 41%
(k0-5=6.2±0.4% min⁻¹). At steady state in 0.4 M sorbitol (Figure 8D and 8E), the
exocytosis rate of pil1Δ protoplasts was higher than for walled cells in 0 M sorbitol
(k0,5=6.2±0.4% min⁻¹). After a ΔP=-0.05 M shock, the exocytosis rate increased
modestly (k0,5=6.8±0.5% min⁻¹). Therefore, in both wild-type and pil1Δ protoplasts, an
acute hypotonic shock leads to an increased exocytosis rate, which increases
surface area and likely reduces membrane tension. The change in exocytosis rate in
pil1Δ protoplasts being more modest than in wild-type cells highlights the role of
eisosomes in buffering the change in the exocytosis rate in response to change in
osmolarity and membrane tension.

We wondered whether these changes in exocytosis rate also happen in walled
cells. First, we measured exocytosis rate at steady state in solutions with different
molarities and found that the rates were smaller than in protoplasts (Figures 8F, 8G,
and 8H). The exocytosis rate of wild-type walled cells at steady state in 1.2M sorbitol
(k0,5=3.1±0.1 % min⁻¹, Figure 8F and 8H) was 35% smaller than in 0 M sorbitol (k0-
5=4.8±0.1 % min⁻¹, Figure 8B). In addition, in pil1Δ walled cells, the exocytosis rate of
walled cells lacking eisosomes in 1.2M sorbitol was only slightly smaller than wild-
type cells in the same conditions (k0,5=2.6±0.1 % min⁻¹, Figure 8G and 8H). After
hypotonic shocks, the change of exocytosis rate in walled cells was very limited
(Figure 8F-H). In fact, our strongest hypotonic shock of ΔP=-1.2 M did not
significantly increase the exocytosis rate of wild-type or pil1Δ cells walled cells
(Figure 8H). These data corroborate our previous finding that the cell wall limits but
does not completely cancel the effect of hypotonic shocks in intact cells. In addition,
they also demonstrate that eisosomes are involved in the regulation of the exocytosis
rate.

**Inhibition of exocytosis decreased the survival rate of protoplasts under acute
hypotonic shock.**

To further test our hypothesis that reducing the endocytosis rate and
increasing the exocytosis rate help regulate membrane tension after a hypotonic
shock, we wondered whether blocking endocytosis or exocytosis with drugs would
affect the survival rates of cells. We hypothesized that inhibition of endocytosis or
exocytosis would have opposite effects on the survival of protoplasts under acute
hypotonic shock. Specifically, inhibition of endocytosis would help retain membrane
on the surface of protoplasts, thereby reducing the probability of membrane rupture,
and, conversely, inhibition of exocytosis would reduce the transfer of membrane from
intracellular vesicles to the surface of protoplasts, exasperating the lack of plasma
membrane in the face of imminent protoplast expansion. To observe the largest
effects, we used pil1Δ protoplasts under ΔP=-0.2 M shock, and exposed the cells to
either Latrunculin A (LatA) or Brefeldin A (BFA) for 30 minutes before the shocks.

Blocking exocytosis with BFA increases the death rate of protoplasts after
hypotonic shocks, confirming our hypothesis (Figure 9 and Figure 9 Supplement 1).
Blocking actin assembly, and therefore endocytosis, with LatA made the protoplasts
more resistant starting 4 minutes after the hypotonic shock, also confirming our
hypothesis. Note that LatA treatment made the protoplasts less resistant to shock in
the initial 2 minutes after the hypotonic shock, which seems in contradiction with our
hypothesis. However, it is possible that prolonged treatment with LatA had other
unidentified effects on protoplasts survival or may indirectly affect the exocytosis rate
since LatA affects all actin structures in the cell, including actin cables which are
needed for the transport of exocytic vesicles (Lo Presti et al., 2012).

Discussion

Robustness of CME in fission yeast

Our data demonstrate that CME is able to proceed in a wide range of
osmolarities and membrane tension. Even cells devoid of a cell wall and eisosomes
were able to perform endocytosis after an acute change in membrane tension, as
long as their plasma membrane was not damaged and cells remained alive. Even in
the most extreme conditions tested, i.e. cells devoid of a cell wall and lacking the
majority of their eisosomes, the dynamics of fimbrin at endocytic sites was only two
times larger than what was observed in wild-type walled cells. These results
demonstrate that not only are cells able to adapt their endocytic machinery to acute
changes in membrane tension but, they are also able to rapidly regulate their
membrane tension.

Mechanisms of tension regulation and homeostasis of the plasma membrane

Our results demonstrate that the regulation of membrane tension in hypotonic
environment is performed via a combination of at least three mechanisms: the
mechanical protection by the cell wall, the disassembly of the eisosomes and the
temporary shift in the balance between endocytosis and exocytosis (Figure 10). Our
data indicate that all three mechanisms are used in parallel, since wild-type walled
cells are less sensitive to acute hypotonic shocks than wild-type protoplasts and
pil1Δ walled cells, and they experience a temporary decrease in their endocytic
density for about 2 minutes after the shock. In addition, our data allow us to estimate
the relative contribution of each mechanism in the regulation of membrane tension.

The cell wall provides the largest protection during chronic and acute changes
in media osmolarity. Wild-type walled cells are virtually insensitive to osmotic
changes, and pil1Δ walled cells are much less sensitive than pil1Δ protoplasts.
Removal of the cell wall dramatically affects actin dynamics at endocytic sites and
eisosome assembly at the plasma membrane (Figure 4B, 4C, 4F and 4G), and
greatly increased the effect of hypotonic shock on exocytosis (Figure 8C-F). It is
surprising that endocytosis in protoplasts still proceeds in media with osmolarity as
low as 0.25 M, where a large fraction of eisosomes is disassembled. In fact, the actin
endocytic machinery can overcome membrane tensions high enough to rupture the
plasma membrane since we did not see stalled actin patches, or actin comet tails, in
any of our experiments. Our results contrast with recent data in S. cerevisiae (Riggi
et al., 2019) where endocytosis is blocked and actin comet tails are formed within 2
minutes of a hypotonic shock. These differences may highlight species specificities.

Our results add to a growing body of evidence that eisosomes play a critical
role in the regulation of membrane tension and membrane integrity through dynamic
remodeling and scaffolding of the plasma membrane (Kabeche et al., 2015; Moseley,
2018). Endocytosis in wild-type walled cells are not sensitive to chronic or acute
hypotonic changes, whereas pil1Δ walled cells are (Figure 2 and Figure 3).
Conversely, exocytosis seems to respond more strongly to acute hypotonic shock in wild-type walled cells than in pil1Δ walled cells (Figure 8E and 8F). The protective role of eisosomes is even more striking in protoplasts under acute hypotonic shocks. Wild-type protoplasts whose plasma membrane is covered with eisosomes are largely insensitive to increases in membrane tension whereas protoplasts with little to no eisosomes are extremely sensitive to increases in membrane tension and their plasma membrane is easily damaged (Figure 6A-C). Eisosomes retain this protective function even in walled cells, which becomes evident when cells are put under repeated osmolarity shocks (Figure 6D-F). Our micropipette aspiration experiments also demonstrate that eisosomes are critical to keep membrane tension low during an acute hypotonic shock. Therefore, our data indicate that membrane tension is decreased via the disassembly of eisosomes, through release of excess membrane surface area. Assuming eisosomes are hemi-cylinders with diameter ~50 nm and cells contain 1.6 μm of eisosomes per μm² of plasma membrane on average, total eisosome disassembly could release about 5% of the total surface area of the plasma membrane over ~3 minutes after a hypotonic shock (Kabeche et al., 2015), although a mild shock of ΔP=-0.2 M disassembled close to ~50% eisosomes over 5 minutes, or about 2.5% of the surface area of the plasma membrane (Figure 4H and 4I). Recent single-molecule imaging in our lab demonstrated that at steady state Pil1p undergoes rapid exchange at the eisosome ends (Lacy et al., 2017), potentially providing a convenient route for rapid disassembly of the BAR domain-mediated scaffold, analogous to filament depolymerization, in combination with eisosome breaking. Disassembled eisosome components have altered phosphorylation level or sub-cellular localization, which potentially relays the signaling from eisosome integrity to endocytosis and/or exocytosis (Riggi et al., 2018; Walther et al., 2007), possibly via TORC2 (Riggi et al., 2019).

Our study highlights a third mechanism to reduce membrane tension by increasing the surface area of the plasma membrane via a temporary reduction in the endocytosis rate and an increase in the exocytosis rate. Using our data, we estimate that cells endocytose about 2% of their surface area per minute through clathrin mediated endocytosis, confirming our previous measurements (Berro and Pollard, 2014a, 2014b). During acute hypotonic shock, a reduction of the endocytosis rate plus an increase in the exocytosis rate for a few minutes would allow for a net addition of surface area to the plasma membrane. For example, in pil1Δ protoplasts initially at steady state in 0.4 M sorbitol the endocytosis rate is reduced by ~25 % for ~10 minutes after an acute hypotonic shock of ΔP=-0.05 M, while the exocytosis rate increased by ~10%. The net surface area added over that period by reduction in endocytosis and increase in exocytosis corresponds to a 5% + 6% =11% increase in the protoplast surface area, close to the ~12% surface area increase we measured. These results confirm and quantify previous reports of control of surface tension by increasing the surface area via a modulation of endocytosis and exocytosis rates in other eukaryotes (Apodaca, 2002; Homann, 1998; Morris and Homann, 2001). These estimates demonstrate that modulating the endocytosis and exocytosis rates is an efficient way to increase the surface area of the plasma membrane by large amounts, but this process is relatively slow compared to eisosome disassembly. The slowness of this process might explain why pil1Δ and pre-stretched wild-type protoplasts that have about half the normal amount of eisosomes on their surface do not survive even relatively small hypotonic shocks, being unable to provide enough membrane in a short amount of time to reduce the tension of their plasma membrane.
Molecular mechanisms driving the adaptation of the actin endocytic machinery and the rate of endocytosis under various membrane tensions

Under conditions where membrane tension and turgor pressure were significantly increased, we observed that the endocytic actin machinery took longer and assembled a larger number of fimbrin molecules to successfully produce endocytic vesicles. This effect increased with increasing membrane tension, up to tensions high enough to rupture the cell plasma membrane. This result strongly supports the idea that the actin machinery provides the force that counteracts membrane tension and turgor pressure and deforms the plasma membrane into an endocytic pit.

The precise molecular mechanism that regulates this enhanced assembly remains to be uncovered. Our data suggest that actin dynamics is controlled via a mechanical or geometrical regulation, where actin assembles until the plasma membrane is deformed and pinched off. An alternative, and non-mutually exclusive, hypothesis is that the activity and/or recruitment of proteins upstream of the actin nucleators may be enhanced by increased membrane tension. A third hypothesis is that the decrease in the number of endocytic events after an increase in membrane tension leads to an increase in the concentration of endocytic proteins in the cytoplasm, which can then enhance the reactions performed at the endocytic sites. Sirotkin et al (Sirotkin et al., 2010) measured that 65% to 85% of the total cellular content of key proteins involved in the endocytic actin machinery are localized to endocytic sites at any time. A 20% decrease in the number of endocytic sites would increase their cytoplasmic abundance by roughly 40% to 80%. This percentage is larger than the volume changes we measured, resulting in a net increase in the cytoplasmic concentration of these proteins, which would allow larger amount of protein to assemble at the endocytic sites.

Conversely, the decreased endocytosis rate could be attributed to the larger number of endocytic proteins assembled at each endocytic sites, which would decrease their cytoplasmic concentration. Indeed, Burke et al. (Burke et al., 2014) showed that modulating actin concentration modulates the number of endocytic sites in the same direction. However, it is more likely that one or several early endocytic proteins are sensitive to membrane tension, and either fail to bind the plasma membrane or prevent the triggering of actin assembly when membrane tension is high. This idea would be consistent with results from mammalian cells demonstrating that the proportion of stalled clathrin-coated pits increases when membrane tension increases (Ferguson et al., 2017). In addition, several endocytic proteins that arrive before or concomitantly with the activators of the actin machinery contain BAR domains (such as Syp1p, Bzz1p and Cdc15p), and other members of this domain family (which also includes Pil1p) have been shown to bind membranes in a tension-sensitive manner. Further quantitative study of early endocytic proteins will help uncover the validity and relative contributions of each one of these hypotheses.

We expect our results to be relevant to the study of CME and membrane tension regulation in higher order eukaryotes. Indeed, the molecular machineries for endocytosis, exocytosis and osmotic response are highly conserved between fission yeast and other eukaryotes. In addition, regulation of membrane tension and CME are particularly critical during cell polarization (Mostov et al., 2000), during neuron development and shape changes (Urbina et al., 2018) and at synapses where large pools of membranes are added and retrieved on a very fast time scale (Nicholson-Fish et al., 2016; Watanabe and Boucrot, 2017).
Materials and Methods

Yeast strains and media

The *S. pombe* strains used in this study are listed in Supplemental Table S1. Yeast cells were grown in YE5S (Yeast Extract supplemented with 0.225 g/L of uracil, lysine, histidine, adenine and leucine), which was supplemented with 0 to 1.2 M D-Sorbitol, at 32°C in exponential phase for about 18 hours. Cells were washed twice and resuspended in filtered EMM5S (Edinburgh Minimum media supplemented with 0.225 g/L of uracil, lysine, histidine, adenine and leucine), which was supplemented with the same concentration of D-Sorbitol, at least 10 minutes before imaging so they can adapt and reach steady state.

Protoplasts preparation

S. pombe cells were grown in YE5S at 32°C in exponential phase for about 18 hours. 10 mL of cells were harvested and washed two times with SCS buffer (20 mM citrate buffer, 1 M D-Sorbitol, pH=5.8), and resuspended in SCS supplemented with 0.1 g/mL Lallzyme (Lallemand, Montreal, Canada) (Flor-Parra et al., 2014). Cells were incubated with gentle shaking for 10 minutes at 37°C in the dark except for experiments in Figure 9, where cells were digested at room temperature with gentle shaking for 30 minutes in the presence of inhibitors. The resulting protoplasts were gently washed twice in EMM5S with 0.25 to 1.2 M D-Sorbitol, spun down for 3 minutes at 0.4 rcf between washes, and resuspended in EMM5S buffer supplemented with 0.25 to 1.2 M D-Sorbitol at least 10 minutes before imaging so they can adapt and reach steady state.

Microscopy

Microscopy was performed using a spinning disk confocal microscope, built on a TiE inverted microscope (Nikon, Tokyo, Japan), equipped with a CSU-W1 spinning head (Yokogawa Electric Corporation, Tokyo, Japan), a 100X/1.45NA Phase objective, an iXon Ultra888 EMCCD camera (Andor, Belfast, UK), and the NIS-Elements software v. 4.30.02 (Nikon, Tokyo, Japan) on. The full system was switched on at least 45 minutes prior to any experiments to stabilize the laser power and the room temperature. Cells were loaded into commercially available microfluidics chambers for haploid yeast cells (Y04C-02-5PK, Millipore-Sigma, Saint-Louis, USA) for the CellASIC ONIX2 microfluidics system (Millipore-Sigma, Saint-Louis, USA). Each field of view was imaged for 60 seconds, and each second a stack of 6 z-slices separated by 0.5 µm was imaged. The microscope was focused such that the part of the cell closest to the coverslip was captured.

Acute hypotonic shocks

Walled cells or protoplasts were first imaged in their steady state media (EMM5S supplemented with 0 to 1.2 M D-Sorbitol). The steady state media was exchanged with media supplemented with a lower D-Sorbitol concentration (the concentration difference is noted ΔP), with inlet pressure of 5 psi. This hypotonic shock media was labelled with 6.7 µg/mL of sulforhodamine B (MP Biomedicals LLC, Santa Ana, USA), a red cell-impermeable dye that allowed us to a) monitor the full exchange of the solution in the microfluidic chamber prior to image acquisition, and b) monitor the plasma membrane integrity of the cells after the shock. In each condition, the first movie was started when the sulforhodamine B dye was visible in...
the field of view. For clarity, this time point is labelled t=0 min in all our figures, but note that we estimate it may vary by up to ~30 seconds between movies and conditions. We imaged cells by taking one stack of 6 Z-slices per second for 60 seconds. After the end of each movie, we rapidly changed field of view and restarted acquisition one minute after the end of the previous movie, so that movies started every 2 minutes after the acute hypotonic shock. Tracks from cells that contained red fluorescence from the sulforhodamine B dye were excluded from the analysis, because this indicated that cell membrane had been damaged.

Inhibition of endocytosis and exocytosis during acute hypotonic shock

Endocytosis or exocytosis was inhibited by including respectively 25uM Latrunculin A (Millipore, MA, USA) or 2mM Brefeldin A (Santa Cruz Biotechnology Inc., TX, USA) in the solution used to prepare the protoplasts and and to perform the hypotonic shocks. Hypotonic shock solution also included 20 µM FM4-64 (Biotium, Fremont, CA, USA) to stain dead protoplasts (Vida and Gerhardt, 1999) (Figure 9 Supplement 1), and inlet pressure was set at 4 psi.

Measurement of the temporal evolution of the number of proteins and speed

Movies were processed and analyzed using an updated version of the PatchTrackingTools toolset for the Fiji (Schindelin et al., 2012) distribution of ImageJ (Berro and Pollard, 2014a; Schneider et al., 2012). This new version includes automatic patch tracking capabilities based on the Trackmate library (Tinevez et al., 2017), and is available on the Berro lab website: http://campuspress.yale.edu/berrolab/
publications/software/. Prior to any quantitative measurements, we corrected our movies for uneven illumination and camera noise. The uneven illumination was measured by imaging a solution of Alexa 488 dye and the camera noise was measured by imaging a field of view with 0% laser power. We tracked Fim1-mEGFP spots with a circular 7-pixel diameter region of interest (ROI), and measured the temporal evolution of the fluorescence intensities and the position of the centers of mass. The spot intensity was corrected for cytoplasmic background using a 9-pixel median filter, and was then corrected for photobleaching. The photobleaching rate was estimated by fitting a single exponential to the temporal evolution of the intensity of cytoplasmic ROIs void of any identifiable spots of fluorescence (Berro and Pollard, 2014a). Only tracks longer than 5 s and displaying an increase followed by a decrease in intensity were kept for the analysis. Individual tracks were aligned and averaged with the temporal super-resolution algorithm from (Berro and Pollard, 2014a), and post-processed using custom scripts in Matlab R2016a (Mathworks). In brief, this method realigns temporal signals that have low temporal resolution and where no absolute time reference is available to align them relatively to each other. It iteratively finds the temporal offset which has a higher precision than the measured signal and minimizes the mean square difference between each measured signal and a reference signal. For the first round of alignments, the reference signal is one of the measurements. After each realignment round, a new reference is calculated as the mean of all the realigned signals, which is an estimator of the true underlying signal.

To control and calibrate the intensity of our measurements, we imaged wild-type walled cell expressing Fim1p-mEGFP each imaging day. Intensities were converted into number of molecules with a calibration factor such that the peak intensity of our control strain corresponded to 830 molecules (Berro and Pollard,
In all figures presenting the temporal evolution of the number of molecules or the speed, time 0 s corresponds to the time point when the number of molecules is maximum (also called the peak number). Statistical tests between conditions were performed at time 0 s with a one-way ANOVA test using the number of tracks collected to build the figure. To avoid extrapolating the data, we compared the relative duration of assembly and disassembly between conditions using the time at which the average number of molecules reach half the peak number.

Measurement of the density of CME events

We used the *S. Pombe* profiling tools for ImageJ (Berro and Pollard, 2014a) to measure the number of endocytic events at a given time in each cell. In brief, on a sum-projected z-stack, we manually outlined individual cells, and, for each position along the long axis of a cell, we measured the sum of fluorescence orthogonal to the long axis. We corrected the intensity profile in each cell for its cytoplasmic intensity and media fluorescence outside the cell. We estimated the number of patches in each cell by dividing the corrected fluorescence signal with the temporal average of the fluorescence intensity of one endocytic event. We calculated the linear density of endocytic events as the ratio between the number of endocytic events in a cell and its length.

Measurement of the exocytosis rate with FM4-64 staining

The exocytosis rate was measured by combining the acute hypotonic shock with FM4-64 staining, in a similar approach as has been reported (Gauthier et al., 2009; Smith and Betz, 1996; Vida and Emr, 1995). The cell impermeable dye FM4-64 (Biotium, Fremont, CA, USA) was diluted to a final concentration of 20 µM in any of the media used. When cells are exposed to FM4-64, the dye rapidly stains the outer leaflet of the plasma membrane. Upon endocytosis, the dye is trafficked inside the cell without change in fluorescence. The total cell fluorescence intensity was measured after segmenting the cells by thresholding the fluorescence signal above background levels. The fluorescence intensity was normalized to the intensity reached at the end of the fast increase ~1 min after the dye was flowed in, which corresponds to the intensity of total surface area of the plasma membrane (Figure 8B). After this fast phase (< 20 seconds), the fluorescence signal increased more slowly every time unstained membrane was exposed to the cell surface by exocytosis. At short time scale (~5 to 20 min depending on the exocytosis rate), recycling of stained membrane is negligible and one can assume that all exocytosed membrane is virtually unstained. Since the intensity at the beginning of the slow phase was normalized to 1, the slope of the linear increase of fluorescence is equal to the amount of membrane exocytosed per minute, expressed as a fraction of the surface area of the plasma membrane. For all measurements, images were taken at 5 s interval at the midline of cells with the help of Perfect Focusing System (Nikon, Tokyo, Japan), with minimal laser excitation in order to reduce toxicity and photobleaching to negligible values. Curve fitting and slope calculation was performed in GraphPad Prism (GraphPad Software, La Jolla, CA, USA).

Measurement of eisosomes’ density on the plasma membrane

We imaged full cells expressing Pil1p-mEGFP by taking stacks of 0.5 µm spaced Z-slices. We corrected these Z-stacks for uneven illumination and manually outlined individual cells to determine the surface area of each cell. To determine the
total amount of eisosome-bound Pil1p-mEGFP we subtracted the cytosolic intensity of Pil1-mEGFP using a pre-determined threshold and summed all the Z-slices. We measured the mean membrane intensity of each cell on the thresholded sum-projection image. The eisosome density was determined by dividing this mean intensity by the surface area of each protoplast.

To quantify the relative changes in area fraction of eisosomes after acute hypotonic shock, wild-type protoplasts expressing Pil1p-mEGFP were loaded into ONIX2 microfluidics system (Millipore-Sigma, Saint-Louis, USA), and time lapse fluorescent images were taken at a single Z-slice at the top of protoplasts during media change. After background correction, the total area fraction of eisosomes at the beginning of hypotonic shock was set to 1.0 for normalization, and the normalized values of area fraction were fit to a single exponential decay curve in GraphPad Prism (GraphPad Software, La Jolla, CA, USA).

Measurement of membrane tension

Protoplasts were loaded in a custom-built chamber which was passivated with 0.2 mg/mL β-casein (Millipore-Sigma, Saint-Louis, USA) for 30 minutes and pre-equilibrated with EMM5S supplemented with 0.8 M D-Sorbitol. A glass micropipette (#1B100-4, World Precision Instruments, Sarasota, USA) was forged to a diameter smaller than the average protoplast radius (~2.5 µm), and was connected to a water reservoir of adjustable height to apply a defined aspiration pressure. Before and after each experiment the height of the water reservoir was adjusted to set the aspiration pressure to 0. Cells were imaged with a bright field IX-71 inverted microscope (Olympus, Tokyo, Japan) equipped with a 60X/1.4NA objective, and images were recorded every second. Aspiration pressure was gradually increased every 30 s and the membrane tension \(\sigma \) was calculated as \(\sigma = \Delta P \cdot R_p / [2(1 - R_p / R_c)] \), where \(R_p \) and \(R_c \) are respectively the micropipette and the cell radius, \(\Delta P \) is the aspiration pressure for which the length of the tongue \(l \) of the protoplast in the micropipette is equal to \(R_p \) (Evans and Yeung, 1989). To limit the effects of the adaptation of cells’ membrane tension, all measurements were performed within the first five minutes after the hypotonic shock, which greatly limited the throughput of our assay (1 measurement per sample), compared to the measurements at steady state (around 6 measurements per sample).

Acknowledgements

We thank Yale West Campus Imaging core for providing access to the spinning disc confocal microscope, members of the Berro lab for insightful discussions and R. Fernandez for providing mutant yeast strains. We thank Ramesh Ramji and Kathryn Miller-Jensen for initial help with the microfluidics part of this project. We gratefully thank Millipore Sigma for lending us a CellASIC unit and Erdem Karatekin for access to his micropipette aspiration setup. We also thank Samantha Dundon, Mike Lacy and Matt Akamatsu for their comments on our manuscript. This research was supported in part by National Institutes of Health/National Institute of General Medical Sciences Grant R01GM115636 and by seed funding from the American Cancer Society Institutional Research Grant #IRG 58-012-58.
References

Berro J, Pollard TD. 2014b. Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast. MBoC 25:3515–3527. doi:10.1091/mbc.e13-01-0005

Figure 1: Quantitative measurements of fimbrin dynamics at sites of clathrin-mediated endocytosis are highly reproducible. A) Schematic of the plasma membrane deformations and the main components of the actin machinery during CME. Fimbrin (Fim1p, red) crosslinks actin filaments (blue) present at endocytic sites and is used as a proxy to monitor the amount of actin assembled. B) Wild-type yeast cell expressing Fim1p-mEGFP (inverted contrast). C) Montage of a representative CME event. The interval between each frame is 1 s. D) Colocalization of Fimbrin (mEGFP-Fim1p, green) and End4 (mScarlet-I-End4p, red) during endocytosis. Significant overlapping of signals can be seen in the merged channel. E) Montage of a representative CME event tagged by both mEGFP-Fim1p (top-row) and mScarlet-I-End4p (bottom row). The interval between each frame is 4 s. F) and G) The number of molecules (F) and speed (G) of Fim1p-mEGFP detected, tracked and aligned with temporal super-resolution (Berro & Pollard, 2014) is highly reproducible between fields of view (one-way ANOVA on the number of molecules at time 0 s, p=0.74). Each curve with a dark color represents the average of several endocytic events from a different field of view of the same sample (N≥64), and the light colors are the 95% confidence intervals. For each average curve, the peak value corresponds to time 0 sec, when vesicles scission happens. The data for each field are plotted separately in Figure 1 Supplement 1. The numbers of endocytic events used in each curve are given in Supplemental Table 2. Scale bars in (B) and (F): 5 µm.
Figure 2: CME in wild-type walled cells is robust over a wide range of osmotic conditions. A) Timeline of the experiments and notations. By convention, hypotonic shocks start at time 0 min and are defined by the difference in concentration of sorbitol in the steady state media before the shock (CSS) and after the hypotonic shock (Cfin), ΔP=Cfin-CSS. Data for a given time point correspond to endocytic events happening between 0 and 1 min after the shock. These time intervals are represented by gray bars on the time axis. B) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP in wild-type walled cells at steady state in media supplemented with different sorbitol concentrations. There is no statistically significant difference in the number of molecules at time 0 s between the three conditions (one-way ANOVA, p=0.29). N≥388. Data for each condition are plotted separately in Figure 2 Supplement 1A. The numbers of endocytic events used in each curve are given in Supplemental Table 3. C) and D) Left panels: representative wild-type walled cells expressing Fim1p-mEGFP (inverted contrast) at steady state in 1.2 M sorbitol (D) and immediately (0 min) after an acute osmotic shock ΔP=-1.2 M (E). Right panels: kymographs of the fluorescence under the yellow line in the left panels. Black dashed lines: outline of the cell. Scale bars for all panels: 5 µm. E) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP for wild-type walled cells initially at steady state in 1.2 M sorbitol and after an acute osmotic shock of ΔP=-1.2 M. There is no statistically significant difference in the number of molecules at time 0 s between the three conditions (one-way ANOVA, p=0.95). Black: steady state in 1.2 M sorbitol; light to dark blue in top panel: 0 min, 2 min, 4 min, and 6 min after the acute hypotonic shock.
shock \((N \geq 103)\). Data for each condition are plotted separately in Figure 2 Supplement 1B. The numbers of endocytic events used in each curve are given in Supplemental Table 4. (B) and (E): dark colors: average; light colors: average +/- 95% confidence interval.
Figure 3: The absence of eisosome makes the dynamics of the CME machinery more sensitive to changes in osmolarity. A) and C) Left panels: representative \textit{pil1Δ} walled cells expressing Fim1p-mEGFP (inverted contrast) at steady state in 1.2 M sorbitol (A) and immediately (0 min) after an acute osmotic shock of $\Delta P=-1.2$ M (C). Right panels: kymographs of the fluorescence under the yellow lines in the left panels. Black dashed lines: cell outline. Scale bars: 5 µm. B) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP in \textit{pil1Δ} walled cells at steady state in media supplemented with different sorbitol concentrations ($N \geq 342$). The difference in the number of molecules at time 0 s between all pairs of conditions is statistically significant (one-way ANOVA, $p<10^{-5}$). Data for each condition are plotted separately in Figure 3 Supplement 1A. The numbers of endocytic events used in each curve are given in Supplemental Tables 5. D) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP in \textit{pil1Δ} walled cells before and after an acute osmotic shock ($\Delta P=-1.2$ M). The difference in the number of molecules at time 0 s between all pairs of conditions is statistically significant (one-way ANOVA, $p<0.03$) except between 0 min and 2 min after the shock (one-way ANOVA, $p=0.18$). Black: steady state in 1.2 M sorbitol before the hypotonic shock ($N=583$); light to dark red in top panel: 0 min, 2 min and 4 min after the acute hypotonic shock ($N \geq 145$). Data for each condition are plotted separately in Figure 3 Supplement 1B. The numbers of endocytic events used in each curve are given in Supplemental Table 6. (B) and (D): dark colors: average; light colors: average +/- 95% confidence interval.
Figure 4: Eososomes buffer increases in membrane tension but has virtually no influence on the dynamics of the actin endocytic machinery at steady state in protoplasts. A) Representative walled yeast cells (left column) and protoplasts (right column) at steady state in 1.2 M sorbitol. Top panels: phase contrast; middle panels: cells expressing Fim1-mEGFP (inverted contrast); bottom panels: cells expressing Pil1-mEGFP (inverted contrast). Note that the expression of pil1-mEGFP is the same in walled cells and protoplasts (Figure 4 Supplement 1). B) Eososomes labelled with Pil1p-mEGFP (inverted contrast) in wild-type protoplasts at steady state in different sorbitol concentrations. From left to right: 0.25 M, 0.4 M, 0.8 M and 1.2 M sorbitol. C) Density of eososomes at the plasma membrane, measured as the ratio between the intensity of Pil1p-mEGFP on the plasma membrane and the surface area of the protoplast, at steady state in 0.25 M (N=26), 0.4 M (N=34) and 1.2 M (N=39) sorbitol. Error bars: standard deviations. D) Micropipette aspiration was used to measure membrane tension. Rc: cell radius; Rp: micropipette radius; l: length of the tongue inside the micropipette. E) Membrane tension of protoplasts at steady state in 0.8 M sorbitol and ~5 min after a hypotonic shock (ΔP=-0.2 M) for wild-type (blue bars, N=28 for steady state and N=5 for the shock) and pil1Δ protoplasts (red bars, N=42 for steady state and N=7 for the shock). Error bars: standard deviation. p-values: non-significant (ns), p>0.05; two stars (**), p≤0.01; three stars (***, p≤0.001. F) and G) Number of molecules (left panels) and speed (right panels) of Fim1p-mEGFP for wild-type (F) and pil1Δ (G) protoplasts at steady state in different sorbitol concentrations. Orange: 0.25 M; purple: 0; green: 0.8 M; black: 1.2 M. Dark colors: average; light colors: average +/- 95% confidence interval (N≥143). Fuchsia dotted curves: wild-type walled cells at steady state in 0 M sorbitol. Data for each condition are plotted separately in Figure 4 Supplement 2. The numbers of endocytic events used in each curve are given in Supplemental Table 7. H) and I) Eososomes of wild-type protoplasts disassemble rapidly after a hypotonic shock. (H) Time course of a representative protoplast expressing Pil1p-mEGFP over 10 minutes after a hypotonic shock (ΔP=-0.2 M) and initially at steady-state in 0.4 M sorbitol (just before time 0 min). (I) Evolution of the surface area covered by eososomes over time, as a fraction of the surface area covered at time 0 min (normalized to 1). Data are from three independent experiments (N=15) and presented as mean +/- 95% confidence interval. Scale bars in (A), (B), (D) and (I): 5 µm.
Figure 5: The actin endocytic machinery adapts to increases of membrane tension in protoplasts. A) and B) Representative wild-type protoplasts expressing Fim1-mEGFP (inverted contrast) at steady-state in 0.25 M sorbitol (A, left panel) and immediately after (0 min) an acute osmotic shock of ΔP=-0.1 M (B, left panel). Right panels: kymographs of the fluorescence under the yellow lines in the left panels. Black dashed lines: protoplast outline. Scale bars: 5 µm. C) and F) Number of Fim1p-mEGFP molecules in wild-type (C) and pil1Δ (F) protoplasts at steady-state in 0.4 M sorbitol (purple), 0 min (brown) and 10 min (orange) after an hypotonic shock of ΔP=-0.05 M (left panels), ΔP=-0.1 M (middle panels) and ΔP=-0.2 M (right panels), N≥95. Data for each condition are plotted separately in Figure 5 Supplements 1 (wild type) and 2 (pil1Δ). The speeds of Fim1p-mEGFP for each condition are shown in Figure 5 Supplements 3 (wild type) and 4 (pil1Δ). The numbers of endocytic events used in each curve are given in Supplemental Table 8. Note that the large majority of pil1Δ protoplasts were too damaged or dead 2 minutes after hypotonic shocks larger than or equal to ΔP=-0.1 M to allow us to track enough endocytic events and produce a curve (Figures 6B and C, Figure 6 Supplement 1). In panel (C), the difference in the number of molecules at time 0 s at steady state and 0 min after the shock is statistically significant for all shocks (one-way ANOVA, p<0.03) and the difference between steady-state and 10 min after the shock is not statistically significant (one-way ANOVA, p>0.2; details in the data file for figure 5C). In panel (F), the difference at steady state and 0 min after the shock is statistically significant for all shocks (one-way ANOVA, p<10^{-5}; details in the data file for figure 5F). D) Temporal adaptation of the peak number of Fim1p-mEGFP in wild-type protoplasts initially at steady state in 0.4 M sorbitol and 0 to 10 min after a ΔP=-0.2 M osmotic shock. The condition for this figure is the same as the condition with the blue star in (C). The difference between steady-state and 0 min or 2 min after shock is statistically significant (one-way ANOVA, p<10^{-3}; details in the data file for figure 5D). The difference between steady-state and 4 min, 6 min, 8 min and 10 min after shock is not statistically significant (one-way ANOVA, p>0.2; details in the data file for figure 5D). E) Montage of representative endocytic events (Fim1-mEGFP, inverted contrast) in pil1Δ protoplasts (1 frame per second) at steady state in 0.4 M sorbitol (first row) and immediately after (0 min) a hypotonic shocks of ΔP=-0.05 M (second row), ΔP=-0.10 M (third row) and ΔP=-0.20 M (fourth row). G) Temporal adaptation of the peak number of Fim1p-mEGFP in pil1Δ protoplasts initially at steady state in 0.4 M sorbitol and 0 to 10 min after a ΔP=-0.2 M shock. The condition in this figure is the same as the condition with the red star in (F). The difference between steady-state and 0 min, 2 min, 4 min, 6 min or 8 min after shock is statistically significant (one-way ANOVA, p<0.01; details in the data file for figure 5F). The difference between steady-state and 10 min after shock is not statistically significant (one-way ANOVA, p>0.3; details in the data file for figure 5F). (D) and (G) error bars are 95% confidence intervals. The numbers of endocytic events used in each curve are given in Supplemental Table 9. H) and I) Number of molecules of Fim1p-mEGFP for wild-type (H) and pil1Δ (I) protoplasts at steady state in 0.25 M sorbitol (purple dashed) and immediately after (0 min) a hypotonic shock of ΔP=-0.1 M (brown), N≥67. The difference in the number of molecules at time 0 s at steady state and 0 min after the shock is statistically significant for all conditions (one-way ANOVA, p<10^{-16}). The speed data for each condition are plotted in Figure 5 Supplement 5. The numbers of endocytic events used in each curve are given in Supplemental Table 10. The survival rates for the wild-type and pil1Δ protoplasts in these conditions are plotted in Figure 5-
Figure 6: Eisosomes protect protoplasts and walled cells from osmotic shocks.
A-C) Percentage of wild-type (blue dots) and \textit{pil1Δ} (red triangle) protoplasts that are alive at steady-state in 0.4 M sorbitol, and after a ΔP=-0.05 M (A), ΔP=-0.1 M (B) and ΔP=-0.2 M (C) single hypotonic shock. Representative fields of view used to determine these percentages are shown in Figure 6 Supplement 1. D) Timeline of repeated ΔP=1.2 M osmotic shocks for walled cells. Each osmotic shock was performed by exchanging sorbitol concentration from 1.2 M (5 minutes) to 0 M (1 minute). E) Percentage of wild-type (blue dots, N=273) and \textit{pil1Δ} (red triangle, N=197) walled cells that are alive after each osmotic shock. Note the progressive cell death induced by repeated osmotic shocks for \textit{pil1Δ} cells. Combined data are from three independent experiments and plotted as mean +/- standard deviation. F) Representative images of wild-type (upper panel) and \textit{pil1Δ} (lower panel) walled cells before shock and after the 4th shock. Dead cells are strongly stained by FM4-64 due to membrane damage. Scale bar: 10 µm.
Figure 7: The density of endocytic events rapidly adapts after acute osmotic shocks. A) Temporal evolution of density of endocytic events (average number of endocytic events at a given time in a cell divided by the cell length) in wild-type protoplasts initially at steady state in 0.4 M sorbitol and after an acute hypotonic shock of $\Delta P=-0.05$ M (dark blue, $N_{\text{cell}} \geq 102$), $\Delta P=-0.1$ M (blue, $N_{\text{cell}} \geq 54$) and $\Delta P=-0.2$M (light blue, $N_{\text{cell}} \geq 83$). For $\Delta P=-0.1$M and $\Delta P=-0.2$M, the difference in the density of CME events between steady-state and 0 min or 2 min after the shock is statistically significant (one-way ANOVA, $p<10^{-4}$). In all conditions, the difference after 6 min is not significant (one-way ANOVA, $p>0.12$; details in the data file). B) Same as (A) but with pil1Δ protoplasts and hypotonic shocks of $\Delta P=-0.025$ M (dark red, $N_{\text{cell}} \geq 70$), $\Delta P=-0.05$ M (red, $N_{\text{cell}} \geq 103$) and $\Delta P=-0.1$ M (light red, $N_{\text{cell}} \geq 78$). In all conditions, the difference in the density of CME events between steady-state and any time after the shock is statistically significant (one-way ANOVA, $p<10^{-3}$). For $\Delta P=-0.025$ M and $\Delta P=-0.05$ M,
the differences between time points after 6 min are not significant (one-way ANOVA, p>0.09; details in the data file). (A) and (B) insets: relative volume increase after the hypotonic shocks (the volume at steady state is used as a reference). The numbers of cells used for each condition and each time point are given in Supplemental Table 11. The number of cells measured in the insets are the same as in the main figures. Star (*): the large majority of pil1Δ protoplasts were too damaged or dead 4 minutes after the hypotonic shocks at ΔP=-0.1 M (Figure 6B), which prevented us to measure the density of endocytic events and the volume after this time point. C) Density of endocytic events in wild-type (blue circle) and pil1Δ (red triangle) walled cells initially at steady state in 1.2 M sorbitol and after an acute hypotonic shock of ΔP=-1.2M, Ncell≥44. The numbers of cells used for each condition and each time point are given in Supplemental Table 12. For willed-type and pil1Δ walled cells, the differences in the density of CME events after 2 min are not statistically significant (p>0.08; details in the data file). D) Density of endocytic events in intact cells at steady state in different osmolarities, Ncell≥80. In pil1Δ walled cells, the difference in the density of CME events between all pairs of conditions is statistically significant (one-way ANOVA, p<10^-4). In wild-type walled cells, the difference is small but statistically significant (details in the data file). (A), (B), (C) and (D): error bars are standard errors of the mean. The numbers of cells used for each condition and each time point are given in Supplemental Table 13.
Figure 8: Exocytosis rate increases after an acute change in membrane tension in protoplasts but not in walled cells. A) Rationale of measurement of whole cell exocytosis rate through FM4-64 staining. After FM4-64 is flown in the imaging chamber, the dye rapidly binds to the cell surface in less than a minute. After this initial phase, the whole cell fluorescence increases every time new (unlabeled) internal membrane is exposed to the cell surface by exocytosis. Note that endocytic events do not change the total fluorescence measured. B) Measurement of yeast cell exocytosis rate at steady state in 0 M sorbitol. Cells were stained with 20 µM FM4-64 in EMM5S for 20 min before washing with EMM5S. During FM4-64 staining, the fluorescence intensity increases rapidly for 1 min before entering a slow linear phase over at least
20 min for wild-type cells. The fluorescence intensity at the end of the initial rapid increase phase corresponds to the complete staining of cell surface. It was normalized to 1, so that the subsequent increase in fluorescence intensity corresponds to a percentage of the plasma membrane surface area. After the dye was removed 20 min later, the decrease in fluorescence intensity suggests that the incorporation of FM4-64 didn’t interfere with the vesicle trafficking pathway of the cell. The rate of exocytosis (measured as a percentage of the plasma membrane surface area per minute) is the slope of a linear fit of the measured signal over the first 5 min (k0-5), 10 min (k0-10) or 15 min (k0-15). Example images of stained cells at different time points are shown in the middle panel (inverted contrast). (C) - (H) Rates of exocytosis at steady state and after hypotonic shocks. C) and D) The exocytic rate of wild-type and pil1Δ protoplasts increases after a ΔP=-0.2 M (black, before shock, Ncells=20; light blue, after shock, Ncells=37; 4 replicates each) and ΔP=-0.05 M (black, before shock, Ncells=44; red, after shock, Ncells=60; 4 replicates each) acute hypotonic shocks, respectively. Before time 0 min, all protoplasts were at steady-state in 0.4 M sorbitol. Curves for individual conditions in panels (C) and (D) are plotted in Figure 8 Supplement 1A and B, respectively. E) Summary of exocytic rates for wild-type and pil1Δ protoplasts before and after hypotonic shock. F) and G) The exocytic rate of wild-type walled cells is not changed after a ΔP=-1.2 M acute hypotonic shock (black, before shock, Ncells=79; blue, after shock, Ncells=68; 3 replicates each). The exocytic rate of pil1Δ walled cells does not change significantly in the same conditions (black, before shock, Ncells=60; blue, after shock, Ncells=96; 3 replicates each). All walled cells were at steady-state in 1.2 M sorbitol before time 0 min. Curves for individual conditions in panels (F) and (G) are plotted in Figure 8 Supplement 1C and D, respectively. H) Summary of exocytic rates for wild-type and pil1Δ walled cells before and after hypotonic shock. (C) - (H) Data from at least three independent experiments were pooled together to produce each curve. p-values: non-significant (ns), p>0.05; one star (*), p≤0.05; three stars (**), p≤0.001.
Figure 9: Inhibition of exocytosis but not endocytosis decreased the survival rate of protoplasts under acute hypotonic shock. *pil1Δ protoplasts initially at steady state in 0.4 M sorbitol (black line; N=114), 0.4 M sorbitol plus 2 mM BFA (Blue line; N=83), or 0.4 M sorbitol plus 25 μM Latrunculin A (Red line; N=70), were submitted to a ΔP=-0.2 M hypotonic shock (t=0 min), and their survival rates were compared over time. BFA or Latrunculin A were included in the respective shock solution. Only BFA treatment led to a significant decreased survival rate of protoplasts compared with the control group. Data are pooled from two independent experiments and plotted as Kaplan-Meier survival curves. Error bars: standard error of the mean by the Greenwood formula. One star (*), p≤0.05, logrank test. Typical fields of view for each condition are shown in Figure 9 Supplement 1.
A) Endocytic pit with actin patch
- Pil1p
- Exocytic vesicle
- Endocytic vesicle

Cell wall
- Membrane tension
- Exocytosis
- Endocytosis

Isotonic solution

B) After acute hypotonic shock
Figure 10: Schematic of the adaptation of fission yeast endocytosis, exocytosis and eisosome after acute hypotonic shock-induced increase in membrane tension. A) In an isotonic solution, endocytosis and exocytosis rates are largely balanced, and proteins including Pil1p are assembled at the plasma membrane to form eisosomes. Actin is recruited to endocytic sites to provide the forces needed to reshape the membrane under normal membrane tension. When present, cell wall makes fission yeast cell resistant to significant changes in the osmolarity of extracellular solution. B) Acute hypotonic shock results in an increase of membrane tension, which leads to a decrease of endocytosis rate, an increase in exocytosis rate, and a rapid disassembly of eisosomes, within ~2 minutes. The proteins of the actin machinery are recruited in larger amount to endocytic sites to provide larger forces for successful endocytosis under increased membrane tension. Failure of adaptation to the increase in membrane tension leads to membrane rupture and cell death in both protoplasts and walled cells.
Supplemental figures
Figure 1 Supplement 1: Separate plots for the data from each field of view in panels 1F and 1G. Each curve with a dark color represents the average of several endocytic events from a different field of view of the same sample (N≥64), and the light colors are the 95% confidence intervals. For each average curve, the peak value...
corresponds to time 0 sec, when vesicles scission happens. The numbers of endocytic events used in each curve are given in Supplemental Table 2.
Figure 2 Supplement 1: Separate plots for each condition in Figures 2B (A) and 2F (B). A) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP in wild-type walled cells at steady state in media supplemented with different sorbitol.
concentrations (N≥388) (Figure 2B). The numbers of endocytic events used in each curve are given in Supplemental Table 3. E) Number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP for wild-type walled cells initially at steady state in 1.2 M sorbitol and after an acute osmotic shock of ΔP=-1.2 M. Black: steady state in 1.2 M sorbitol; light to dark blue (from top to bottom rows): 0 min, 2 min, 4 min, and 6 min after the acute hypotonic shock (N≥103) (Figure 2F). The numbers of endocytic events used in each curve are given in Supplemental Table 4. (A) and (B): dark colors: average; light colors: average +/- 95% confidence interval.
Figure 3 Supplement 1: The number of molecules (left panel) and speed (right panel) of Fim1p-mEGFP at CME sites in wild-type (blue, N=1773) and pil1∆ (red, N=1884) walled cells at steady state in EMM5S without sorbitol are identical (same data as Figures 2B and 3B). Dark colors: average, light colors: average +/- 95% confidence interval.
Figure 4 Supplemental 1: A) The total amount of Pil1-mEGFP in walled cells and protoplasts are not significantly different (Mann-Whitney test, P=0.65). Bars: mean and standard error of the mean. B) Protoplasts volume at steady state in 0.25 M (N=26), 0.4 M (N=34) and 1.2 M (N=39) sorbitol (same cells were used as in Figure 4C). Error bars: standard deviations.
Figure 4 Supplemental 2: Separate plots for each condition in Figures 4F (A) and 4G (B). A) and B) Number of molecules (left panels) and speed (right panels) of Fim1p-mEGFP for wild-type (A) and pil1Δ (B) protoplasts at steady state in different sorbitol concentrations. Orange: 0.25 M; purple: 0; green: 0.8 M; black: 1.2 M.
colors: average; light colors: average +/- 95% confidence interval (N=143). Fuschia
dotted curves: wild-type walled cells at steady state in 0 M sorbitol (same as Figure
3B). The numbers of endocytic events used in each curve are given in Supplemental
Table 7.
Figure 5 Supplement 1: Separate plots for each condition shown in Figure 5C. Number of Fim1p-mEGFP molecules in wild-type protoplasts at steady-state in 0.4 M sorbitol (purple), 0 min (brown) and 10 min (orange) after an hypotonic shock of $\Delta P=0.05$ M (left panels), $\Delta P=0.1$ M (middle panels) and $\Delta P=0.2$ M (right panels), $N\geq95$.

The speeds of Fim1p-mEGFP for each condition are shown in Figure 5 Supplements 3. The numbers of endocytic events used in each curve are given in Supplemental Table 8. Dark colors: average, light colors: average +/- 95% confidence interval.
Figure 5 Supplement 2: Separate plots for each condition shown in Figure 5F. Number of Fim1p-mEGFP molecules in pil1Δ protoplasts at steady-state in 0.4 M sorbitol (purple), 0 min (brown) and 10 min (orange) after an hypotonic shock of $\Delta P=-0.05$ M (left panels), $\Delta P=-0.1$ M (middle panels) and $\Delta P=-0.2$ M (right panels), N\geq95. The speeds of Fim1p-mEGFP for each condition are shown in Figure 5 Supplements 4. The numbers of endocytic events used in each curve are given in Supplemental Table 8. Note that the large majority of pil1Δ protoplasts were too damaged or dead 2 minutes after hypotonic shocks larger than or equal to $\Delta P=-0.1$ M to allow us to track enough endocytic events and produce a curve (Figures 6B and C, Figure 6 Supplement 1). Dark colors: average, light colors: average +/- 95% confidence interval.
Figure 5 Supplement 3: A) Speed of Fim1p-mEGFP in wild-type protoplasts at steady-state in 0.4 M sorbitol (purple), 0 min (brown) and 10 min (orange) after an hypotonic shock of ΔP=0.05 M (left panels), ΔP=0.1 M (middle panels) and ΔP=0.2 M (right panels). B) Separate plots for each condition shown in panel A. (A and B) The same endocytic events as the ones used in Figure 5C have been used to generate these plots. The numbers of endocytic events used in each curve are given in Supplemental Table 8. Dark colors: average, light colors: average +/- 95% confidence interval.
A) \(\Delta P = 0.05 \) M

Steady state at 0.4 M
0 min after the shock

\(\Delta P = 0.1 \) M

\(\Delta P = 0.2 \) M

B)

Not available

Not available
Figure 5 Supplement 4: A) Speed of Fim1p-mEGFP in pil1Δ protoplasts at steady-state in 0.4 M sorbitol (purple), 0 min (brown) and 10 min (orange) after an hypotonic shock of ΔP=-0.05 M (left panels), ΔP=-0.1 M (middle panels) and ΔP=-0.2 M (right panels). B) Separate plots for each condition shown in panel A. (A and B) The same endocytic events as the ones used in Figure 5F have been used to generate these plots. The numbers of endocytic events used in each curve are given in Supplemental Table 8. Dark colors: average, light colors: average +/- 95% confidence interval.
Figure 5 Supplement 5: (A and B) Speed of Fim1p-mEGFP at CME sites for wild-type (A) and pil1Δ (B) protoplasts at steady-state in 0.25 M sorbitol (purple) and immediately (0 min) after (brown) a hypotonic shock of ΔP=−0.1 M. The same endocytic events as the ones used in Figure 5H (A) and 5I (B) have been used to generate these plots. The numbers of endocytic events used in each curve are given in Supplemental Table 10. Dark colors: average, light colors: average +/- 95% confidence interval. C) Percentage of wild-type (blue dots) and pil1Δ (red triangles) protoplasts that are alive in fields of view used for analysis, at steady-state in 0.25 M sorbitol, and after a ΔP=−0.1 M hypotonic shock.
Figure 6 Supplement 1: A) and B) Typical fields of view of wild-type (A) and pil1Δ (B) protoplasts at steady state in 0.4 M sorbitol (left panel) and 8 minutes (right panel) after a ΔP=-0.1 M hypotonic shock. Cells are considered alive if they do not contain any red fluorescence from the sulforhodamin B dye. Scale bar: 5 µm.
Figure 7 – Supplement 1: Separate plots for each condition shown in Figure 7A and B. A) Temporal evolution of density of endocytic events (average number of endocytic events at a given time in a cell divided by the cell length) in wild-type protoplasts initially at steady state in 0.4 M sorbitol and after an acute hypotonic shock of $\Delta P = -0.05$ M (dark blue, $N_{\text{cell}} \geq 102$), $\Delta P = -0.1$ M (blue, $N_{\text{cell}} \geq 54$) and $\Delta P = -0.2$ M (light blue, $N_{\text{cell}} \geq 83$). B) Same as (A) but with pil1Δ protoplasts and hypotonic shocks of $\Delta P = -0.025$ M (dark red, $N_{\text{cell}} \geq 70$), $\Delta P = -0.05$ M (red, $N_{\text{cell}} \geq 103$) and $\Delta P = -0.1$ M (light red, $N_{\text{cell}} \geq 78$). (A) and (B) insets: relative volume increase after the hypotonic shocks (the volume at steady state is used as a reference). The number of cells used for each condition and each time point is given in Supplemental Table 11. The number of cells measured in the insets are the same as in the main figures. (A) and (B): error bars are standard errors of the mean. The number of cells used for each condition and each time point is given in Supplemental Table 13.
Figure 8 – Supplement 1: Separate plots for each condition in Figure 8. Rates of exocytosis at steady state and after hypotonic shocks. A) and B) The exocytic rate of wild-type and pil1Δ protoplasts increases after a ΔP=-0.2 M (black, before shock, N_{cells}=20; light blue, after shock, N_{cells}=37; 4 replicates each) and ΔP=-0.05 M (black, before shock, N_{cells}=44; red, after shock, N_{cells}=60; 4 replicates each) acute hypotonic.
shocks, respectively. Before time 0 min, all protoplasts were at steady-state in 0.4 M sorbitol. C) and D) The exocytic rate of wild-type walled cells is not changed after a ΔP=-1.2 M acute hypotonic shock (black, before shock, N_{cells}=79; blue, after shock, N_{cells}=68; 3 replicates each). The exocytic rate of pil1Δ walled cells does not change significantly in the same conditions (black, before shock, N_{cells}=60; blue, after shock, N_{cells}=96; 3 replicates each). All walled cells were at steady-state in 1.2 M sorbitol before time 0 min. (A)-(E) Dark color: mean; light color: standard error of the mean.

Steady state in 0.4M 10 minutes after ΔP=-0.2M shock

CTRL

LatA

BFA
Figure 9 Supplemental 1: Typical fields of view of pil1Δ protoplasts at steady state in 0.4 M sorbitol (left panel) and 10 minutes (right panel) after a ΔP=-0.2 M hypotonic shock. First row: control, second row: latrunculin A, third row: Brefeldin A. Cells are considered dead if they contain large amounts of intracellular red fluorescence from the FM4-64 dye, which is the consequence of a rupture of the plasma membrane. Scale bar: 10 µm.
Supplemental Table 1: Yeast strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Mating type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpJB57</td>
<td>fim1-mEGFP-NatMX6 ade6-M216 his3-Δ1 leu1-32 ura4-Δ18</td>
<td>h+</td>
</tr>
<tr>
<td>SpJB204</td>
<td>pil1-mEGFP-kanMX6 ade6-M216 his3-Δ1 leu1-32 ura4-Δ18</td>
<td>h-</td>
</tr>
<tr>
<td>SpJB234</td>
<td>pil1Δ fim1-mEGFP-NatMX6 ade6-M216 his3-Δ1 leu1-32 ura4-Δ18</td>
<td>h-</td>
</tr>
<tr>
<td>SpJB566</td>
<td>mScarlet-I-end4 mEGFP-fim1 fex1Δ fex2Δ ade6-M216 his3-D1 leu1-32 ura4-D18</td>
<td>h-</td>
</tr>
</tbody>
</table>

Supplemental Table 2: Number of endocytic events used to generate Figures 1F and 1G

<table>
<thead>
<tr>
<th>Field of view</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field 1</td>
<td>64</td>
</tr>
<tr>
<td>Field 2</td>
<td>79</td>
</tr>
<tr>
<td>Field 3</td>
<td>91</td>
</tr>
<tr>
<td>Field 4</td>
<td>202</td>
</tr>
</tbody>
</table>

Supplemental Table 3: Number of endocytic events used to generate Figure 2B

<table>
<thead>
<tr>
<th>Sorbitol concentration</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 M</td>
<td>388</td>
</tr>
<tr>
<td>0.8 M</td>
<td>454</td>
</tr>
<tr>
<td>1.2 M</td>
<td>451</td>
</tr>
</tbody>
</table>

Supplemental Table 4: Number of endocytic events used to generate Figure 2E

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state</td>
<td>354</td>
</tr>
<tr>
<td>0 min</td>
<td>103</td>
</tr>
<tr>
<td>2 min</td>
<td>169</td>
</tr>
<tr>
<td>4 min</td>
<td>190</td>
</tr>
<tr>
<td>6 min</td>
<td>153</td>
</tr>
</tbody>
</table>
Supplemental Table 5: Number of endocytic events used to generate Figure 3B

<table>
<thead>
<tr>
<th>Sorbitol concentration</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 M</td>
<td>342</td>
</tr>
<tr>
<td>0.8 M</td>
<td>516</td>
</tr>
<tr>
<td>1.2 M</td>
<td>514</td>
</tr>
</tbody>
</table>

Supplemental Table 6: Number of endocytic events used to generate Figure 3D

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state</td>
<td>583</td>
</tr>
<tr>
<td>0 min</td>
<td>176</td>
</tr>
<tr>
<td>2 min</td>
<td>145</td>
</tr>
<tr>
<td>4 min</td>
<td>326</td>
</tr>
</tbody>
</table>

Supplemental Table 7: Number of endocytic events used to generate Figures 4F and 4G

<table>
<thead>
<tr>
<th>Sorbitol concentration</th>
<th>Number of tracks</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protoplasts in 1.2 M</td>
<td>143</td>
<td>203</td>
</tr>
<tr>
<td>Protoplasts in 0.8 M</td>
<td>151</td>
<td>184</td>
</tr>
<tr>
<td>Protoplasts in 0.4 M</td>
<td>682</td>
<td>166</td>
</tr>
<tr>
<td>Protoplasts in 0.25 M</td>
<td>395</td>
<td>370</td>
</tr>
<tr>
<td>WT walled cells in 0M</td>
<td>234</td>
<td>300</td>
</tr>
</tbody>
</table>
Supplemental Table 8: Number of endocytic events used to generate Figures 5C and 5F

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of tracks WT cells</th>
<th>Number of tracks pil1Δ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP=-0.05M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state in 0.4M</td>
<td>279</td>
<td>429</td>
</tr>
<tr>
<td>0 min after ΔP=-0.05M</td>
<td>193</td>
<td>183</td>
</tr>
<tr>
<td>10 min after ΔP=-0.05M</td>
<td>182</td>
<td>206</td>
</tr>
<tr>
<td>ΔP=-0.1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state in 0.4M</td>
<td>413</td>
<td>95</td>
</tr>
<tr>
<td>0 min after ΔP=-0.1M</td>
<td>190</td>
<td>215</td>
</tr>
<tr>
<td>10 min after ΔP=-0.1M</td>
<td>186</td>
<td>0</td>
</tr>
<tr>
<td>ΔP=-0.2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state in 0.4M</td>
<td>269</td>
<td>95</td>
</tr>
<tr>
<td>0 min after ΔP=-0.2M</td>
<td>396</td>
<td>373</td>
</tr>
<tr>
<td>10 min after ΔP=-0.2M</td>
<td>309</td>
<td>0</td>
</tr>
</tbody>
</table>

Supplemental Table 9: Number of endocytic events used to generate Figure 5D and 5G

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of tracks WT cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state in 0.4M</td>
<td>269</td>
</tr>
<tr>
<td>0 min after ΔP=-0.2M</td>
<td>396</td>
</tr>
<tr>
<td>2 min after ΔP=-0.2M</td>
<td>124</td>
</tr>
<tr>
<td>4 min after ΔP=-0.2M</td>
<td>127</td>
</tr>
<tr>
<td>6 min after ΔP=-0.2M</td>
<td>178</td>
</tr>
<tr>
<td>8 min after ΔP=-0.2M</td>
<td>255</td>
</tr>
<tr>
<td>10 min after ΔP=-0.2M</td>
<td>309</td>
</tr>
</tbody>
</table>
Supplemental Table 10: Number of endocytic events used to generate Figures 5H and 5I

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of tracks pil1Δ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state in 0.4M</td>
<td>429</td>
</tr>
<tr>
<td>0 min after ΔP=-0.05M</td>
<td>183</td>
</tr>
<tr>
<td>2 min after ΔP=-0.05M</td>
<td>188</td>
</tr>
<tr>
<td>4 min after ΔP=-0.05M</td>
<td>162</td>
</tr>
<tr>
<td>6 min after ΔP=-0.05M</td>
<td>193</td>
</tr>
<tr>
<td>8 min after ΔP=-0.05M</td>
<td>197</td>
</tr>
<tr>
<td>10 min after ΔP=-0.05M</td>
<td>206</td>
</tr>
</tbody>
</table>

Supplemental Table 11: Number of cells used to generate Figures 7A and 7B

ΔP=-0.025M

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of cells WT cells</th>
<th>Number of cells pil1Δ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state in 0.25M</td>
<td>∅</td>
<td>99</td>
</tr>
<tr>
<td>0 min after ΔP=-0.1 M</td>
<td>∅</td>
<td>100</td>
</tr>
<tr>
<td>2 min after ΔP=-0.025 M</td>
<td>∅</td>
<td>71</td>
</tr>
<tr>
<td>4 min after ΔP=-0.025 M</td>
<td>∅</td>
<td>70</td>
</tr>
<tr>
<td>6 min after ΔP=-0.025 M</td>
<td>∅</td>
<td>98</td>
</tr>
<tr>
<td>8 min after ΔP=-0.025 M</td>
<td>∅</td>
<td>118</td>
</tr>
<tr>
<td>10 min after ΔP=-0.025 M</td>
<td>∅</td>
<td>96</td>
</tr>
</tbody>
</table>

ΔP=-0.05M

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of cells WT cells</th>
<th>Number of cells pil1Δ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state in 0.4M</td>
<td>172</td>
<td>263</td>
</tr>
<tr>
<td>0 min after ΔP=-0.05 M</td>
<td>102</td>
<td>106</td>
</tr>
<tr>
<td>2 min after ΔP=-0.05 M</td>
<td>117</td>
<td>111</td>
</tr>
<tr>
<td>4 min after ΔP=-0.05 M</td>
<td>114</td>
<td>106</td>
</tr>
<tr>
<td>6 min after ΔP=-0.05 M</td>
<td>113</td>
<td>103</td>
</tr>
<tr>
<td>8 min after ΔP=-0.05 M</td>
<td>124</td>
<td>123</td>
</tr>
<tr>
<td>10 min after ΔP=-0.05 M</td>
<td>∅</td>
<td>104</td>
</tr>
</tbody>
</table>
ΔP=-0.1M

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of cells</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state 0.4M</td>
<td>127</td>
<td>151</td>
</tr>
<tr>
<td>0 min after ΔP=-0.1M</td>
<td>62</td>
<td>125</td>
</tr>
<tr>
<td>2 min after ΔP=-0.1M</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>4 min after ΔP=-0.1M</td>
<td>78</td>
<td>Ø</td>
</tr>
<tr>
<td>6 min after ΔP=-0.1M</td>
<td>62</td>
<td>Ø</td>
</tr>
<tr>
<td>8 min after ΔP=-0.1M</td>
<td>54</td>
<td>Ø</td>
</tr>
</tbody>
</table>

ΔP=-0.2M

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of cells</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state 0.4M</td>
<td>146</td>
<td>Ø</td>
</tr>
<tr>
<td>0 min after ΔP=-0.2M</td>
<td>149</td>
<td>Ø</td>
</tr>
<tr>
<td>2 min after ΔP=-0.2M</td>
<td>158</td>
<td>Ø</td>
</tr>
<tr>
<td>4 min after ΔP=-0.2M</td>
<td>83</td>
<td>Ø</td>
</tr>
<tr>
<td>6 min after ΔP=-0.2M</td>
<td>107</td>
<td>Ø</td>
</tr>
<tr>
<td>8 min after ΔP=-0.2M</td>
<td>83</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Supplemental Table 12: Number of cells used to generate Figure 7C

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of cells</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state 1.2M</td>
<td>62</td>
<td>119</td>
</tr>
<tr>
<td>0 min after ΔP=-1.2M</td>
<td>82</td>
<td>69</td>
</tr>
<tr>
<td>2 min after ΔP=-1.2M</td>
<td>77</td>
<td>44</td>
</tr>
<tr>
<td>4 min after ΔP=-1.2M</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>6 min after ΔP=-1.2M</td>
<td>66</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Supplemental Table 13: Number of cells used to generate Figure 7D

<table>
<thead>
<tr>
<th>Sorbitol Concentration</th>
<th>Number of cells</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state in 0 M</td>
<td>240</td>
<td>188</td>
</tr>
<tr>
<td>Steady state in 0.8 M</td>
<td>103</td>
<td>105</td>
</tr>
<tr>
<td>Steady state in 1.2 M</td>
<td>159</td>
<td>183</td>
</tr>
<tr>
<td>Steady state in 2 M</td>
<td>161</td>
<td>80</td>
</tr>
</tbody>
</table>