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SIMULATION RESULTS 

Overview 

This section contains all figures for the simulations results presented in this paper. Given the 

increased computational burden for simulating and obtaining summary statistics for binary 

phenotypes, simulations have been conducted using continuous phenotypes unless otherwise 

specified. By default, locus size has been set to 1000 SNPs, and the number of iterations per 

locus/condition to 1000 for each of the 5 loci (i.e. 5,000 iterations in total).  
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Bivariate model 

Allele misalignment 

 

Supplemental Figure 1. Bias and type 1 error rates as a result of misaligned alleles between 

reference data and summary statistics. Type 1 error rates at 𝛼 = 0.05 for the bivariate local genetic 

correlation (plot a), together with the bias in estimated correlation coefficients 𝜌 (plot b), are shown 

when 0% of alleles have been misaligned, compared to 5%. While misalignment does not lead to bias 

in the estimated correlation coefficients 𝜌, it does cause inflation of the type 1 error rate, and for this 

reason SNP alignment has been implemented as an internal pre-processing step in LAVA. 
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Continuous phenotypes 

 

Supplemental Figure 2. Bias and type 1 error rates for the estimated bivariate genetic correlation 

across different levels of alpha. Plot a-c shows the type 1 error rates across different levels of 

heritability for significance threshold 𝛼 of 0.05, 0.01 and 0.001, respectively (each Y-axis has been 

scaled to run from 0 to 4𝛼). Additional iterations have been added to increase resolution at lower 

alphas (a total of 10,000 per locus, i.e., 50,000 per scenario), and as shown, error rates are contained 

at the level of 𝛼 at all thresholds. Plot d shows the estimated bivariate correlation coefficients 𝜌 

against the simulated 𝜌, indicating that the estimates vary around their true value and are thus 

unbiased.  
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Binary phenotypes 

 

Supplemental Figure 3. Bias and type 1 error rates for the estimated bivariate genetic correlations 

with binary phenotypes. Plot a and c show the type 1 error rates for different ORs and case/control 

ratios, respectively, at significance threshold 𝛼 of 0.05 (the Y-axis has been scaled to run from 0 to 

4𝛼). These plots indicate that the error rates are contained at the level of 𝛼 across settings. Plot b 

and d show the estimated bivariate correlation coefficients 𝜌 against the simulated 𝜌 for different 

ORs and case/control ratios, indicating that the estimates vary around their true value and are thus 

unbiased.   
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Locus size 

 

Supplemental Figure 4. Bias and type 1 error rates for genomic loci of different sizes. Plot a shows 

the type 1 error rate at 𝛼 = 0.05 for different levels of heritability for varying locus sizes. Plot b shows 

the estimates of 𝜌 per locus size and heritability. Locus size was varied by taking the centre point of 

each locus and expanding the boundaries outwards equally on both sides such that the total number 

of SNPs within the locus arrive at 50, 500, 1000, or 5000 SNPs. As shown, varying the locus size does 

not lead to bias in the estimated coefficients, or inflated type 1 error rates. 
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Sample overlap 

 

Supplemental Figure 5. Bias and type 1 error rates for summary statistics with overlapping samples. 

Sample overlap was simulated by setting the residual phenotypic correlation between data sets to .5. 

Plot a shows the influence of this accounting for or ignoring this sample overlap on the type 1 error 

rate at 𝛼 = 0.05; and plot b illustrates the effect of accounting for or ignoring sample overlap on the 

estimated local genetic correlation 𝜌. As shown, not properly accounting for sample overlap leads to 

both inflated type 1 error, as well as a biased in the estimated coefficients.  
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Multivariate models 

Multiple linear regression 

Continuous phenotypes 

 

Supplemental Figure 6. Bias and type 1 error rates for local genetic multiple regression model with 

two correlated predictors (contrasted against the simple bivariate model) for continuous 

phenotypes. Here, two predictors phenotypes, 𝑋' and 𝑋(, have been simulated with true joint 𝛾’s of 

0 and .5 with the outcome 𝑌 (respectively) and a covariance of .5. In plot a, the significance rates at 

𝛼 = 0.05 for the relation between 𝑋' and 𝑌 under either model, with box-plots of the estimates in plot 

b. As shown, in this setup, the marginal correlation 𝜌 between 𝑋' and 𝑌 will be (correctly) estimated 

as non-zero and significant when using the simple bivariate model (since its relation to the true 

predictor 𝑋( is unaccounted for). But when analysed jointly together with 𝑋( in the multiple 

regression model, the conditional association between 𝑋' and 𝑌 given 𝑋( is correctly estimated to be 

0, with corresponding type 1 error rates equal to 𝛼. The association between 𝑋( and 𝑌 is correctly 

estimated as 0.5 in both models. 
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Binary phenotypes 

 

Supplemental Figure 7. Bias and type 1 error rates for local genetic multiple regression model with 

two correlated predictors (contrasted against the simple bivariate model) for binary phenotypes. 

Here, two predictors phenotypes, 𝑋' and 𝑋(, have been simulated with true joint 𝛾’s of 0 and .5 with 

the outcome 𝑌, respectively, and a covariance of .5. In plot a, t he significance rates at 𝛼 = 0.05 for 

the relation between 𝑋' and 𝑌 under either model, with box-plots of the estimates in plot b. As shown, 

in this setup, the marginal correlation 𝜌 between 𝑋' and 𝑌 will be (correctly) estimated as non-zero 

and significant when using the simple bivariate model (since its relation to the true predictor 𝑋( is 

unaccounted for). But when analysed jointly together with 𝑋( in the multiple regression model, the 

conditional association between 𝑋' and 𝑌 given 𝑋( is correctly estimated to be 0, with corresponding 

type 1 error rates equal to 𝛼. The association between 𝑋( and 𝑌 is correctly estimated as 0.5 in both 

models. 
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Partial correlation 

Continuous phenotypes 

Supplemental Figure 8. Bias and type 1 error for the partial local genetic correlation using 

continuous phenotypes.  Here, partial correlations have been simulated for two target phenotypes, 

conditioned on a third. Plot a shows the type 1 error rate at 𝛼 = 0.05 when this partial correlation is 

simulated at 0, indicating that error rates are contained at 𝛼; and plot b shows the estimated partial 

correlation coefficients 𝜌 (compared to the simulated 𝜌), indicating that the estimates vary around 

their true value and are thus unbiased. 
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Binary phenotypes 

 

Supplemental Figure 9. Bias and type 1 error for the partial local genetic correlation using binary 

phenotypes.  Here, partial correlations have been simulated for two target phenotypes, conditioned 

on a third. Plots a and c show the type 1 error rate at 𝛼 = 0.05 when the partial correlation is simulated 

at 0, indicating that error rates are generally contained at 𝛼; the only exception being for OR = 1.5 

where there appears to be a very slight inflation (𝛼 = .06). We note, however, that this level of effect 

within a single locus is quite extreme for a complex, non-mendelian traits. Plots b and d show the 

estimated partial correlation coefficients 𝜌, compared to the simulated 𝜌. Here, we did note a slight 

bias in the median estimated parameters in the null simulations for lower ORs and case/control ratio 
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(𝜌 = 0; solid lines), though no evidence of a bias in the mean of the estimated parameters (dotted 

lines) was found, and their type 1 error rates are nevertheless well-controlled.  
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SUPPLEMENTARY RESULTS 

Direction of significant local rg’s detected with LAVA 

 
Supplemental Figure 10. Heatmap showing the number of significant positive (top) and negative 

(bottom) local genetic correlations detected with LAVA. Values in bold indicate that both positive 

and negative local rg’s were detected for that trait pair (at p < .05 / 20,630 = 2.42e-6), while the 

colours reflect the mean genetic correlation across tested loci.    
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SUPPLEMENTARY NOTES 

1. Comparison of bivariate local rg estimation used in LAVA, Rho-

Hess & SUPERGNOVA 

This section contains a general comparison of the bivariate local genetic correlation model in LAVA, 

with those of rho-HESS1 and SUPERGNOVA2 [version published on BiorXiv 10 May 2020].  

To facilitate the comparison, we will assume that the data are exactly identical after pre-

processing, and whenever possible, equations and formulas from the rho-HESS and SUPERGNOVA 

papers have been translated to the notation used in this paper. Page and/or equation numbers in 

the original papers will be referenced for clarity. Note that the comparisons are made only for 

analysis of continuous phenotypes, as the rho-HESS and SUPERGNOVA models make no specific 

accommodations for binary phenotypes. 

For reference, we will repeat some of the definitions and notation of the LAVA model: For 

each continuous phenotype 𝑝 we assume a linear model 𝑌, = 𝑋𝛼, + 𝜖,, with 𝑋 a standardised 

genotype matrix, 𝑌, the standardised phenotype vector, 𝛼, the vector of joint genetic effects, and 

𝜖, a normally distributed vector of residuals with mean of 0 and variance 𝜂,1. We use 𝛽, to denote 

the vector of marginal genetic effects, 𝑁 and 𝐾567 to denote the sample size and number of SNPs in 

𝑋 respectively, 𝜂,8  for the residual covariance of two phenotypes 𝑝 and 𝑞, and 𝜑,8  for the full 

covariance between 𝑌, and 𝑌8.  

We define 𝑆 = cor(X) as the local LD matrix, which is of rank 𝐾. We also note the 

decomposition 𝑄ΛΛ𝑄D, with 𝑄 the matrix of eigenvectors and Λ the diagonal matrix of singular 

values. We define the standardised principal components 𝑊 = 𝑋𝑅 with 𝑅 = 𝑄ΛGH with their genetic 

effects 𝛿 (such that 𝑊𝛿, = 𝑋𝛼,). We can now express the relation 𝛽, = 𝑆𝛼, and similarly 𝛼, =

𝑆GH𝛽, = 𝑅𝛿,. For the bivariate model, the genetic covariance matrix ΩK = 𝛿D𝛿, with estimator 
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ΩLK = 𝛿MD𝛿M − 𝐾ΣP, and ΣP being the sampling covariance matrix which is diagonal in the absence of 

sample overlap. 

 

Rho-HESS 

In the absence of sample overlap, the estimator for the local genetic covariance in rho-HESS between 

phenotypes 𝑝 and 𝑞 is defined as 𝜔R,8 = 𝛽M,D𝑆GH𝛽M8  (Eq. 5, p. 740). From the equations above, we have 

𝛽M,D𝑆GH𝛽M8 = 𝛼S,D𝑆𝑆GH𝑆𝛼S8 = 𝛼S,D𝑆𝛼S8 = 𝛿M,D𝑅D𝑆𝑅𝛿M8 = 𝛿M,DΛGH𝑄D𝑄ΛΛ𝑄D𝑄ΛGH𝛿M8 = 𝛿M,D𝛿M8. 

This estimator is therefore identical to the off-diagonal element of ΩLK  as estimated by LAVA.  

Note that in practice, both LAVA and rho-HESS use truncated SVD to deal with rank-deficiency of 𝑆 

and improve stability, replacing 𝑆GH with a pseudo-inverse 𝑆(, though the criteria used to define the 

truncation differ. 

When accounting for sample overlap, rho-HESS subtracts a bias term from 𝜔R,8 , where this 

bias term equals 𝐾(𝜑,8 − 𝜔R,8)
TUV
TUTV

, with 𝑁,8 the number of overlapping individuals (Eq. 6-8, p. 

740). This differs slightly from the bias correction in LAVA which equals 𝐾𝜎S,8 = 𝐾X𝜎,1𝜎81𝐶,8 =

𝐾Z [U\[V\

]TUGH^]TVGH^
𝐶,8, where 𝐶,8  is an estimate of the sampling correlation.  

Like rho-HESS, LAVA recommends obtaining this using bivariate LDSC3. However, rather than 

using just the bivariate LDSC intercept 𝑖,8 =
`UVTUV
XTUTV

, LAVA also incorporates the univariate LDSC 

intercepts 𝑖, and 𝑖8 as the corresponding variance terms to normalise 𝑖,8 to account for possible 

influence of population stratification, defining 𝐶,8 =
aUV
XaUaV

. 

In the case that 𝑖, = 𝑖8 = 1, the bias correction term for LAVA reduces to 𝐾𝜑,8X𝜂,1𝜂81
TUV
TUTV

 

(if we assume for simplicity that ]𝑁, − 1^]𝑁8 − 1^ = 𝑁,𝑁8). In this case, effectively the difference 



 16 

is that rho-HESS subtracts the estimated genetic covariance 𝜔R,8 from the total phenotypic 

covariance 𝜑,8  to obtain the residual covariance, whereas instead LAVA uses the X𝜂,1𝜂81  to rescale 

𝜑,8  to the scale of the residual covariance. In practice, the two different corrections should be very 

similar. 

To obtain local genetic correlations, the covariance estimate 𝜔R,8 is simply divided by the 

corresponding variances, which are defined simply as the local genetic covariance of a phenotype 

with itself. Like the local covariance estimates, these should also be very similar between the two 

methods. 

For testing significance, rho-HESS assumes that the sampling distributions of the local genetic 

correlation and covariance are normal, using a parametric bootstrap approach to estimate the 

standard errors for these sampling distributions. By contrast, LAVA uses a simulation approach based 

on a non-central Wishart distribution to directly generate p-values, since during development normal 

distributions were found to be insufficiently accurate as approximations to the true sampling 

distributions, particularly for lower p-values.  

 

SUPERGNOVA 

In contrast to both LAVA and rho-HESS, SUPERGNOVA assumes the vector of joint genetic effects 𝛼, 

for a phenotype 𝑝 to be random rather than fixed, assuming a bivariate normal distribution for the 

effects 𝛼c = d
𝛼,c
𝛼8ce for SNP 𝑗, and an assumption of independence of these across SNPs. This bivariate 

normal distribution has means of zero, and its covariance is the genetic covariance matrix Ωg  that is 

to be estimated.  

To estimate this Ωg  SUPERGNOVA uses the same kind of approach as bivariate LDSC, and thus 

differs from LAVA (and rho-HESS) in both the underlying model assumptions, as well as the parameter 
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estimation. To facilitate the comparison, we will therefore first derive a Method of Moments style 

estimator of the kind used by LAVA, but for the model assumed by SUPERGNOVA. We can then 

compare this to the LAVA estimator to isolate the effect of the difference in model assumptions, 

given the same approach to estimation. 

Under the SUPERGNOVA random effects model, we have 𝛼S,	~	MVNd0,𝜔o,1 𝐼qrst + 𝜎S,
1𝑆GHe. 

Consequently, it follows that 𝛿M, = Λ𝑄D𝛼S, has a multivariate normal distribution with means of 0 and 

covariance of Λ𝑄D]𝜔o,1 𝐼 + 𝜎S,1𝑆GH^𝑄Λ = 𝜔o,1 ΛΛ + 𝜎S,1𝐼, meaning that in this projected space the 

individual 𝛿M,c  are independent of each other. For each component 𝑗, 𝛿Mc = u
𝛿M,c
𝛿M8c

v	~	MVN]0, 𝜆c1Ωg +

ΣP^, where 𝜆c is the singular value for that component (and hence 𝜆c1 is its eigenvalue).  

 Given this distribution 𝐸y𝛿Mc𝛿McDz = 𝜆c1Ωg + ΣP, we can construct a Method of Moments 

estimator of the form:  

ΩLg =
1
𝐾{

1
𝜆c1
(𝛿Mc𝛿McD − ΣP)

c
 

 

For comparison, the estimator of ΩK  in LAVA can be rewritten as: 

 

ΩLK = 𝛿MD𝛿M − 𝐾ΣP = { ]𝛿Mc𝛿McD − ΣP^
c

. 

 

Because the difference in overall scaling	cancels out when looking at the genetic correlation, 

the only substantive difference is the weighting by H
}~
\ in ΩLg.  

It should be noted however, that this weighting is not strictly necessary to obtain an estimate 

of Ωg. Since 𝐸y𝛿Mc𝛿McD − ΣPz = 𝜆c1Ωg, it follows that under the random effects assumption 𝐸yΩLKz =



 18 

Ωg ∑ 𝜆c1c , and therefore �
L�
∑ }~

\
~

 is an unbiased estimator of ΩLg  as well (albeit not as statistically efficient 

as ΩLg). The converse is not true, however, and under fixed effect assumptions the two estimators 

estimate fundamentally different quantities. With 𝛼 fixed, ΩLg  becomes an estimator of g
�g
q

, 

effectively the realised covariance of 𝛼. Note that this realised covariance of 𝛼 still only reflects the 

covariance of the joint rather than the causal SNP effects: even if the realised correlation of 𝛼 equals 

1, it does not follow that causally speaking the same SNPs are involved for the two phenotypes.  

The estimator used in SUPERGNOVA itself is defined in terms of the marginal Z-statistics for 

the SNPs, with 𝑧,� =
�LU�
�RU�

 for phenotype 𝑝 SNP 𝑠 and 𝜎S,� the standard error for that SNP (Suppl. Note 

1.3, p. 3). These are then transformed using the eigenvectors of the LD matrix, 𝑍�, = 𝑄D𝑍, (Suppl. 

Note 1.4, p. 7). The model is then defined akin to the bivariate LDSC model, modelling the expected 

value of the products of the projected Z-scores. For simplicity of comparison, we will assume there is 

no sample overlap, in which case we obtain (Suppl. Note 1.5, p. 7): 

 

𝐸y�̃�,c�̃�8cz =
X𝑁,𝑁8
𝐾 𝑙c1𝜔,8  

 

Here, 𝑙c = 𝜆c1, the eigenvalue of principal component 𝑗.  

This equation can essentially be interpreted as a simple linear regression equation, with 

outcome �̃�,c�̃�8c, predictor X
TUTV
q

𝑙c1 and slope parameter 𝜔,8  (and no intercept), and SUPERGNOVA 

indeed uses a weighted linear regression approach to estimate 𝜔,8 . Weights 𝑞c1 are set to the 

approximate inverse variance of 𝐸y�̃�,c�̃�8cz. This yields the estimator (Suppl. Note, Eq. 10, p. 8):  
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𝜔R,8 = 𝐶{
𝑙c1

𝑞c1
�̃�,c�̃�8c

c
 

with 𝐶 = q

XTUTV
�∑

�~
�

8~
\c �
GH

.  

If we now make a simplifying assumption that the 𝜎S,� for all SNPs have the same value 𝜎S,, 

we can write 𝑍, =
�LU
�RU

 and hence 𝑍�, =
H
�RU
𝑄D𝛽M, =

H
�RU
𝑄D𝑆𝛼S, =

H
�RU
ΛΛ𝑄D𝛼S, =

H
�RU
ΛΛ𝑄D𝑄ΛGH𝛿M, =

H
�RU
Λ𝛿M,. As such, under this assumption �̃�,c�̃�8c =

H
�RU�RV

𝜆c1𝛿M,c𝛿M8c. Plugging this into 𝜔R,8 , we end up 

with a sum over the terms 
�~
�

8~
\ 𝛿M,c𝛿M8c, subsuming  H

�RU�RV
 into 𝐶. 

For the weight term 𝑞c1 used, we have 𝑞c1 = ]𝐷,𝑙c1 + 𝑙c^]𝐷8𝑙c1 + 𝑙c^ = 𝐷,𝐷8𝑙c� + ]𝐷, +

𝐷8^𝑙c� + 𝑙c1, where 𝐷, =
TU�U\

q
 and ℎ,1  the local heritability (and same for 𝑞). Consequently, the total 

weights in the summed terms are  

𝑙c�

𝑞c1
=

1
𝐷,𝐷8

	
1

𝜆c1 + 𝐻c
 

 

with 𝐻c =
�U(�V(

�
�~
\

�U�V
. With this, we then end up with an adjusted estimator  

 

𝜔R,8∗ = 𝐶∗{ 	
1

𝜆c1 + 𝐻c
𝛿M,c𝛿M8c

c
 

 

where 𝐶∗ = �
�U�V

.  

Although not the same, we can see that this is very similar to the ΩLg  estimator presented 

above. In practice the term 𝐻c  should be relatively small as well; eg. if 𝐷, = 𝐷8 = 𝐷, 𝐻c =
1
�
+ H

�\}~
\. 
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The value of 𝐷 will tend to be considerably larger than 1, since the product of sample size and local 

heritability 𝑁,ℎ,1   generally needs to be rather larger than the number of principal components 𝐾 for 

there to be any detectable genetic signal in the locus (and absent strong enough signal, the genetic 

covariance / correlation is not reliable anyway). 𝐻c  could in principle also get quite large if the 

eigenvalue 𝜆c1 is very small but, like LAVA and rho-HESS, SUPERGNOVA also prunes away components 

with low eigenvalues prior to analysis, so this should not be an issue.  

Note as well, however, that the 𝐶 and 𝐶∗ terms will differ somewhat for the covariance and 

the corresponding two variances, and as such will not entirely cancel out in the correlation estimate.  

From the structure of 𝜔R,8∗ , although by no means identical to ΩLg, we can conclude that it 

operates on mathematically similar principles and should tend to yield similar estimates. It follows, 

however, that there may be considerable differences in the local genetic correlation estimates (and 

hence also their p-values) between LAVA and rho-HESS on the one hand and SUPERGNOVA on the 

other, depending on how the unique and overlapping genetic signal of the two phenotypes is 

distributed over the principal components in the locus. This goes hand in hand with the fact that, the 

distinction between fixed and random effect models aside, the two types of local genetic correlation 

that are estimated are fundamentally different metrics with different interpretations, that therefore 

cannot be directly compared. The question of which metric is more suitable for what kind of research 

question requires further study to find an adequate answer. 
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2. Partial correlations and multiple regression, overview 

This note contains an overview of partial correlation and multiple regression, and how they relate. In 

general, the partial correlation between two (standardised) variables 𝑋 and 𝑌 given a set of 

(standardised) variables 𝑍 can be defined in terms of two linear regression models. Writing 𝑋 =

𝑍𝛼� + 𝜀� and 𝑌 = 𝑍𝛼� + 𝜀�, the partial correlation 𝜌��|¡ is the correlation of the two residual terms, 

𝜌��|¡ = cor(𝜀�, 𝜀�). As such, the partial correlation reflects correlation between 𝑋 and 𝑌 that cannot 

be accounted for by 𝑍, and a partial correlation of zero therefore implies that the variables in 𝑍 jointly 

capture all of the processes responsible for the correlation between 𝑋 and 𝑌. 

We can compare the partial correlation to the coefficient 𝛽� in the multiple linear regression 

model 𝑌 = 𝑋𝛽� + 𝑍𝛽¡� + 𝛿�, or similarly 𝛽� in the model 𝑋 = 𝑌𝛽� + 𝑍𝛽¡� + 𝛿�. Here, if 𝑋, 𝑌 and 

𝑍 are all standardised, 𝛽� and 𝛽� are standardised regression coefficients, and like the partial 

correlation 𝜌��|¡ these reflect a measure of the remaining dependency between 𝑋 and 𝑌 when 

controlling for the variables in 𝑍. Unlike the partial correlation, however, multiple regression is not 

symmetrical: 𝛽� and 𝛽� will generally not have the same value (though their p-values will be identical, 

and standardised 𝛽� and 𝛽� will usually be similar). 

The differences between the two can be better understood by considering multiple 

regression with a residualised phenotype. With outcome 𝑌, instead of fitting the regression 

parameters all at once, we can also first regress the effects of 𝑍 out of 𝑌 and compute the residualised 

outcome 𝑌¢£5 = 𝑌 − 𝑍𝛽¡�∗ = 𝜀�, then perform the regression 𝑌¢£5 = 𝑋𝛾� + 𝛿�. If 𝑋 and 𝑍 are 

correlated, this essentially attributes all shared effects of 𝑋 and 𝑍 on 𝑌 to only 𝑍, instead of 

proportionally distributing it over both (note also that 𝛾� 𝑆𝐷(𝜀�⁄ ) yields the semi-partial correlation 

cor(𝑋, 𝜀�)). 

The resulting model can be written as 𝑌 = 𝑋𝛾� + 𝑍𝛽¡�∗ + 𝛿�, analogous to the original 

regression. In both cases, the analysis creates a partitioning of the variance of outcome 𝑌, with the  
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regression coefficients more or less reflecting the relative size of the component that is attributed to 

each predictor variable. Thus, the only difference between the normal multiple regression model and 

its residualised counterpart is the priority assigned to each predictor in making that partitioning. 

Conceptually, the main difference between using regression and partial correlation therefore 

lies in the fact that regression is inherently asymmetrical, assigning a special role to the outcome 𝑌 

as the variable to be partitioned and understood. If the roles of 𝑋 and 𝑌 are swapped, this yields a 

different partitioning that is designed to answer a different research question. Partial correlation, by 

contrast, is entirely symmetrical, with the quantity of interest being the relation between two 

variables rather than the effect one has on the other.  

Practically, their values can also be very different: 𝜌��|¡ =
¥¦§(¨©,¨ª)

o�(¨©)o�(¨ª)
, whereas 𝛾� =

¥¦§(¨©,¨ª)
o�(�)o�(¨ª)

= ¥¦§(¨©,¨ª)
o�(¨ª)

= 𝑆𝐷(𝜀�)𝜌��|¡. Because 𝑋 is standardised, 𝑆𝐷(𝜀�) reflects the proportion of 

the variance in 𝑋 that cannot be explained by 𝑍. The partial correlation 𝜌��|¡ will therefore by 

definition be higher than 𝛾� , a difference that increases the greater the correlation between 𝑋 and 

𝑍. This difference reflects the fact that partial correlation essentially estimates the (average) relation 

between 𝑋 and 𝑌 within each subsets of the data defined by 𝑍, whereas regression estimates their 

relation across those subsets, merely subtracting out the part of 𝑌 that 𝑍 can account for. 

In a LAVA analysis, the choice of multiple regression versus partial correlation thus hinges on 

the research question it is meant to answer. If the primary interest is in the genetic component of a 

particular phenotype and the aim is to determine to what extent this can be explained and 

decomposed in terms of the genetic components of other phenotypes, the multiple regression 

analysis is most suitable. If instead the interest is generally in the genetic correlations between 

multiple phenotypes and the degree to which these can be accounted for by other phenotypes, a 
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partial correlation analysis would be preferred. Depending on the study, a combination of both 

approaches may be also be warranted to investigate different aspects of the same genetic relations.   
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3. Scaling of power by h2 and N 

For a standardised continuous phenotype 𝑌 = 𝑋𝛽 + 𝜀 for standardised predictor 𝑋 and error term 𝜀 

with variance 𝜎1, the estimate 𝛽M	~	N d𝛽, �
\

T
e. Consequently, 𝑍 = �L

Z«
\
¬

 has a distribution N �

Z«
\
¬

, 1®. 

Moreover, the true explained variance 𝑟1 = 𝛽1 and the residual variance 𝜎1 = 1 − 𝑟1. Denoting the 

expected value of 𝑍 as 𝜇, we then have 𝜇1 =  �

Z«
\
¬

®

1

= ±\

HG±\
𝑁. 

With 𝜎1 known, power for the test of 𝛽M  is therefore fully determined by the parameter 𝜇 

(since this defines the whole distribution of the Z-statistics), and hence scenarios with equal 𝜇 will 

also have equal power. We can therefore use the expression for 𝜇 to compute how 𝑟1 should be 

adjusted to maintain the same level of power given a change in 𝑁. 

In particular, 𝑟1 = ²\

²\(T
. Filling this in for different ℎ1 = 𝑟1'q1  values under the simulation 𝑁 

of 20,000, the corresponding 𝑟H''q1  values that yield the same level of power for e.g. an 𝑁 of 100,000 

are: 

𝑟1'q1 = 0.01, then 𝑟H''q1 = 0.002 

 𝑟1'q1 = 0.05, then 𝑟H''q1 = 0.0104 

𝑟1'q1 = 0.10, then 𝑟H''q1 = 0.0217 

𝑟1'q1 = 0.25, then 𝑟H''q1 = 0.0625 
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4. Generating the true 𝛅 from 𝛀 in simulations 

Process genotype data 

1. Read in and standardise genotype data 

2. Decompose 𝑋 = 𝑄Λ𝑄D  and define 𝑄∗ as the subset of eigenvalues that explain at least 99% 

of the variance, with the corresponding Λ∗. Define 𝑊 = 𝑋𝑄∗Λ∗'.· (i.e., the pruned and scaled 

principal components). 

 

Create deltas 

For a linear regression of an outcome 𝑌 on a set of predictors 𝑋, with Ω = �
Ω� Ω��
Ω��D 𝜔�1

�, if we specify 

𝑌 in terms of the regression coefficient 𝛾 and residual variance 𝜏, we can write this as Ω =

�
Ω� Ω�𝛾
𝛾DΩ� 𝜏1 + Ω��D Ω�GHΩ��

�. To obtain the desired 𝛿 matrix from this Ω, we proceed as follows: 

1. Create the desired Ω� (e.g. a diagonal matrix, if there is no genetic correlation between the 

predictors in 𝑋, or with some covariance otherwise). For simplicity, we defined this matrix on 

a standardised scale to ensure the specified covariances within 𝑋 were equal to their 

correlation. 

2. Set 𝜔� = 1 so that the specified 𝛾 reflects the exact correlation desired, generate Ω��D  and 

Ω��, and then create the full Ω as shown above. 

3. Generate a matrix 𝐷 of the size of 𝛿 and center such that its means are zero. 

4. Decompose �
��
q
= 𝑄HΛH𝑄HD  and compute 𝛿∗ = 𝐷𝑄HΛHG'.·, which will result in 𝑐𝑜𝑣(𝛿∗) = 𝐼¼ 

5. Decompose Ω = 𝑄1Λ1𝑄1D and, finally, compute 𝛿 = 𝛿∗Λ1'.·𝑄1D , which will result in a matrix 𝛿 

with the 𝑐𝑜𝑣(𝛿) = Ω. 
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