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Motivation: While promoter methylation is associated with reinforcing fundamental tissue identities, 

the methylation status of distant enhancers was shown by genome-wide association studies to be a 

powerful determinant of cell-state and cancer. With recent availability of long-reads that report on the 

methylation status of enhancer-promoter pairs on the same molecule, we hypothesized that probing 

these pairs on the single-molecule level may serve the basis for detection of rare cancerous 

transformations in a given cell population. We explore various analysis approaches for deconvolving 

cell-type mixtures based on their genome-wide enhancer-promoter methylation profiles. 

Results: To evaluate our hypothesis we examine long-read optical methylome data for the GM12787 

cell line and myoblast cell lines from two donors. We identified over 100,000 enhancer-promoter pairs 

that co-exist on at least 30 individual DNA molecules per pair. We developed a detailed methodology 

for mixture deconvolution and applied it to estimate the proportional cell compositions in synthetic 

mixtures based on analyzing their enhancer-promoter pairwise methylation. We found our methodology 

to lead to very accurate estimates, outperforming our promoter-based deconvolutions. Moreover, we 

show that it can be generalized from deconvolving different cell types to subtle scenarios where one 

wishes to deconvolve different cell populations of the same cell-type. 

 
Availability: The code used in this work to analyze single-molecule Bionano Genomics optical maps 

is available via the GitHub repository https://github.com/ebensteinLab/ 
Single_molecule_methylation_in_EP.  

Contact: uv@post.tau.ac.il (Y.E), roded@tauex.tau.ac.il (R.S) 

 

 

1 Introduction  

The accumulation of high-throughput genome-wide methylation data has 

enabled the analysis of human methylomes across distinct populations and 

medical cohorts via epigenome-wide association studies (EWAS) 

(Gorenjak et al., 2020; Küpers et al., 2019; Chu et al.). Such analyses have 

shown that predisposition to common human disease is frequently 

associated with specific methylation signatures in distal control regions 

also known as gene enhancers (Li et al., 2013). While the contribution of 

DNA methylation in gene promoters to variation in intertumor gene 

expression was found to be low, enhancer methylation provides a much 
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higher level of contribution to tumor heterogeneity and may further 

illuminate the mechanism of cancer predisposition (Li et al., 2013). 

Furthermore, changes in DNA methylation patterns have been shown to 

correlate with early carcinogenesis, even prior to tumor formation, as well 

as with metastasis and response to therapy (Kurkjian et al., 2008; Hentze 

et al., 2019; Vrba and Futscher, 2020). Aran et. al. have shown that 

enhancer methylation is drastically altered in cancers and is closely related 

to altered expression profiles of cancer genes (Aran and Hellman, 2013a, 

2013b; Aran et al., 2013). Hansen et.al. have shown that regions which 

are differentially methylated between cancer and normal tissue are more 

prone to variability in methylation levels, suggesting that stochastic 

epigenetic variation is a fundamental characteristic of the cancer 

phenotype (Hansen et al., 2011). Nevertheless, available analyses only 

assess enhancer-promoter methylation on the population level, averaging 

out any differences between individual cells in the studied sample. We 

hypothesize that variability in methylation on the population level may be 

attributed to variability in the mixing ratios of cancer and benign 

phenotypes of the same cell type. In such cases the detailed single-cell 

enhancer-promoter methylation profile may provide valuable information 

for studying the evolution of early carcinogenesis and tumor 

heterogeneity. Long reads present a unique opportunity to study the co-

existence of methylation in a promoter and its enhancers along the same 

DNA molecule, in effect providing single-cell information for the studied 

locus. When examining many such molecules, the methylation pattern 

distribution of an enhancer-promoter pair may be directly recorded and 

used to enumerate cell subsets in a mixture, similar to what may be 

achieved with gene expression RNA mixtures (Newman et al., 2015; 

Zaitsev et al., 2019). Methylation profiles have already been utilized to 

infer cell mixture distribution with good accuracy (Houseman et al., 

2012). It remains to be tested whether pairwise analysis of enhancer-

promoter pairs provides information on subtle transformations in cells 

with identical genetic backgrounds such as in early cancer.  In order to 

establish the analytical framework for such data we analyzed whole 

genome Bionano Genomics optical methylation maps (Sharim et al., 

2019). We identified ~4 million long molecule reads encompassing 

enhancer-promoter pairs up to 200kb apart at 30X-300X coverage and 

explored several analytical approaches to harness these data for cell 

mixture deconvolution.      

 

2 Methods 

2.1 Data collection 

Single-molecule methylation maps of three replicates of the B-lymphocyte 

cell line GM12878 were adapted from (Sharim et al., 2019), and similar 

maps of immortalized myoblasts of two human subjects (Coriell) were 

obtained by the same methods. Shortly, high molecular weight DNA was 

extracted to ensure long single molecules. DNA was then fluorescently 

barcoded at specific sequence motifs for alignment to an in-silico 

reference. Unmethylated cytosines in the recognition sequence TCGA 

were fluorescently labeled to perform reduced representation optical 

methylation mapping (ROM) on the Bionano Genomics Saphyr 

instrument. The genomic location of the labeled unmodified cytosines on 

individual DNA molecules was inferred from direct alignments to the 

hg38 reference (Bionano Access and Solve). Label coordinates were 

extended to 1 kb to account for the optical measurement resolution, 

limiting localization accuracy to ~1000 bp (Wang et al., 2012). 

2.2 Distal genomic elements links and coordinates 

Predicted enhancers were mapped to genes by the JEME engine (Cao et 

al., 2017). Genomic coordinates of enhancers were converted from the 

human genome build hg19 to hg38 using UCSC liftOver (Haeussler et al., 

2019)). Ambiguous genomic regions (Amemiya et al., 2019) were 

subtracted from enhancer locations, and enhancers smaller than 200 bp 

were extended to 200 bp around their midpoint. Promoters were defined 

according to the transcription start sites (TSS) of the protein-coding genes 

(Gencode V.34 annotations, (Frankish et al., 2019)), and taken as 2000 bp 

upstream and 500 bp downstream of the TSS. Enhancers and promoters 

not containing at least one potential site for methylation labeling were 

discarded. E-P pairs in close proximity, less than 5,000 bp, were also 

filtered out. All predicted enhancers under these conditions were used for 

our analysis, regardless of cell type and biological contexts used for 

prediction. For comparison against promoter-only analysis, we also 

created a dataset with a single enhancer assigned to each promoter. We 

focused on enhancers that display the highest number of potential 

detectable methylation sites. In case of tie, enhancer size and proximity to 

the corresponding promoter were also considered. These criteria are 

unbiased toward specific cell types and select enhancers with the highest 

potential for reliable methylation calling by ROM.  

2.3 Coexistence of methylation signals at the distal elements 

We focused on DNA molecules that span entire enhancer-promoter pairs 

(E-P) and recorded the corresponding methylation states. The enhancers 

and promoters’ states were reduced to binary methylation states: if the 

element showed any degree of fluorescence, it was identified as 

‘unmethylated’. Therefore, every enhancer and promoter pair coexisting 

on a DNA molecule displays one of four possible methylation 

combinations with the promoter and enhancer being methylated or 

unmethylated. For every pair, the number of molecules belonging to each 

class is counted in order to record the exact pairwise methylation 

distribution. Enhancer-promoter pairs that were covered by less than 30 

molecules in an experiment were filtered out.  

2.4 Matched promoter methylation data 

To benchmark our pairwise analysis we extracted a dataset of promoter 

only methylation from the same molecules that span the E-P pairs. These 

were used to assess if the coexistence of enhancer-promoter pairs holds 

similar or additional information beyond traditional promoter methylation 

analysis.  

2.5 Assembling mixtures and training/test division of 

molecules 

To test our deconvolution pipeline, two different mixtures were simulated 

from three replicates of the B-lymphocyte cell line GM12878 and two 

lines of immortalized myoblast cells from different donors:   

(1) Mixture of different cell types – B-lymphocytes and 

myoblasts: Molecules of the three GM12878 replicates were 

merged to a single experiment, and molecules of the two 

myoblasts were merged as well.  

(2) Mixture of the same cell type from different individuals: 

myoblast cells from two different human subjects. 

In each set, molecules of the two different experiments (referred to as 

sample “A” and sample “B”) were randomly divided between a training 

set, that was kept pure, to be used in the supervised deconvolution of 

mixtures, and a test set, that was mixed in known ratios with the test set 

molecules of the other experiment (0-100% in respect to one of the 

samples, in 10% increments). Test sets of both samples contained an equal 
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number of molecules, accounting for 33% of molecules in the smaller 

experiment. 

2.6 Deconvolution of mixtures  

We explored several methods for deconvolving the mixtures to infer the 

mixing ratio: (i) local projection of vectors, (ii) global minimization of 

sum of squared errors (SSE) and Kullback- Leibler divergence (KLD) 

measures, and (iii) global maximum likelihood estimation (MLE). We 

describe these methods in detail below. 

2.6.1 Vector projection 

In this local method, the mixing ratio is calculated separately for each 

enhancer-promoter pair. Specifically, the normalized proportions of each 

of the four possible methylation combinations define a 4-dimensional 

vector representing the pair in a given sample. Each E-P pair is 

characterized by three such vectors belonging to the test set (𝑇𝑝
⃗⃗  ⃗) and the 

two pure training sets (𝐴𝑝
⃗⃗ ⃗⃗  , 𝐵𝑝

⃗⃗⃗⃗ ). In order to assess the proportion of 

molecules in the test set originating from each pure sample, the difference 

between the test set vector and the vector 𝐴𝑝
⃗⃗ ⃗⃗  ,  𝑇𝐴𝑝

⃗⃗ ⃗⃗ ⃗⃗  ⃗, was projected on the 

difference between vectors 𝐵𝑝
⃗⃗⃗⃗  and 𝐴𝑝

⃗⃗ ⃗⃗   of the training sets, (𝐵𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). The 

mixing ratio w.r.t. sample B is given by the ratio between the size of the 

difference between the projection vector and vector 𝐴𝑝
⃗⃗ ⃗⃗   (calculated as the 

dot product of  𝑇𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐵𝐴𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    divided by the size of 𝐵𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ), and the size of 

vector 𝐵𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The mixing ratio with respect to sample A completes this 

value to 1. The final selected mixing ratio is the average of mixing values 

calculated for all E-P pairs (Eq. 1). 

1)  

 

𝛼𝐴 is the mixing ratio relative to sample A. p represents the E-P pair. Np is the total number 

of E-P pairs. 𝑇𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the difference between the test set vector and the vector 

of the training set of sample A; 𝐵𝐴𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represent the difference between the vectors of 

training sets B and A.  

2.6.2 Minimizing the difference between the test set and linear 

combinations of the training set via SSE and KLD 

computations 

The counts of the different methylation combinations in each enhancer-

promoter pair in the mixed test set and the pure training sets were 

normalized to obtain ratios, making sure all ratios are non-zeros by adding 

0.01 to each ratio and renormalizing to 1. The ratios of the pure training 

sets were treated as the probability of a molecule spanning a certain E-P 

pair to have a specific methylation combination given the sample it came 

from, either “A” or “B”. Then, linear combinations of the two pure training 

sets were assembled per pair in all possible mixing ratios w.r.t. sample A 

(0-100% in 1% increments).  

2)  

 

𝐿𝐶𝑇𝛼,𝑐,𝑝 is the linear combination of the pure training sets per EP pair (p), methylation 

combination (c), and current parameter of the training sets linear combination (α)  𝐴𝑐,𝑝 and 

𝐵𝑐,𝑝 are the probabilities of molecules from training sets A and B respectively to have 

methylation combination c given the sample and the E-P pair p. 

The test set is compared against all the 101 linear combinations of the 

training sets. The ratio α that minimizes these expressions is reported. We 

use two minimization criteria: 

2.6.2.1 Sum of squared errors (SSE) 

 

3)  

 

p represents the E-P pairs, c represents methylation combinations, α represents the current 

parameter of the training sets linear combination. 

2.6.2.2 Kullback- Leibler divergence (KLD) 

 

4)  

 

5)  

 

6)  

 

p represents the E-P pairs, c represents methylation combinations, α represents the current 

parameter of the training sets linear combination. 

2.6.3 Maximum likelihood estimation (MLE) 

Last, we considered a method that is based on a probabilistic model of the 

data which asserts that each molecule is chosen from one of the samples 

based on the mixing ratio and then its methylation status is chosen based 

on the corresponding normalized counts vector. In detail, the probability 

of a molecule in the test set to originate from sample A, is the mixing ratio, 

α, whereas its probability to originate from sample B is 1-α (Eq. 7). 

7)  

 

i stands for a molecule in the test set, y is the hidden information about the set it came from. 

The probability of a molecule from the test set to exhibit a methylation 

combination c, given the sample it came from (A or B) and the E-P pair it 

spans can be evaluated as the proportion of combination c in that E-P pair 

in the training set of the corresponding sample (Eq. 8).  

8)  

 

Xi,p is the observed methylation combination of molecule i of pair p; j is the sample of 

origin, either A or B.  

We estimate the mixing ratio for which the test data observations are most 

probable by maximizing the log-likelihood function (Eq. 9): 

9)  

 

 

Where i a test set molecule, p is the pair it belongs to, c is its methylation combination, A 

and B are the two samples, Np,c is the number of molecules in the test set that come from 

pair p and display methylation combination c. 

As the log likelihood is concave, we can find its maximum using gradient 

ascent. In our implementation of the algorithm (Eq. 10), the difference in 

log-likelihood from previous iteration served as a stopping criterion 

(0.001), while confining the mixing ratio to the relevant range (0-1), as 

well as limiting the number of iterations (no more than 20,000). The 

mixing ratio that yielded the highest log-likelihood is reported. 

10)  
 

𝐷𝐾𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒
=

[𝐷𝐾𝐿(𝑡𝑒𝑠𝑡𝑐,𝑝||𝐿𝐶𝑇𝑐,𝑝,𝛼)+𝐷𝐾𝐿(𝐿𝐶𝑇𝑐,𝑝,𝛼||𝑡𝑒𝑠𝑡𝑐,𝑝)]

2
  

𝐷𝐾𝐿(𝐿𝐶𝑇𝑐,𝑝,𝛼||𝑡𝑒𝑠𝑡𝑐,𝑝) = ∑   ∑ 𝐿𝐶𝑇𝑐,𝑝,𝑟 log (
𝐿𝐶𝑇𝑐,𝑝,𝛼

𝑡𝑒𝑠𝑡𝑐,𝑝
)𝑐𝑝   

𝐷𝐾𝐿(𝑡𝑒𝑠𝑡𝑐,𝑝||𝐿𝐶𝑇𝑐,𝑝,𝛼) = ∑   ∑ 𝑡𝑒𝑠𝑡𝑐,𝑝 log (
𝑡𝑒𝑠𝑡𝑐,𝑝

𝐿𝐶𝑇𝑐,𝑝,𝛼
)𝑐𝑝   

𝑃(𝑦𝑖 = 𝐴) = 𝑃𝐴 = 𝛼 ,    𝑃(𝑦𝑖 = 𝐵) = 𝑃𝐵 = 1 − 𝛼   

𝑃(𝑋𝑖,𝑝 = 𝑐|𝑦𝑖,𝑝 = 𝑗) = 𝑃𝑗,𝑐,𝑝  

log(𝐿(𝛼)) = ∑log(𝛼𝑃𝐴,𝑝,𝑐 + (1 − 𝛼)𝑖𝑃𝐵,𝑝,𝑐𝑖
)  

𝑖

= ∑∑Np,clog (𝛼𝑃𝐴,𝑝,𝑐  
+(1 − 𝛼)𝑃𝐵,𝑝,𝑐)

𝑐𝑝

 

∑ ∑ (𝑡𝑒𝑠𝑡𝑐𝑝 − 𝐿𝐶𝑇𝛼,𝑐,𝑝)𝑐𝑝

2
  

𝐿𝐶𝑇𝛼,𝑐,𝑝 = 𝛼𝐴𝑐,𝑝 + (1 − 𝛼)𝐵𝑐,𝑝  

𝛼𝑛𝑒𝑤 = 𝛼𝑜𝑙𝑑 + 𝜂
𝜕𝑙𝑜𝑔(𝐿(𝛼))

𝜕𝛼
  

𝛼𝐴 =
1

Np
∑ (1 −

(𝑇𝐴𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )∙(𝐵𝐴𝑝⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ⃗)

|(𝐵𝐴𝑝⃗⃗ ⃗⃗  ⃗)|
2 )𝑝   
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𝛼𝑛𝑒𝑤 is the calculated mixing value in the current iteration. 𝛼𝑜𝑙𝑑 is the mixing ratio obtained 

in the previous iteration (initialized to 0.5). 𝜂 is the step size of the gradient ascent algorithm 

(fixed to 0.005).  

 

2.7 Supervised selection of enhancer-promoter pairs 

Several methods are proposed here to rank the different E-P pairs by their 

ability to discriminate between the training set samples. This ranking can 

serve to select a smaller subset of pairs, to ensure more accurate results 

and noise filtration. We explored three such methods, as detailed below. 

2.7.1 Euclidean distances 

11)  

 

p is the current E-P pair, c represents the methylation combinations, 𝑃𝐴,𝑝,𝑐, 𝑃𝐵,𝑝,𝑐 are the 

proportions of methylation combination c in pair p in samples A and B respectively. 

2.7.2 KL divergence 

 

 

12)  

 

p is the current E-P pair, c represents the methylation combinations, 𝑃𝐴,𝑝,𝑐, 𝑃𝐵,𝑝,𝑐 are the 

proportions of methylation combination c in pair p in samples A and B respectively. 

2.7.3 Weighted KLD (wKLD) 

Molecule coverage of the different enhancer-promoter pairs in each 

training sample can vary Multiplying the KLD score of each combination 

of every pair by the number of molecules displaying this combination in 

the corresponding sample and pair, puts more weight on the highly-

covered pairs, which presumably provide more reliable information. 

13)  

 

p is the p is the current E-P pair, c represents the methylation combinations, 𝑃𝐴,𝑝,𝑐, 𝑃𝐵,𝑝,𝑐 are 

the proportions of methylation combination c in pair p in samples A and B respectively. 

𝑁𝐴,𝑝,𝑐, 𝑁𝐵,𝑝,𝑐 are the number of molecules in pair p that display methylation combination c 

in the training sets of samples A and B respectively. 

3 Results 

 

Our analytical exploration builds on the fact that new types of data that 

profile genomic methylation via long single molecule reads have recently 

become available. Of special interest are datasets obtained by Bionano 

Genomics optical genome mapping. These data contain the largest fraction 

of molecules longer than 100 kbp in comparison to other long read 

approaches, allowing us to explore distant enhancers in the context of their 

molecular promoter. The method is inherently poor in resolution but may 

effectively report on methylation status at the level of genomic elements 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴,𝐵)p = √∑ (𝑃𝐴,𝑝,𝑐−𝑃𝐵,𝑝,𝑐)
2

𝑐   

𝑫𝑲𝑳𝒑
=

∑ 𝑃𝐴,𝑝,𝑐 log (
𝑃𝐴,𝑝,𝑐

𝑃𝐵,𝑝,𝑐
)𝑐 + ∑ 𝑃𝐵,𝑝,𝑐 log (

𝑃𝐵,𝑝,𝑐

𝑃𝐴,𝑝,𝑐
)𝑐

𝟐
 

𝒘𝑫𝑲𝑳𝒑
=

∑ 𝑁𝐴,𝑝,𝑐𝑃𝐴,𝑝,𝑐 log (
𝑃𝐴,𝑝,𝑐

𝑃𝐵,𝑝,𝑐
)𝑐 + ∑ 𝑁𝐵,𝑝,𝑐𝑃𝐵,𝑝,𝑐 log (

𝑃𝐵,𝑝,𝑐

𝑃𝐴,𝑝,𝑐
)𝑐

𝟐
 

Fig. 1. Methylation states in predicted enhancer-promoter pairs. A. schematic illustration of possible methylation states for a promoter and enhancers, and potential interaction 

between them. B. Bionano genomics optical methylation map of a region in chromosome 17 in GM12878 DNA. The region contains the gene TP53, its promoter (small blue box), 

and several predicted enhancers (pink boxes). Blue dots denote unmethylated sites and orange dots denote genetic tags used for alignment to the hg38 reference. 
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such as gene bodies, promoters and enhancers. Fig. 1 shows a stack of 

digitized DNA molecules mapped to a region in chromosome 17 

containing the TP53 gene locus and three of its predicted enhancers, 

located ~50-100 kb away from the promoter. All individual molecules 

selected from these data span the gene promoter and at least one distant 

enhancer. Methylation labels shown in dark blue along the grey molecules 

contour denote unmethylated CpGs (non-methylation labels have been 

artificially enhanced inside the boxed promoter and enhancer regions). It 

can be clearly seen that the promoter and the two closest enhancers are 

highly labelled and thus unmethylated. The leftmost enhancer is almost 

void of methylation labels, indicating that it is highly methylated. The 

methylation status is well reflected in the average methylation profile 

shown on the bottom of the figure and reflecting the accumulation of 

methylation labels from all molecules along the region. We note that for 

many gene promoters and enhancers the methylation status is variably 

distributed along individual molecules, with all four combinations of E-P 

methylation represented for some genes.   

 

3.1 Comparison between deconvolution methods for 

promoters and E-P pairs 

We first set out to compare the deconvolution efficacy of E-P pairwise 

methylation in comparison with promoter methylation. Given that each 

promoter has multiple predicted enhancers which results in a much larger 

E-P dataset, we restricted this analysis to a single enhancer assigned to 

each promoter as described in section 2.2. Deconvolution of simulated 

mixtures was performed by several methods: local projection of vectors, 

global minimization of the sum of squared errors (SSE), Kullback- Leibler 

divergence (KLD), and maximum likelihood estimation (MLE) (see 

Methods). Mixtures containing two different cell types (B-lymphocytes 

and myoblasts) at 10% increments were subject to deconvolution by each 

of the methods for both promoter-only methylation as well as in the 

context of E-P pairwise methylation. The least accurate deconvolution was 

achieved by vector projections, yielding over 7% average error for the 

promoter-based analysis and over 4% error for the E-P analysis. The best 

deconvolution was achieved by MLE with 0.86% for promoter 

methylation and 0.69% for E-P methylation (Fig. 2.).     

 

3.2 Deconvolution of myoblasts derived from two individuals 

using full E-P methylation 

The abundance of enhancers and the interplay between their interaction 

with their gene promoters may hold important information on the precise 

state of a cell. While for comparison with promoter-based analysis we 

limited the number of enhancers to one per promoter, our E-P dataset is 

composed of over 100,000 different pairs with detailed pairwise 

distribution for each pair. B-lymphocytes and myoblasts, two distinct cell 

types, were successfully resolved with 1.01-1.36% accuracy by three of 

the four methods tested (Fig. 3a.). Additionally, the incorporation of 

multiple enhancers per promoter does not show any significant difference 

in deconvolution performance relative to the more limited set used for 

comparison with promoters (Fig. 3b.). Nevertheless, analyzing the full E-

P methylation dataset is more biologically relevant as it does not make 

assumptions on the activity of enhancers and inherently contains more 

information (but also more noise).  

 

Fig. 2. Deconvolution of B-lymphocytes and myoblast cells mixtures by different 

methods using methylation states in promoters alone and enhancer-promoter 

pairs, accounting for one enhancer per promoter. A. calculated mixing ratio 

according to the different methods vs. the known mixing ratio. B. the mean error in 

calculated mixing ratio, calculated as the absolute distance from the known ratio, in the 

different methods. 

Fig. 3. Deconvolution of B-lymphocytes and myoblast cells mixtures by different 

methods using methylation states in all predicted enhancer-promoter pairs. A. 

calculated mixing ratio according to the different methods vs. the known mixing ratio. B. 

the mean error in calculated mixing ratio, calculated as the absolute distance from the 

known ratio, in the different methods. 
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We next tested our deconvolution methods on mixtures of two myoblast 

cell lines from different donors. The mixtures were resolved with 5.81-

6.82% accuracy by the same three methods (fig. 4). The two myoblast 

samples are more similar to each other in genome-wide methylation 

profiles than they are to the unrelated B-lymphocytes in the previous 

mixtures. Hence, random alterations between the samples may occupy 

more weight, and can explain the decline in accuracy. We hypothesized 

that a smaller, educated subset of E-P pairs used for deconvolution could 

improve the analysis.  

3.3 Supervised selection of enhancer-promoter pairs 

  With over 100,000 predicted enhancer-promoter links used for 

deconvolution, it is reasonable to assume that not all pairs contribute 

equally to the discrimination between sample types. Most probably the 

identity of the most contributing pairs is specific to the types of samples 

being resolved. Accordingly, relying only on a subset of most 

differentiating pairs, while filtering out the rest, has potential to improve 

deconvolution accuracy by filtering out invaluable and possibly noisy 

data. Additionally, if a small subset of pairs is sufficient for accurate 

deconvolution it simplifies and shortens the required analysis. We tested 

three methods for ranking the pairs: Euclidean distances, KLD, and 

Weighted KLD (wKLD) (see Methods). The performance of the different 

deconvolution methods was compared for all ranking methods and with 

different numbers of highest-ranking pairs selected. The full set 

constituted 108,048 pairs in the mixture of B-lymphocytes and myoblasts, 

and 135,793 pairs for the two different myoblasts. The mean 

deconvolution error for several subsets of highest-ranking pairs are shown 

in log10 scale in Figure 5. The different ranking methods provide similar 

results and the differences in accuracy are mostly attributed to the 

deconvolution approach used. The lymphocytes and myoblasts mixtures 

were resolved with ~1% average deconvolution accuracy by MLE, using 

75,000- 108,048 pairs, and the mixture of the two myoblasts was resolved 

with ~1.4-1.8% average accuracy using only 100 pairs chosen by KLD or 

wKLD with MLE deconvolution. 

 

 

Figure 5 reveals opposite trends in respect to the optimal size of pairs 

subset used for deconvolution. Whereas the mixture of the different cell 

types is monotonically resolved more accurately with increasing number 

of pairs (>75,000 pairs), the mixture of myoblast cells derived from 

different individuals shows a distinct minimum in the mean error for 100-

500 pairs. Since DNA methylation patterns are known to regulate the 

expression of cell-type specific genes (Dor and Cedar, 2018), a higher 

variance in methylation signatures is expected between different cell types 

such as lymphocytes and myoblasts. Different cell-specific methylation 

patterns imply that more regions along the genome are differential and 

may contribute to deconvolution, making their differentiation simple and 

accurate. Deconvolving mixtures of the same cell types such as the 

mixture of myoblasts from the different individuals is more challenging. 

We postulate that as may frequently happen in diseased tissue, the 

observed methylation differences are not related to the cell’s identity, but 

factors as disease, age, or exposure to environmental stimuli. In such cases 

methylation variability at cell-type specific loci adds noise to the 

deconvolution analysis. Sorting the pairs by their information contribution 

provides a supervised educated approach for assembling the list of pairs 

that yields the most accurate differentiation. 

Fig. 4. Deconvolution of myoblast cells from two different donors by different 

methods. A. calculated mixing ratio according to the different methods vs. the known 

mixing ratio. B. the mean error in calculated mixing ratio, calculated as the absolute 

distance from the known ratio, in the different methods. 
Fig. 5. Subsets of E-P pairs, selected by supervised selection methods. The mean error 

in calculated mixing ratio (distance from theoretical ratio) is displayed against the log10 

of the number of best pairs selected in each combination of deconvolution method and 

ranking method. A) A mixture of two cell types: B-lymphocytes and myoblasts. B) A 

mixture of two myoblast cells derived from different individuals.  
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4 Conclusions 

This work lays the ground for cell-type deconvolution utilizing a new type 

of data structure now available via long single-molecule methylation 

maps. This data structure contains chromosome-level methylation profiles 

of gene bodies, promoters and one or more distant enhancers, all on the 

same molecule. We test several deconvolution methods and show that for 

differentiating two cell types, the pairwise analysis yields better 

deconvolution than promoter-based analysis, reaching an error rate of 

0.7%. Since enhancer methylation is known to be a major contributor to 

methylation variability within a cell-type population such as in cancer, we 

also analyzed mixtures of two myoblast cell-lines derived from two 

individuals. The full E-P pair dataset yielded a deconvolution error of ~6% 

for these highly similar samples. We reasoned that cells with similar 

methylomes will be differentially methylated only at a subset of loci while 

variability in common methylation loci will add noise to the deconvolution 

process. We tested several feature selection algorithms to rank the pairs 

according to their differentiation capacity. We assessed deconvolution 

fidelity for various numbers of highest-ranking pairs and found that for the 

two distinct cell types the deconvolution error monotonically declines 

with additional pairs. For the two myoblast samples on the other hand, a 

clear minimum was calculated at ~100 pairs that reduced the error from 

~6% to ~1.5%. These results constitute a first step towards harnessing 

enhancer-promoter linked methylation for deconvolution of cell 

populations with highly similar cell-type methylomes. Despite focusing 

on Bionano Genomics reduced-representation optical methylation 

mapping (ROM), which currently provides the highest coverage of long 

reads, the principles are valid to other future datasets such as those 

produced by Oxford Nanopore ultralong-read sequencing protocol. 

Further exploration of these linkages, including the joint effects of 

multiple enhancers per promoter may shed light on insightful cellular 

transformations regulated by long range epigenetic interactions.  
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