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ABSTRACT

Inferring the structural connectivity from electrophysiological measurements is a1

fundamental challenge in systems neuroscience. Directed functional connectivity2

measures, such as the Generalized Partial Directed Correlation (GPDC), provide3

estimates of the causal influence between areas. However, such methods have a limi-4

tation because their estimates depend on the number of brain regions simultaneously5

recorded. We analyzed this problem by evaluating the effectiveness of GPDC to6

estimate the connectivity of a ground-truth, data-constrained computational model of7

a large-scale mouse cortical network. The model contains 19 cortical areas modeled8

using spiking neural populations, and directed weights for long-range projections9

were obtained from a tract-tracing cortical connectome. We show that the GPDC10

estimates correlate positively with structural connectivity. Moreover, the correlation11
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between structural and directed functional connectivity is comparable even when12

using only a few cortical areas for GPDC estimation, a typical scenario for electro-13

physiological recordings. Finally, GPDC measures also provided a measure of the14

flow of information among cortical areas.15

1 Introduction16

The communication between brain regions is often analyzed through structural and functional17

connectivity [1]. The former refers to anatomical connections between brain regions generally18

quantified using tracer injections or diffusion magnetic resonance imaging [2]. The map of these19

connections is called “connectome” [3], whose analysis includes methods to evaluate the networks20

defined by nodes (brain regions) and edges (synapses) [4, 5]. Functional connectivity evaluates21

brain communication from statistical relations between recorded brain signals [6, 1]. Particularly,22

directed functional connectivity methods use the concept of causality to infer both the intensity and23

the direction of the connections between brain regions [7]. Even though there is some association24

between structural and functional connectivity, the relationship between them is not straightfor-25

ward [1]. While the former is practically static and compose the map of possible pathways for26

information flow between brain regions, the latter changes continuously and depends, for example,27

on the dynamical states of brain regions, noise, and strength of structural connections [8].28

During electrophysiological procedures, researchers typically record brain signals using electrodes29

positioned in different depths of brain regions. Even with the improvement in technologies for30

recording signals, it is usually possible to record signals only from a few areas compared to the31

number of sources of activity in the brain [9, 10, 11]. Thus, the functional connectivity analysis32

presents a problem because many regions that may perform as common inputs [7], and influence33

indirectly other regions [12, 6] are not recorded. Therefore, the comparison between structural34

and functional connectivity is problematic since spurious inferred causality relations can lead to35

misinterpretations of electrophysiological data.36

2
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Some simulation studies evaluated the relation between directed functional connectivity and struc-37

tural connections [8, 13, 14, 15]. However, most of these studies used either autoregressive models38

for the dynamics of each node [16] or rate-based models [13]. These studies provided impor-39

tant steps towards evaluating the reliability of causality measures, but they are still distant from40

laboratory experimental conditions.41

In this work, we investigated the relationship between directed functional connectivity and structural42

connectivity in a large-scale spiking neuronal network model of the cortex, derived from a cortical43

connectome of the mouse obtained using tracer injections [17]. Causality measures obtained using44

GPDC explained most of the variance of structural connection strengths. The mean correlation45

remained high (r > 0.6) even when only a few cortical areas were considered in the GPDC46

calculation, indicating that this causality measure provides reliable results in typical experimental47

conditions in which only recordings from a subset of areas are available.48

2 Methods49

2.1 Neuron model50

We modeled the neurons using a single-compartment Hodgkin–Huxley-type model, where the51

membrane potential of the i-th neuron described by,52

Cm
dVi
dt

= −gNam3
ihi(V − ENa)− gKn4

i (V − Ek)− gL(V − EL) + Iext,i + Isyn,i, (1)

the membrane capacitance Cm is 0.50 nF (0.125 nF) for excitatory (inhibitory) neurons. The53

maximal conductances values were gNa = 12.5 µS, gK = 4.74 µS and gL = 0.025 µS. The54

reversal potentials ENa = 40 mV, EK = −80 mV, and EL = −65 mV correspond to the sodium,55

potassium and leakage channel, respectively [18]. The dynamics of the voltage-gated ion channels56

are described by activation and inactivation variables m, n, and h, where m and n accounts for the57

3
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dynamics of Na channels and h for K channels. The probability that an ion channel is open evolves58

according to a set of ordinary differential equations [19],59

dm

dt
= αm(V )(1−m)− βm(V )m, (2)

dh

dt
= αh(V )(1− h)− βh(V )h, (3)

dn

dt
= αn(V )(1−m)− βn(V )n, (4)

where,60

αm(V ) = 0.1 (V+16)
1−exp(−(V+16)/10)

, (5)

βm(V ) = 4 exp(−(V + 41)/18), (6)

αh(V ) = 0.07 exp(−(V + 30)/20), (7)

βh(V ) = [1 + exp(−V/10)]−1, (8)

αn(V ) = 0.01 (V+20)
1−exp(−(V+20)/10)

, (9)

βh(V ) = 0.125 exp(−(V + 30)/80), (10)

The parameters used in this neuron model was previously reported and applied in some studies that61

modeled cortical neuronal populations. [20, 19, 21]62

2.2 Spiking neuronal population model63

Each spiking neuronal population was composed of 2000 neurons, 1600 excitatory and 400 in-64

hibitory. Neurons within each spiking neuronal population were randomly connected with proba-65

bility pintra = 10%. The synaptic current Isyn that arrives to postsynaptic neuron i is modeled by,66

4
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67

Isyn,i(t) =
∑

j∈presyn

gsyn,i,j(t) [Esyn − Vi(t)] , (11)

where the index j represent a presynaptic neuron connected to neuron i and the sum over j accounts68

for all the synapses that impinge on neuron i. Esyn is the synaptic reversal potential which is 0 mV69

for excitatory and −70 mV for inhibitory synapses. The dynamics of synaptic conductance gsyn,i,j70

is described by an exponential function as follows [22],71

dgsyn,i,j

dt
= −

gsyn,i,j

τ
. (12)

When a presynaptic neuron j fires a spike, a synaptic weight w is added on the synaptic conductance72

gsyn,i,j after the axonal delay, which was set as 1 ms [19]. The value of w depends on the excita-73

tory/inhibitory nature of the presynaptic and postsynaptic neurons. The synaptic time constant τ is74

2 ms and 8 ms for excitatory and inhibitory synapses, respectively. Furthermore, all neurons receive75

a background input given by a heterogeneous Poisson-process spiking activity with a rate of 7.376

kHz [19]. The effect of the background input in each neuron is an excitatory synaptic current. To77

add heterogeneity in our model, all synaptic weights w for recurrent connections and background78

input were taken from a Gaussian distribution (Table 1).79

Table 1: Synaptic weights for intra-areal connections. Mean synaptic weight w and standard
deviation σw for all possible synapses. E, I, and Input represent excitatory neurons, inhibitory
neurons, and external input, respectively. The arrow indicates the direction of the connection.

Synapses w (nS) σw (nS)
E → E 2.5 1.0
E → I 2.5 1.0
I → E 240 10
I → I 240 10
Input→ E 3.2 1.0
Input→ I 3.2 1.0

5
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2.3 Mouse large-scale cortical network80

The mouse cortex’s large-scale network model comprises 19 cortical areas where a spiking neuronal81

population models each area with long-range and recurrent synapses. Parameters related to recurrent82

synapses were described in the previous session. Neurons from different areas are randomly83

connected with probability pinter = 5%. The synaptic weights between cortical areas are based84

on the recently published anatomical connectivity dataset for the mouse cortex [17] obtained by85

retrograde tracer injections [23]. This technique consists in injecting a tracer that flows from the86

target area to the cell bodies, allowing to identify neurons projecting to the target area. The Fraction87

of Labeled Neurons (FLN) was measured as the ratio of the number of labeled neurons in a source88

area to the total quantity of labeled neurons in all source areas [24, 25]. The synaptic weights for89

directed long-range connections are the FLNs scaled by the global scaling parameters µE = 50 and90

µI = 25,91

wilr,E = µE
∑N

j FLNi,j (13)

wilr,I = µI
∑N

j FLNi,j. (14)

Long-range connections as excitatory, targeting either excitatory or inhibitory neurons with synaptic92

weight, wilr,E, and wilr,I, respectively. The index j represents the source area, i the target area, and N93

is the total number of simulated cortical areas. The axonal delay for long-range connections is given94

by the ratio between the anatomical distance estimates between cortical areas and the conduction95

speed set as 3.5 m/s [26].96

2.4 LFP signal97

We computed the local field potential (LFP) signal as a sum of the currents’ absolute values acting98

upon excitatory neurons in a spiking neuronal population [27, 28]. Thus, for a cortical area in our99

6
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model, the LFP signal will be given by,100

LFP = R

∑NE
i (|IE,i|+ |II,i|+ |Ibkg,i|)

NE
, (15)

IE,i accounts for both the local (within population) and global (inter-areal projections) excitatory101

synaptic currents, while II,i corresponds to the local inhibitory current. Ibkg,i is the synaptic current102

related to the background Poisson input. R represents the resistance of a typical electrode used for103

extracellular measurements, here chosen to be 1 MΩ [19]. NE is the number of excitatory neurons104

in each neuronal population.105

The mean was subtracted from the simulated LFP signal. The resultant signal was filtered using a106

low-pass filter in 1 kHz to avoid aliasing and downsampled to 1 kHz.107

2.5 Generalized partial directed coherence108

Generalized partial directed coherence (GPDC) is a frequency-domain method of directed functional109

connectivity established on multivariate vector autoregressive (MVAR) model [29]. Considering110

that LFP signals from all areas in the model are represented by a set x(t) = [x1(t) · · · xN(t)]T of111

simultaneously observed time series. The MVAR model for x(t) is defined as:112

x(t) =

p∑
k=1

Akx(t− k) + ε(t) (16)

where p is the MVAR model order. Ak are coefficient matrices in which the element a(k)ij define the113

effect of xj(t− k) on xi(t). The term ε(t) is a vector of N white noises with covariance matrix Σ.114

The GPDC from the time series xj to the time series xi at frequency λ is defined as,115

GPDCij(λ) =

∣∣∣∣∣∣
1
σi
Aij(λ)√∑N

k=1
1
σ2
k
Akj(λ)A

∗
kj(λ)

∣∣∣∣∣∣
2

, (17)

7
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where116

Aij(λ) =


1−

∑p
k=1Aij,ke

−2π
√
−1λk, if i = j

−
∑p

k=1Aij,ke
−2π
√
−1λk, if i 6= j,

(18)

and σ2
i refers to the variance of white noise εi(t) [29]. λ is a normalized frequency where λ = 0.5117

means one half of the sampling rate fs [30]. The MVAR model was estimated by the method of118

ordinary least squares (OLS) [31]. Akaike’s information criterion gave the model order indicated119

that the best model order p that was lesser than or equal to 50 [30]. For all analysis it was evaluated120

the peak of GPDC.121

2.6 Weighted FLN and weighted GPDC122

In order to investigate the propagation of neuronal activity through the links defined by structural123

and directed functional connectivity, we defined the weighted FLN (wFLN) and the weighted GPDC124

(wGPDC) [32],125

wFLNij =
1

n

n∑
j=1

(
FLNijrj∑

j∈S rj

)
(19)

wGPDCij =
1

n

n∑
j=1

(
GPDCijrj∑

j∈S rj

)
(20)

where FLNij is the FLN from area j to area i, rj is the firing rate for area j, GPDCij is the peak of126

GPDC from area j to area i, S is the set of source areas for target area i and finally and n is the127

cardinatility of set S.128

2.7 Numerical simulations129

All simulations were performed using the simulator Brian2 [33] applying the exponential Euler130

method [34] to integrate the differential equations with an integration step of 0.1 ms. Each simulating131

was 30 s long, generating sufficient data points to apply GPDC on the simulated LFP signals [35].132

8
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3 Results133

The model of the large-scale cortical network of the mouse is composed of 19 spiking neural134

populations with recurrent connections and excitatory long-range connections constrained by the135

directed and weighted structural connectome (Figure 1A and Figure 1B). The dynamical behavior of136

each simulated cortical area is predominantly asynchronous with transient spike synchronization [36,137

37] (Figure 1C). The power spectral density (PSD) of the LFP signal for a cortical area presents a138

peak in the gamma band (Figure 1D and 1E) [38]. The firing rate of inhibitory neurons is 4.74±0.11,139

higher than excitatory neurons rate of 3.64±0.42 (Figure 1F). Differences in population behavior are140

mostly due to inputs from other areas since we sample their parameters from the same distributions141

(Section 2.2).142
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Figure 1: Large-scale cortical network. (A) Local neuronal population where E and I are popu-
lations of spiking neurons. (B) Map of structural connectivity given by the FLNs. These values
define the strength of long-range projections in the large-scale network model. (C) Raster plot of
50ms of activity for each cortical area. (D) Simulated LFP signal for an area in the large-scale
network model. (E) Power spectral density for simulated LFP signals from one area. Continuous
black line corresponds to the average over ten simulations, and the gray shaded area delimits its
standard deviation. (F) Firing-rate for excitatory (blue) and inhibitory (red) populations computed
using a sliding window of 100ms. The continuous line corresponds to an average firing-rate over
ten simulations, and the shaded area is the standard deviation. To exemplify, we used data from area
MOp in (D), (E), and (F).

We first compared the FLN values to the average GPDC over ten simulations of the model. Many143

medium to strong connections from the structural connectome were also captured by the directed144

9
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functional connectivity (Figure 2A and Figure 2B). We used the GPDC largest value (peak), but145

other approaches such as the average of GPDC over frequencies and area under the GPDC curve146

(Supplementary Figure S1) produced similar results.147

Although the graph density of structural connectome is 97% [17], most structural connections are148

weak, which leads to a prevalence of weak average GPDC values. Weak structural connections are149

characteristics shared by connectomes from different mammals, with FLNs varying by several orders150

of magnitude, log-normally distributed [23, 39, 17, 40]. To evaluate the relation between structural151

and directed functional connectivity, we plotted GPDC values from ten simulations against FLNs152

and fit a linear model, obtaining the Pearson correlation r (Figure 2C). The scatter plot presents153

most points close to the origin due to the predominance of small values for the GPDC and FLN.154

Interestingly, for some FLNs, there is a high variation of GPDC values over different simulations.155

The Pearson correlation between FLN and GPDC is 0.73, and GPDC explains approximately 54%156

of the variance in FLN. This value similar to those obtained by other works that analyzed different157

structural connectomes using functional connectivity applied to empirical data [41, 42] or firing-rate158

models [43].159
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Figure 2: Relation between structural and directed functional connectivity. (A) Map of struc-
tural connectivity given by the FLNs. (B) Map of directed functional connectivity given by the
average of GPDC peaks over ten simulations. (C) Scatter plot of FLNs versus GPDC peak. The red
line corresponds to the linear fit. The Pearson correlation between FLNs and GPDC is 0.73.

We also investigated the propagation of activity between cortical areas through the pathways160

defined by structural and directed functional connectivity. The propagation of activity in the161

cortex is constrained by direct anatomical connections between areas and indirect paths [44], with162

10
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the propagation of activity occurring mainly through the strongest long-range projections [24].163

The weighted FLNs are strongly correlated to the target areas’ firing rate (Figure 3A), while the164

correlation with the weighted GPDC and firing rate was 0.54 (Figure 3B). This indicates that neural165

activity propagation is directly dependent on the strength of structural connections and that GPDC166

can capture part of this activity propagation.167
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Figure 3: Propagation of activity through structural and directed functional pathways. (A)
Weighted FLN versus the firing-rate for target areas. The Pearson correlation between Weighed
FLNs and firing-rate for target areas is 0.94. (B) Weighted GPDC versus the firing-rate for target
areas. The Pearson correlation between Weighed GPDC and firing-rate for target areas is 0.54. Red
lines are linear fit.

We analyzed the behavior of GPDC estimates when considering a reduced number of areas, re-168

producing typical experimental setups. We considered a visual and a frontoparietal cluster, both169

composed of 7 cortical areas [17]. We evaluated the GPDC estimates between all areas of each170

cluster (Figures 4C and 4F), conditioned on the whole connectome (Figures 4B and 4E), conditioned171

on the areas in each cluster, and using only pairwise (bivariate) estimates (Figures 4D and 4G). This172

analysis simulates the situations where an electrophysiologist only has information from a single173

cluster of cortical areas or a pair of areas. The highest correlations between the GPDC and FLN174

occurred when we conditioned GPDC to the whole connectome, followed by GPDC conditioned to175

the cluster area, and pairwise GPDC. Also, in all cases, the correlation for the frontoparietal cluster176

was higher in all scenarios.177

We extended the analysis to evaluate the effect of cluster size on GPDC correlation to FLN. We178

used cluster sizes ranging from 2 to 15 areas. We created 150 random clusters sampled from all179

11
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are composed of 7 cortical areas.(B-D) FLN versus GPDC for the visual cluster. The GPDC was
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and (D) bivariate approach. (E-G) FLN versus GPDC for the frontoparietal cluster. The GPDC was
computed in (E) conditioned to the whole connectome, (F) conditioned to the areas in the cluster
and (G) bivariate approach. Red lines are linear fit and r is the Pearson correlation.

areas in the connectome for each cluster size and computed the Pearson correlation for (A) the180

GPDC conditioned on the whole connectome, (B) conditioned on the cluster areas, and (C) pairwise181

(bivariate). For cases (A) and (B), the Pearson correlation increases, and the standard variation182

decreases as we increase the cluster size (Figure 5A-B), showing that it is advantageous to include183

more areas in the GPDC calculation. Surprisingly, the results for scenarios A and B are similar,184

indicating that using signals measured in a few cortex areas is similar to using signals from the whole185

cortex, at least regarding the correlation between structural and directed functional connectivity.186

The correlation between whole connectome GPDC and cluster GPDC estimates increases for large187

clusters, as expected (Supplementary Figure S2). When considering the bivariate GPDC (Figure 5C),188

the average Pearson correlation decreases for a range of cluster sizes and remain stable in a low189

value, which shows that pairwisely estimates of directed functional connectivity are affected by190

interference from ignored signals.191
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4 Discussion192

We evaluated the inference of directed functional connectivity applying GPDC on simulated193

LFP signals generated from a large-scale network model for the mouse cortex. Our main result194

demonstrates that when GPDC is conditioned to a reduced number of areas or the whole connectome,195

the average Pearson correlation between structural and directed functional connectivity for both196

cases are comparable. This result provides evidence that it is possible to obtain a reliable relationship197

between structural and directed functional connectivity in electrophysiological experiments even198

when signals are recorded from few areas.199

Pearson correlation between structural and directed functional connectivity considering the whole200

connectome and all possible connections in our model is in the range of values obtained in exper-201

imental works comparing structural connectivity obtained by tracers and (undirected) functional202

connectivity [45]. Specifically, previous studies comparing structural and functional connectivity in203

mice cortex obtained a lower Pearson correlation coefficient than ours [46, 47]. However, besides204

the undirected functional connectivity adopted in both studies, structural connectivity was set as205

undirected in one of them (long-range projection weights were given by the average of weights in 2206
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directions [46]). Also, recordings suffer the influence of the unrecorded source of activities what207

can affect the relationship between structural and functional connectivity [48].208

Although large-scale network models have been used to investigate and predict brain activity209

observed in electrophysiology and neuroimage [24, 25, 49, 50], as far as we know, the relationship210

between structural and functional connectivity has been almost unexplored through large-scale211

network models [51]. Besides, most works in this subject used neural mass description (rate models)212

to describe each area’s activity in the large-scale network model [52, 53]. However, the information213

propagated between brain regions can be characterized not only by the rate code but also by the214

temporal code [54, 55, 56, 57, 58]. Additionally, there are hypotheses pointing to spike-timing and215

spike coherence as essential components of cortical communication [59, 36, 60]. Thus, in our large-216

scale network model, a spiking neuronal population describes each cortical area’s activity [24, 61].217

Although spiking neuronal populations are computationally expensive and sometimes prohibitive for218

large-scale network models simulating many connected brain areas, they present a rich possibility219

of dynamical behaviors that are not possible using rate models.220

The structural connectivity obtained by tracer injections has the advantage that the FLNs between221

areas are not reciprocal [62], i.e., they are directional. Thus, the best approach to compare structural222

connectivity and functional connectivity was using a measure that provides the direction of influence223

from one signal to another. The mouse cortical connectome used in our large-scale network model224

was obtained through tracer injections [17]. For this reason, GPDC was a suitable choice for225

evaluating functional connectivity measures. GPDC is a frequency domain measure [29, 30].226

However, to have only one value representing the directed functional connectivity, we choose the227

peak of GPDC, which presented a better correlation with structural connectivity compared to other228

approaches (Figure S1).229

In our results, although the GPDC peak is positively correlated with FLNs, there are several230

GPDC values that do not correspond to strong FLNs. There are some justifications for these231

mismatches between GPDC and FLNs. First, in some situations investigated using systems of232
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few neuronal populations, the direction and weight of directed functional connectivity estimates233

can be influenced by the phase relation between signals [36, 63, 64]. In large-scale network234

models, the system’s heterogeneity, mainly due to axonal delays for long-range projections, can235

arise several phase differences between regions [65]. Thus, the relationship between structural236

and directed functional connectivity can be altered. Second, GPDC classifies the intensity of the237

connection regarding a signal source [30, 15], what is problematic for comparing with strength of238

structural connectivity [66]. Therefore, there might be cases where the functional coupling is strong239

concerning a particular source even though the synaptic projections are not.240

The propagation of activity between simulated cortical areas is strongly correlated with weighted241

FLNs and moderately correlated with weighted GPDC estimates. There are several ways to242

analyze the propagation of activity in the cortex; some of them can be based only on structural243

connectivity [44], in amplification caused by changes in projections weights [24] and some based244

on alterations in firing rates [67]. However, to the best of our knowledge, no studies explore how245

to acquire signal propagation paths based on directed functional connectivity. Here, we based our246

analysis on the idea proposed by Cole et al. of activity flow [32]. As we verified in our results, the247

mean GPDC peak weighted by the firing rate from a source area is positively correlated to the target248

area’s firing rate. Results are better when, instead of considering the GPDC peak, we considered the249

FLNs. This result suggests that signal propagation pathways are better determined by structural250

connectivity than by directed functional connectivity. The use of directed functional connectivity251

to infer signal propagation is not straightforward because several aspects of the model dynamics252

and some characteristics of the method applied can affect the inference of connections for directed253

functional connectivity.254

The relationship between structural and directed functional connectivity is better when GPDC is255

conditioned to all areas in the connectome. However, when it is conditioned to few areas in a cluster,256

structural and directed functional connectivity are moderately correlated. Gǎmǎnut et al. identified257

6 cluster in the connectome (prefrontal, frontal, parietal, cingulate, temporal and visual) [17] based258

on the same approach used to investigate the macaque cortex [68]. We joined prefrontal, frontal259
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and parietal clusters in a single cluster called frontoparietal. The regions AUDpo, and DP, which260

compose the temporal cluster and ACAd, RSPd, and MM, which belong to the cingulate cluster261

were excluded from these calculations because they form clusters with small number of regions262

[17]. The idea was to evaluate the relationship between GPDC and FLNs in specific clusters with263

the same cluster size. The general results were the same for frontoparietal and visual clusters. For264

frontoparietal clusters, the range of values for FLN and GPDC is smaller than for visual cluster.265

The correlation between GPDC and FLN was better in the frontoparietal cluster, where even for the266

bivariate approach, GPDC and FLNs are moderately correlated.267

The correlation between GPDC considering the whole connectome and GPDC considering the clus-268

ter increases with the number of areas considered in the measurement (Supplementary Figure S2A).269

Besides that, the difference between GPDC estimates for those two approaches decreases with270

the cluster size (Supplementary Figure S2B). It is well known that pairwise estimates of directed271

functional connectivity present false connections compared to structural connectivity, caused by272

common input or indirect connections [7, 14, 6]. Novelli et al. showed that the relation between273

structural and directed functional connectivity in a large-scale network model for the macaque brain274

is more accurate when the multivariate approach is applied to infer directed functional connectivity275

than for bivariate approach [52]. Nevertheless, it is uninvestigated the reliability of directed func-276

tional connectivity estimates according to the number of areas considered. With our results, we277

evaluated not only the relationship between structural and directed functional connectivity (Figure 4278

and Figure 5) for different cluster sizes but also the directed functional connectivity estimates when279

a reduced number of areas are considered (Figure S2).280

Our large-scale network model has some limitations related to the similarity in different cortical281

areas’ dynamical behavior and the connectome. First, modeled neuronal populations are practically282

homogeneous excepted by synaptic currents caused by long-range projections. However, in realistic283

approaches, several biologically based features can be added to the model, for example, cell types,284

spatial scales, and density of excitatory and inhibitory populations [69, 70, 71]. Second, still related285

to the homogeneity between cortical areas, the simulated LFP for areas in our large-scale network286
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model oscillates in gamma band (Figure 1). It is known that the activity of cortical areas in mice287

can oscillate in different bands [72, 73]. Also, oscillatory activity in the mouse cortex is related to288

density and type of inhibitory neurons [74, 75]. Recently, it has been shown that the relationship289

between structural and functional connectivity in the macaque cortex is frequency dependent [76].290

Third, it is shown that functional connectivity is dependent on network states [77]. Also, studies in291

computational neuroscience have been exploring multistability and temporal patterns of functional292

connectivity [78, 79, 80]. In our model, we did not explore network states and dynamics of directed293

functional connectivity. The computation of directed functional connectivity is dependent on the294

data length [35]. Thus, the evaluation of directed functional connectivity patterns in short windows295

of data can be untrustworthy because of the number of samples considered. Finally, we considered296

only cortical areas in our large-scale network model. It would be interesting to integrate subcortical297

areas into the model and verify their impact on the relationship between structural and functional298

connectivity. Future studies can overcome these limitations by creating more detailed models with299

biologically plausible neuronal features and connectome composed of cortical and subcortical300

areas [69, 81].301

Our results shed light on the relationship between structural and directed functional connectivity in302

the circumstances near to those faced by electrophysiologists. We concluded that the reliability of303

directed functional connectivity estimates and the relationship with structural connectivity relies304

on the number of areas considered. Despite the limitations of our large-scale network model, our305

findings can support analysis based on electrophysiological recordings, and our model can be used306

for other investigations regarding cortical communication.307
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Figure S1: Area Under Curve (AUC) and mean of GPDC estimates . (A) GPDC AUC versus
FLN. (B) GPDC mean versus FLN. In both cases, the Pearson correlation between GPDC mean or
AUC and FLN is 0.66. Red lines are linear fit.
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Figure S2: Correlation and difference between GPDC etimates conditioned to the whole con-
nectome and GPDC estimates conditioned to the cluster areas. A)Pearson correlation increases
with the cluster size. Each bullet represents the average pearson correlation over 150 clusters
composed of randomly chosen areas. Comparing all clusters size, the highest value for standard
deviation of pearson correlation 0.07. B) Average difference between GPDC estimates conditoned
to the whole connnectome and GPDC estimates conditioned to the cluster areas. Average and
standard deviation decrease with the cluster size.
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Table S1: Name of areas in mouse cortical connectome. Adapted from Gǎmǎnut et. al., 2018.

Abbreviations Areas
ACAd Anterior cingulate area dorsal part

AL Anterolateral area
AM Anteromedial area

AUDpo Auditory cortex posterior area
DP Dorsal posterior area
GU Gustatory area
LM Lateromedial area
MM Mediomedial area
MOp Motor cortex primary

P Posterior area
PL Prelimbic area
PM Posteromedial area
RL Rostrolateral area

RSPd Rostroplenial area dorsal part
SSp-bfd Somatosensory cortex primary barrel field
SSp-un Somatosensory cortex primary unassigned

SSs Somatosensory cortex secondary
V1 Primary visual area

VISC Visceral area
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