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Abstract 48 

Background: Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative 49 

diseases. Deciphering the morphological patterns of AxD will help to understand the underlying 50 

mechanisms and to develop effective therapeutic interventions. Here, we evaluated the progression 51 

of AxD in cortical neurons using a novel microfluidic device in combination with a deep learning 52 

tool, the EntireAxon, that we developed for the enhanced-throughput analysis of AxD on 53 

microscopic images. 54 

Results: The EntireAxon convolutional neural network sensitively and specifically segmented the 55 

features of AxD, including axons, axonal swellings, and axonal fragments, and its performance 56 

exceeded that of human expert raters. In an in vitro model of AxD in hemorrhagic stroke induced 57 

by the hemolysis product hemin, we detected the concentration- and time-dependent degeneration 58 

of axons leading to a decrease in axon area, while the axonal swelling and axonal fragment area 59 

increased. Time course analysis revealed that axonal swellings preceded axon fragmentation, 60 

suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network, we 61 

further identified four morphological patterns of AxD (granular, retraction, swelling, and transport 62 

degeneration) in cortical axons subjected to hemin. 63 

Conclusions: These findings indicate a morphological heterogeneity of AxD under 64 

pathophysiologic conditions. The combination of the microfluidic device with the EntireAxon 65 

deep learning tool enable the systematic analysis of AxD but also unravel a so far unknown 66 

intricacy in which AxD can occur in a disease context. 67 

 68 

Keywords: axon, brain hemorrhage, cell culture, machine learning, microfluidic, microscopy, 69 

stroke, time-lapse  70 
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Introduction 71 

Axonal degeneration (AxD) is a process in which axons disintegrate physiologically during 72 

nervous system development and aging, or as a pathological element of degenerative nervous 73 

system diseases (Luo and O’Leary, 2005; Lingor et al., 2012; Salvadores et al., 2017). Apart from 74 

axonal fragments, axon swellings (also called axonal beadings, bubblings or spheroids) are a 75 

hallmark of degenerating axons (Saxena and Caroni, 2007; Lingor et al., 2012; Wang et al., 2012), 76 

containing disorganized cytoskeleton and organelles resulting from an interruption of axonal 77 

transport (Coleman, 2005; Nikić et al., 2011; Yong et al., 2019). 78 

It is known that axons disintegrate in different ways depending on the biological context. During 79 

development and neural circuit assembly, inappropriately grown axons can undergo axonal 80 

retraction, axonal shedding or local AxD (Pease and Segal, 2014; Neukomm and Freeman, 2014). 81 

Axonal retraction is characterized by retraction bulb formation at the distal tip, and subsequent 82 

pullback (Pease and Segal, 2014). During axonal shedding, the axon retracts leaving behind small 83 

pieces of its distal part (axosomes) (Bishop et al., 2004). Local AxD is characterized by axon 84 

disintegration into separated axonal fragments (Neukomm and Freeman, 2014). Acutely and 85 

chronically injured axons may degenerate retrogradely (distal-to-proximal direction, dying-back), 86 

anterogradely (proximal-to-distal direction) or in a Wallerian degeneration pattern (distal part of 87 

the axon from injury site), ultimately resulting in the generation of axonal fragments (Cavanagh, 88 

1979; Coleman, 2005; Beirowski et al., 2005). However, AxD patterns have been mainly described 89 

in extracerebral axons in models of nutrient deprivation or axotomy. 90 

Not much is known on AxD in cortical neurons subjected to a disease-specific cytotoxic 91 

micromilieu. A distinct pathological micromilieu has recently been observed for hemorrhagic 92 

stroke, after which the lysis of erythrocytes from the hematoma leads to the release of the cytotoxic 93 

product hemin (Robinson et al., 2009; Zille et al., 2017). Patients suffering from hemorrhagic 94 

stroke often experience AxD that is associated with worse motor and functional outcome 95 
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(Venkatasubramanian et al., 2013; Chen et al., 2018). Importantly, AxD occurs in the subacute 96 

stages of hemorrhagic stroke. Thus, addressing AxD may not only provide a new therapeutic 97 

target, but also a much wider time window for intervention. Since not much is known about the 98 

mechanisms, morphological patterns, and the temporal progression of AxD in the context of 99 

hemorrhagic stroke, we here sought to examine the progression of AxD and its associated 100 

morphological alterations. 101 

As the disintegration of the axons endures from minutes to hours (Beirowski et al., 2005; 102 

Kerschensteiner et al., 2005), it is necessary to monitor the spatiotemporal progression of AxD 103 

and its morphological hallmarks continuously. However, conventional software solutions fail to 104 

automatically detect and quantify high axon numbers as well as axonal swellings and fragments in 105 

phase-contrast microscopic images. The reason may be two-fold: 1) Conventional software relies 106 

on image binarization (Sasaki et al., 2009; Becker and Madany, 2012), which can lead to 107 

information loss and low sensitivity as thin axons may not be recognized. 2) The analysis requires 108 

subjective and time-consuming manual annotations, e.g., thresholding and defining the region of 109 

interest (Pool et al., 2008; Ho et al., 2011; Li et al., 2014). So far, immunostained images were 110 

used to investigate morphological changes in AxD as the analysis of phase-contrast images has 111 

been limited by the lower target-to-background signal. Immunofluorescence images, however, 112 

entail certain disadvantages such as photobleaching and the requirement for cell fixation, which 113 

restricts observations to a single time point. Thus, a software tool for the automatized detection 114 

and quantification of the morphological patterns of AxD in long-term live cell imaging is required 115 

to improve both sensitivity and throughput to overcome current limitations in understanding AxD. 116 

In this study, we demonstrate that cortical axons underwent AxD after the exposure to the 117 

hemolysis product hemin, with axonal swellings preceding axon fragmentation. Deep learning 118 

further detected the occurrence of four AxD patterns being characterized as granular, retraction, 119 

swelling, and transport degeneration. This may inform downstream AxD and neurodegeneration 120 
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research in health and disease. We also provide tools for the enhanced throughput analysis of AxD, 121 

including a microfluidic device containing 16 independent experimental units and the deep 122 

learning platform “EntireAxon” to analyze AxD, which will help augment our understanding of 123 

AxD and may also support the development of novel treatment approaches for neurodegenerative 124 

diseases. 125 
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Results 126 

 127 

An enhanced throughput microfluidic device and the EntireAxon deep learning tool allow 128 

the longitudinal study of axonal degeneration 129 

The major limiting factor of commercially available microfluidic devices to study AxD is that they 130 

are single, individual systems and hence, can only be used to assess one condition, which is time-131 

consuming and precludes high-throughput analyses. To enable the systematic analysis of AxD in 132 

vitro, we 1) manufactured a microfluidic device containing 16 individual microfluidic units (Fig. 1 133 

and Supplementary Fig. S1) that can be investigated in parallel and recorded simultaneously, 134 

and 2) trained a convolutional neural network (CNN), the EntireAxon, to segment all relevant 135 

features of AxD, i.e., axons, axonal swellings, and axonal fragments (Fig. 2). 136 

While the EntireAxon CNN recognized the class ‘background’ better than the three axon classes 137 

‘axon’, ‘axonal swelling’, and ‘axonal fragment’ (mean F1 score: 0.995), axon-specific 138 

segmentation revealed the highest mean F1 score for the class ‘axon’ (0.780), followed by the 139 

classes ‘axonal swelling’ (0.567), and ‘axonal fragment’ (0.301) (Fig. 3A). Next, we compared 140 

the performance of the EntireAxon CNN on the ground truth (human expert 1) with two additional 141 

human experts. The EntireAxon CNN reached higher mean F1 scores for all classes, except for 142 

the class ‘axonal fragment’, where human expert 2 outperformed the EntireAxon CNN (Fig. 3B). 143 

This may have been due to the fact that the EntireAxon CNN was trained on images labeled by the 144 

same human expert (1) that labeled the ground truth. To assess whether its performance is more 145 

generalizable across the different experts, we compared the EntireAxon CNN to each of the human 146 

experts on the consensus labels of the two other human experts (Fig. 3C-D). Visual inspection of 147 

the labels showed a wide overlap between the different experts, but also that there was considerable 148 

uncertainty, especially for the classification of axonal fragments (Fig. 3C). When comparing the 149 

mean F1 scores for all classes, the EntireAxon reached similar or even higher scores than the other 150 
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three experts (Fig. 3D). Collectively, this suggests that the EntireAxon CNN sensitively and 151 

specifically recognizes axons and the morphological features of AxD. 152 

 153 

Axonal integrity is lost over time with axonal swellings preceding axon fragmentation 154 

We then applied the EntireAxon CNN to assess AxD in the context of hemorrhagic stroke. We 155 

applied the hemolysis product hemin, a commonly used agent to mimic hemorrhagic stroke in 156 

vitro (Robinson et al., 2009; Zille et al., 2017; Chen and Regan, 2004), on primary cortical axons. 157 

Accordingly, isolated axons were exposed to the hemolysis product hemin and recorded by time-158 

lapse microscopy for 24 hours. Hemin induced concentration- and time-dependent morphological 159 

changes leading to AxD compared to vehicle-treated axons (Fig. 4 and Videos S1-4). Area under 160 

the curve (AUC) analyses revealed a significant decrease in axon area in all three hemin 161 

concentrations (50 µM vs. 0 µM: P = 0.026; 100 µM vs. 0 µM: P = 0.018, 200 µM vs. 0 µM: 162 

P < 0.001). The axonal swelling area also increased in all three concentrations (50 µM vs. 0 µM: 163 

P = 0.012, 100 µM vs. 0 µM: P = 0.005, 200 µM vs. 0 µM: P = 0.016), while the axonal fragment 164 

area was elevated only for axons treated with 100 and 200 µM hemin (vs. 0 µM: P = 0.004, Fig. 5 165 

and Table S2). 166 

Comparing the time course of AxD between hemin- and vehicle-treated axons (0 µM), the axon 167 

area decreased starting at 11.5 hours at 200 μM (P = 0.020, from 15 hours P < 0.001), at 14 hours 168 

at 100 μM (P = 0.040, from 18.5 hours P<0.001), and at 15 hours at 50 μM (P = 0.018, from 169 

19 hours P < 0.001). Hemin treatment also elevated the axonal fragment area starting at 9 hours at 170 

200 μM (P = 0.037) and at 17 hours at 100 μM hemin (P = 0.044). Interestingly, the axonal 171 

swelling area increased prior to the changes in axon and axonal fragment area, i.e., starting at 172 

6 hours at 200 µM (P = 0.010) and 100 µM (P = 0.019), and at 8 hours at 50 µM hemin 173 

(P = 0.030). For the highest hemin concentration, the increase was only transient (until 174 
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18.5 hours), suggesting that axonal swellings preceded the axon fragmentation (Table S1), which 175 

can also be seen in the time-lapse recordings (Videos S2-4). 176 

The results of the time course analysis were further substantiated by live cell fluorescent staining 177 

(calcein AM), which indicated the starting point of AxD after hemin treatment between 8 and 178 

12 hours for 200 μM hemin, between 12 and 16 hours for 100 μM hemin and 16 and 20 hours for 179 

50 μM hemin (Supplementary Fig. S2). Taken together, AxD progression depends on the severity 180 

of the insult and axonal swellings may be reliable predictors of AxD. 181 

 182 

Deep learning deciphers four patterns of AxD 183 

AxD time-lapse data revealed different morphological patterns of degeneration that can occur in 184 

the same axons over time (Fig. 6 and Videos S5-8). We categorized these morphological patterns 185 

as: 186 

i) Granular degeneration: AxD resulting in granular separated fragments. 187 

ii) Retraction degeneration: AxD in which the distal part of the axon retracts ultimately 188 

resulting in granular degeneration. 189 

iii) Swelling degeneration: AxD in which axonal swellings enlarge, followed by granular 190 

degeneration. 191 

iv) Transport degeneration: AxD in which axonal swellings of constant size, which do not 192 

enlarge, are transported along the axon resulting in granular degeneration. 193 

We trained a recurrent neural network (RNN), the EntireAxon RNN, to identify these 194 

morphological patterns based on changes in class segregation over time using a training dataset of 195 

AxD segmentation recordings (Fig. 7A). Given the four different classes (background, axon, 196 

axonal swelling, and axonal fragment), 16 different class pairs can occur between a segmentation 197 

at time step t and time step t+1. For example, a background pixel at t can either remain background 198 
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pixel at t+1 or change into one of the other three classes, and the same is true for the other classes. 199 

Thus, in total, four times four class pairs are possible. We used a window size of 32x32, of which 200 

always the probability of a class pair in the central pixel relative to the previous time point was 201 

computed for each time point and across the entire image.  202 

The RNN determined seven clusters (cluster 0-6) that were characterized by an idiosyncratic 203 

pattern of changes in class distribution over 24 hours (Supplementary Fig. S3). All clusters 204 

showed a decrease in the class ‘axon’ and an increase in the class ‘background’. Depending on the 205 

hemin concentration, the changes occurred at a different magnitude and at different time points, 206 

and with concomitant increases in either the class ‘axonal swelling’ and/or ‘axonal fragment’. In 207 

cluster 0, there was an early decrease in the class ‘axon’, which then continued more linearly as 208 

well as a later rise in the class ‘axonal fragment’. In contrast to cluster 0, cluster 1 showed no 209 

increase in the class ‘axonal fragment’ and a linear decrease in the class ‘axon’ from the start. In 210 

cluster 2, there was a strong increase in the class ‘axonal swelling’. Cluster 3 demonstrated an 211 

early and lasting high level of the class ‘axonal swelling’ with a later increase in the class ’axonal 212 

fragment’. Cluster 4 showed a rapid decrease in the class ‘axon’ concomitant with an increase in 213 

the classes ‘background’ and ‘axonal swelling’. Cluster 5 was similar to cluster 1, but with an early 214 

drop in the class ‘axon’. Cluster 6 showed an increase in the class ‘axonal swelling’ similar to but 215 

to a greater extent than cluster 2. 216 

The RNN categorized each cluster to one of the four morphological patterns (Fig. 7B): i) Granular 217 

degeneration was defined by clusters that describe the degeneration of axons into axonal 218 

fragments, i.e. clusters 0, 1, 3, and 5. ii) Retraction degeneration only included the clusters 1 and 219 

5, indicating the retraction of the axon followed by its fragmentation. iii) Swelling degeneration 220 

was characterized by the three clusters that included the class ‘axonal swelling, i.e., clusters 2, 3, 221 

and 6, as well as cluster 5 showing the exchange of the class ‘axon’ for ‘background’. iv) Transport 222 

degeneration was the only pattern that relied on cluster 4 and was also characterized partly on 223 
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clusters 0, 1, 2, and 6. Although some clusters overlap among morphological patterns, the unique 224 

combination of the different clusters allows to distinguish all four morphological patterns.  225 

To validate the EntireAxon RNN, a 10-fold cross-validation was performed. Therefore, the dataset 226 

was randomly divided into 10 datasets and ten models were trained with 9 of the datasets leaving 227 

the remaining dataset for validation (not previously seen by the RNN). Based on the combined test 228 

samples, the RNN was able to distinguish between the four morphological patterns of AxD 229 

(Fig. 7C). These data confirm that the combination of the different AxD features as well as their 230 

spatiotemporal progression defines distinct morphological AxD patterns. 231 

 232 

The morphological patterns of AxD depend on the extent of AxD 233 

We then applied the EntireAxon RNN to quantify the occurrence of the four morphological 234 

patterns of AxD in the context of hemorrhagic stroke (Fig. 8 and Video S9). While all AxD 235 

patterns were detected (Fig. 8A), hemin concentration-dependently increased granular 236 

degeneration (P < 0.001), swelling degeneration (P < 0.001), and transport degeneration 237 

(P = 0.025, Fig. 8B). When comparing the slopes of the different AxD patterns under hemin 238 

exposure, granular and swelling degeneration were significantly different from transport 239 

degeneration (P = 0.005 and P = 0.004, respectively, Table S3). Collectively, our data suggest that 240 

hemin concentration-dependently induces different morphological patterns of AxD in cortical 241 

axons.  242 
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Discussion  243 

We here describe the occurrence of four morphological patterns of AxD under pathophysiological 244 

conditions: granular, retraction, swelling, and transport degeneration. These rely on time- and 245 

concentration-dependent changes of the morphological features of AxD, with axonal swellings 246 

preceding axon fragmentation. The herein introduced complementary tools, a novel microfluidic 247 

device and the EntireAxon, allow increasing the experimental yield, the in-depth enhanced 248 

throughput analysis of AxD as well as the longitudinal investigation of AxD. 249 

We propose a novel monolithic microfluidic device consisting of 16 individual microfluidic units 250 

that enables the parallel and separated treatment and/or manipulation of axons and somata (Fig. 1). 251 

The currently available devices do not allow enhanced throughput experiments as they comprise 252 

only single microfluidic units (Park et al., 2006; Van Laar et al., 2019). Although some devices 253 

can harbor multiple experimental conditions, they employ a radial design with a single soma 254 

compartment, in which one experimental condition may influence another due to the potential of 255 

retrograde signaling (Hosmane et al., 2010; Biffi, 2015). Another option is the parallel use of 256 

multiple individual devices, which allows handling up to 12 devices in a conventional 12-well 257 

plate (Li et al., 2014). Compared to our device, this procedure is time-consuming in both the 258 

manufacturing and adjustment for recordings.  259 

The extent of AxD has so far been mainly investigated with a focus on axon fragmentation as 260 

primary readout. To quantify axon fragmentation, Sasaki and colleagues introduced the AxD index 261 

as the ratio of fragmented axon area versus total axonal area (Sasaki et al., 2009). However, the 262 

AxD index did not include axonal swellings, which are a characteristic feature of degenerating 263 

axons (Yong et al., 2019; Cui et al., 2020). Although other analyses considered axonal swellings 264 

as a morphological feature of AxD (Nikić et al., 2011; Yong et al., 2019), the approaches were 265 

time-consuming and required manual annotations.  266 
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We herein adapted a standard u-net with ResNet-50 encoder (Ronneberger et al., 2015; He et al., 267 

2015) and used a CNN ensemble, which combines predictions from multiple CNNs to generate a 268 

final output and is superior to individual CNNs (Dietterich, 2000; Huang et al., 2016; Vuola et al., 269 

2019). The EntireAxon CNN performs an automatic segmentation and quantification of axons and 270 

morphological features relevant to AxD, including axonal swellings and fragments, on phase-271 

contrast time-lapse microscopy images (Fig. 2). The EntireAxon CNN recognized the four classes 272 

‘background’, ‘axon’, ‘axonal swelling’, and ‘axonal fragment’, with the highest mean F1 score 273 

for the class ‘background’ (Fig. 3A). The comparably lower performance of the CNN to recognize 274 

axonal fragments may be explained by the disproportional distribution of pixels in the training and 275 

validation data (‘background’ mean of 96.42 % of pixels, ‘axon’ 2.77%, ‘axonal swelling’ 0.58%, 276 

‘axonal fragment’ 0.23 %). Hence, every individual segmentation error more strongly affects the 277 

false positive or false negative rate in these classes. 278 

Comparison with human experts revealed that the EntireAxon CNN reached a similar performance 279 

level. As expected, its performance was slightly better than the human experts on the ground truth 280 

as both, ground truth and training data, were labeled by the same human expert (Fig. 3B). 281 

Interestingly, when comparing the EntireAxon CNN with a human expert on the consensus label 282 

of the other two human experts, not only was the EntireAxon CNN as good as or even better than 283 

the human expert, but the mean F1 scores were also higher than on the ground truth labels 284 

(Fig. 3D). This may be because pixels that were differentially assigned by the human expert, i.e. 285 

more difficult to classify, were excluded from the comparison. Taken together, these findings 286 

demonstrate that the EntireAxon CNN is suitable to automatically quantify AxD and its 287 

accompanying morphological changes in an enhanced throughput manner. 288 

Conventional in vitro models of AxD rely mainly on nutrient deprivation or axotomy and focus on 289 

axons outside the brain. However, AxD is not only an active and commonly observed process in 290 

the brain, but it is also believed to be caused by more complex mechanisms given the different 291 
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microenvironments in which it may occur. For example, AxD has been demonstrated to occur in 292 

intracerebral hemorrhage (Venkatasubramanian et al., 2013; Tao et al., 2017). In this context, 293 

cortical axons are exposed to a cytotoxic microenvironment due to hemolysis leading to the release 294 

of blood breakdown products, whose effects on axons remain to be elucidated (Hemorrhagic 295 

Stroke Academia Industry (HEADS) Roundtable Participants, 2018). We therefore modeled 296 

hemorrhagic stroke by exposing axons from primary cortical neurons to the hemolysis product 297 

hemin and investigated the progression of AxD. Similar to previous results where 100 µM hemin 298 

were sufficient to induce significant neuronal cell death in conventional cultures of somata and 299 

axons (Zille et al., 2017), we here observed that 100 µM hemin led to a significant decrease in 300 

axon area and an increase in axonal swelling and fragment area (Fig. 4). 301 

The progression of AxD undergoes a latent phase, during which the structural integrity of the axon 302 

is maintained, followed by a catastrophic phase with the rapid disintegration of the axon (Yong et 303 

al., 2019). In our model, the catastrophic phase of AxD started within 12 to 18 hours after the 304 

administration of hemin (Fig. 4 and Supplementary Fig. S2). Similar durations of the latent 305 

phases of AxD have been observed in other models. For instance, under circumstances of growth 306 

factor withdrawal, the transition to the catastrophic phase occurred at 12-24 hours (Nikolaev et al., 307 

2009; Maor-Nof et al., 2016; Yong et al., 2019). 308 

We further demonstrated that the relative axon area decreased at higher hemin concentrations, 309 

while the axonal fragment area increased. Our results are in accordance with other experimental 310 

conditions such as axotomy-mediated or paclitaxel-induced AxD, in which axonal fragments also 311 

increased (Sasaki et al., 2009; Pease-Raissi et al., 2017). As the axonal swelling area preceded the 312 

increase of axonal fragments and axon area loss, our findings are also in line with results reported 313 

in a model of experimental autoimmune encephalomyelitis indicating that axonal swelling 314 

anticipates fragmentation (Nikić et al., 2011). This suggests that axonal swelling may be a reliable 315 

predictor of AxD. 316 
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Interestingly, axonal swellings and axonal fragments were related to different morphological 317 

patterns of AxD. Specifically, we observed axons that showed signs of axonal retraction, enlarging 318 

of axonal swellings and axonal transport before degeneration (Fig. 6). We therefore trained the 319 

EntireAxon RNN to quantify the occurrence of four morphological patterns of AxD, i.e. granular, 320 

retraction, swelling, and transport degeneration, based on the clusters of unique changes of classes 321 

over time (Fig. 7 and Supplementary Fig. S3). These patterns have not been described to occur 322 

simultaneously in the same biological condition: Granular degeneration has previously been 323 

observed in retrograde, anterograde, Wallerian and local AxD after axotomy or trophic factor 324 

deprivation (Cavanagh, 1979; Coleman, 2005; Beirowski et al., 2005; Neukomm and Freeman, 325 

2014). Retraction degeneration has been described in axonal retraction and shedding in 326 

developmental AxD (Bishop et al., 2004; Pease and Segal, 2014). Swelling degeneration was 327 

previously reported in experimental autoimmune encephalitis and growth factor deprivation (Nikić 328 

et al., 2011; Yong et al., 2019). Transport degeneration has not been reported before. However, 329 

microtubule breaks have been demonstrated in a model of axonal stretch injury. Those developed 330 

into axonal swellings resulting in axonal transport interruption with AxD as a consequence (Tang-331 

Schomer et al., 2012).  332 

Our data demonstrate that all four morphological degeneration patterns can occur along cortical 333 

axons (Fig. 8). Interestingly, we also observed a concentration-dependent effect in the context of 334 

hemorrhagic stroke. Granular, swelling, and transport degeneration were significantly increased 335 

with increasing hemin concentrations, with granular and swelling degeneration being more 336 

strongly correlated. To what extent our model of hemin-induced AxD in hemorrhagic stroke is 337 

molecularly similar to developmental or pathophysiological AxD needs to be further investigated 338 

along with the underlying molecular mechanisms of the four patterns of AxD. This could be greatly 339 

facilitated by the EntireAxon RNN that is able to automatically detect the morphological patterns 340 
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in time-lapse recording due to its capacity to relate each output to previous images in the stacks by 341 

its current units. 342 

 343 

Limitations and outlook 344 

i) Our microfluidic device currently does not allow to investigate AxD at more proximal axonal 345 

parts to the soma such as the axonal initial segment. Shortening the length of the microgrooves or 346 

including a more proximal compartment, are possible modifications of the current design. 347 

ii) Our results are based on unmyelinated axons. Co-culture with glia cells that may play a role in 348 

AxD is possible in the presented microfluidic device and the time course and morphological 349 

changes may be different under co-culture conditions. These studies are of high relevance to the 350 

field, but go beyond the scope of the present study. 351 

iii) The observed effects of AxD in hemorrhagic stroke within this study were based on hemin 352 

toxicity, and we cannot exclude that other hemolysis products such as thrombin or bilirubin have 353 

different effects. Additional studies should investigate differences of hemolysis products to 354 

increase our understanding of the mechanisms of AxD in hemorrhagic stroke. 355 

iv) The overall CNN performance may be further improved with more general inputs. For example, 356 

the segmentation of fragment pixels cannot be conducted accurately based on a single image at a 357 

specific time point as the whole process of AxD, ultimately resulting in the disintegration of the 358 

axons (i.e., the generation of axonal fragments), needs to be considered. CNNs using 3D 359 

convolutions could, in principle, perform a segmentation over an entire time-lapse recording and 360 

model temporal dependencies. However, we decided against the 3D approach, as it severely 361 

restricts general applicability due to its greatly increased effort to label suitable time series for 362 

training. In this context, the identification of the images that will yield the best results is crucial to 363 
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effectively reduce labeling costs, which we have previously described using an active learning 364 

method (Grüning, P. et al., 2020). 365 

 366 

Conclusion 367 

In combination with an advanced microfluidic device, the EntireAxon deep learning tool expands 368 

our possibilities to track AxD by detecting axons, axonal swellings, and axonal fragments. We 369 

further identified four morphological patterns of AxD, i.e., granular, retraction, swelling, and 370 

transport degeneration, under pathophysiological conditions in the context of hemorrhagic stroke. 371 

This approach will help to tackle the complex processes of AxD and may significantly enhance 372 

our understanding of AxD in health and disease to develop novel therapeutic strategies for brain 373 

diseases. 374 

  375 
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Methods 376 

Chemicals and reagents are listed in Tables S4-5. 377 

 378 

Study design 379 

Sample size: Six mice. We did not perform a priori power analysis as this was an exploratory 380 

study. We did not change the number of the mice during the course of the study. 381 

Data inclusion/exclusion criteria: Recordings that did not have any technical flaws, such as 382 

shifting of the microfluidic device in x, y, or z-axis were included. Recordings with minor x and 383 

y-axis shifts that we were able to correct by post-recording alignment (see Image preprocessing) 384 

were included. All data were processed using the same settings. The training and validation images 385 

for the deep learning tool were chosen to represent the testing data as best as possible. 386 

Outliers: No outliers have been excluded in the study.  387 

Selection of endpoints: Endpoints were the area of the axons, axonal swellings, and axonal 388 

fragments, respectively. 389 

Replicates: Each individual mouse counted as a biological replicate (N = 6 biological replicate per 390 

experiment). Four different microfluidic units have been used for four experimental conditions (0, 391 

50, 100, 200 µM hemin) per biological replicate.  392 

Research objectives: The research objective was to examine the progression of axonal 393 

degeneration in primary cortical neurons upon hemin exposure. Therefore, a microfluidic device 394 

and deep learning tool to increase the experimental yield and to enable unbiased automatic analysis 395 

was developed. Our pre-specified hypothesis was to detect a concentration-dependent effect of 396 

hemin on axons. Our suggested hypothesis after conducting time-lapse recording was that there 397 

are four morphological patterns of axonal degeneration and that those depend on the severity of 398 

axonal degeneration by different hemin concentrations. 399 
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Research subjects or units of investigation: We employed primary cortical neurons from Crl:CD1 400 

(ICR) Swiss outbred mice. 401 

Experimental design: Randomized controlled laboratory experiment with four different 402 

concentrations of hemin treatment to induce and record axonal degeneration by time-lapse 403 

microscopy and further validation by fluorescence microscopy. 404 

Randomization: Microfluidic units have randomly been assigned to one of the four experimental 405 

conditions (0, 50, 100, 200 µM hemin). 406 

Blinding: The experimenter was not blinded when axons were treated with different hemin 407 

concentrations. The actual analysis was objective as being conducted solely by the deep learning 408 

tool. 409 

 410 

Fabrication of an enhanced throughput microfluidic device based on soft lithographic 411 

replica molding 412 

Thirty-two wells were milled in a polymethyl methacrylate (PMMA) plate of the size of a 413 

conventional cell culture plate (Fig. 1A and Supplementary Fig. S1) using a universal milling 414 

machine (Mikron WF21C, Mikron Holding AG) with a 1 mm triple tooth cutter (HSS-CO8 Type 415 

N, Holex) at a precision of 0.01 mm. During the milling procedure, we applied a half-synthetic 416 

cooling lubricant (Opta Cool 600 HS, Wisura GmbH) on a mineral base to reduce the debris. 417 

Additionally, we milled screw holes in the intermediate spaces between each microfluidic unit to 418 

later detach the PMMA from the negative casting mold. To remove debris, we washed the PMMA 419 

plate by sonication (Sonicator Elmasonic S, Elma Schmidbauer GmbH) at room temperature for 420 

30 minutes. Next, we lasered the microgrooves on the PMMA plate to connect both milled 421 

compartments of each individual microfluidic unit by using an Excimerlaser (Excistar XS 193 nm, 422 
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Coherent). The PMMA plate was then washed again by sonication at room temperature for 423 

30 minutes. 424 

Polydimethylsiloxane (PDMS) was prepared in a 1:10 ratio and mixed properly before inducing 425 

vacuum at 0.5 Torr in a vacuum desiccator (Jeio Tech VDC-31) for 30 minutes. After the PDMS 426 

was poured into an empty aluminum basin to cover the ground, we applied vacuum at 0.5 Torr for 427 

30 minutes to remove air bubbles. The PDMS was cured at room temperature for 48 hours. We 428 

put the PMMA plate on top of the PDMS ground with the milled and lasered structures showing 429 

upwards. Half of each well of the microfluidic units was filled with PDMS before curing at room 430 

temperature for 48 hours. We mixed the epoxy solution in a 1:1 ratio and poured it over the 431 

microfluidic device to cover its surface by at least 1 cm. Vacuum was applied at 0.5 Torr for 432 

10 minutes to remove all air bubbles located above the channel side of the microfluidic device. 433 

The epoxy was cured at room temperature for a minimum of 2 hours. We subsequently detached 434 

the epoxy from the PMMA plate via a metallic block that consisted of screw holes in the 435 

intermediate spaces between the individual systems. The epoxy represented a negative casting 436 

mold to produce the microfluidic devices using PDMS. 437 

PDMS was prepared as described above. We poured the PDMS into the negative epoxy casting 438 

mold and applied vacuum at 0.5 Torr for 30 minutes. The liquid PDMS was cured at 75 °C for 439 

2 hours to induce the polymerization. We peeled the microfluidic devices from the casting mold 440 

and punched the wells with an 8 mm biopsy punch (DocCheck Shop GmbH) to ensure a sufficient 441 

amount of medium for cell culture. We cleaned customized 115 x 78 x 1 mm glass slides by 442 

sonication (Sonicator Elmasonic S, Elma Schmidbauer GmbH) and subsequently cleaned them by 443 

ethanol before plasma treatment (High Power Expanded Plasma Cleaner, Harrick Plasma). Plasma 444 

was applied at 45 W and 0.5 Torr for 2 minutes to activate the silanol groups of the glass slides 445 

and the microfluidic devices enabling firm attachment. 446 
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We washed the microfluidic devices with ethanol and then twice with distilled water to remove 447 

any debris. After aspirating the distilled water, except from the inside of the compartments, 448 

0.1 mg/mL of poly-d-lysine solution in 0.02 M borate buffer (0.25 % (w/v) borate acid, 0.38 % 449 

(w/v) sodium tetraborate in distilled water, pH 8.5) was used for coating at 4 °C overnight. We 450 

aspirated the poly-d-lysine the next morning, not removing it from the compartments, and added 451 

50 µg/mL of laminin as a second coating surface for incubation at 4 °C overnight. At the day of 452 

neuron isolation, the microfluidic devices were washed twice with pre-warmed medium after 453 

aspirating the laminin. Immediately prior to cell seeding, we aspirated the medium from the wells 454 

without removing it from the compartments. 455 

 456 

Experimental animals 457 

Crl:CD1 (ICR) Swiss outbred mice (Charles River) were used. The animals were kept at 20-22 °C, 458 

30-70 % humidity in a 12-hour/12-hour light/dark cycle and were fed a standard chow diet 459 

(Altromin Spezialfutter GmbH) ad libitum. Animal experiments followed the protocol of the “NIH 460 

Guide for the care and use of laboratory animals” and were approved by the Schleswig-Holstein 461 

Ministry for Energy Transition, Agriculture, Environment, Nature and Digitalization (under the 462 

prospective contingent animal license number 2017-07-06 Zille). 463 

 464 

Isolation and culture of primary cortical neurons 465 

We isolated primary cortical neurons from murine E14 embryos after decapitation as previously 466 

described (Zille et al., 2017). We seeded the neurons at a density of 10,000 cells/mm2 in 5 µL 467 

MEM+Glutamax medium into one compartment (soma compartment) of each microfluidic unit of 468 

the device. The cells were allowed to adhere at 37 °C for 30 minutes. In order to promote 469 

directional axon growth into the other compartment (axonal compartment) by medium microflux, 470 
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150 µL of MEM+Glutamax medium were applied to the well of the soma compartment, while 471 

100 µL were added to the well of the axonal compartment (Fig. 1B). Neurons were cultured at 472 

37 °C in a humidified 5 % CO2 atmosphere. The next day, we changed from MEM+Glutamax 473 

medium to Neurobasal Plus Medium containing 2 % B-27 Plus Supplement, 1 mM sodium 474 

pyruvate and 1 % penicillin/streptomycin. The volume differences among the wells ensured the 475 

microflux for the directional axonal growth over the following days. 476 

 477 

Immunofluorescence 478 

Soma and axonal compartments in the microfluidic units were fixed at room temperature for 1 hour 479 

in 4 % formaldehyde solution in phosphate buffered saline (PBS). They were washed twice with 480 

PBS and permeabilized with blocking solution (2 % BSA, 0.5% Triton-X-100 and 1x PBS) at 481 

room temperature for 1 hour. We incubated the neurons/axons on both compartments with primary 482 

antibodies against synaptophysin (1:250) and MAP2 (1:4000) at 4 °C overnight. The next day, 483 

both compartments were washed three times with PBS and incubated with the secondary 484 

antibodies anti-mouse Alexa Fluor 546 (1:500) and anti-rabbit Alexa Fluor 488 (1:500) at room 485 

temperature for 1 hour. After washing three times with PBS, both compartments were incubated 486 

with DAPI (1 µg/mL) for nuclear counterstaining at room temperature for 10 minutes. Both 487 

compartments were washed three times with PBS prior to fluorescence microscopy. An Olympus 488 

IX81 time-lapse microscope (Olympus Deutschland GmbH) with a 10X objective (0.3 NA Ph1) 489 

and camera F-View soft Imaging system was used at room temperature. Images were acquired 490 

with CellM software (Olympus Deutschland GmbH) and further processed via ImageJ (see Image 491 

preprocessing). 492 

 493 

Selection of microfluidic units for hemin treatment and time-lapse recording 494 
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At six or seven days in culture, microfluidic devices were considered for recording if they met the 495 

following inclusion criteria: i) axon growth through at least 80 % of all microgrooves and ii) axon 496 

length of at least 150 µm from the end of the microgrooves. All included microfluidic units were 497 

randomly assigned to the experimental conditions. 498 

 499 

Time-lapse recording of axonal degeneration 500 

Axons were treated with 0 (vehicle), 50, 100, and 200 µM hemin. For the treatment, the medium 501 

was removed from the wells of the microfluidic units; hemin was diluted in the collected media 502 

and added back to the respective wells. The media volume between the two wells was equalized 503 

during the treatment to prevent any microflux. All microfluidic units were recorded immediately 504 

after each other. We started the recordings at 1 hour after treatment to allow for the adjustment of 505 

the well plates to the humidity of the incubation chamber of the microscope and the setup of the 506 

recording positions. We recorded AxD in Neurobasal Plus Medium containing 2 % B-27 Plus 507 

Supplement, 1 mM sodium pyruvate and 1 % penicillin/streptomycin with a 30-minutes interval 508 

for 24 hours using an Olympus IX81 time-lapse microscope (see Immunofluorescence) at 37 °C, 509 

5 % CO2 and 65 % humidity. 510 

 511 

Live cell fluorescent staining 512 

To evaluate axonal vitality, we washed the axonal compartment once with PBS and incubated the 513 

axonal compartment with calcein AM (4 µM) in PBS for 30 minutes at 37 °C at the end of the 514 

time-lapse recording or in 4-hour intervals upon hemin treatment. An Olympus IX81 time-lapse 515 

microscope (see Immunofluorescence) was used to record the respective images at 37 °C, 5 % 516 

CO2 and 65 % humidity. 517 

 518 
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Training of the EntireAxon CNN for the segmentation of phase-contrast microscopic images 519 

We trained the EntireAxon CNN for the image-wise semantic segmentation of AxD features in a 520 

supervised manner (Fig. 2B). To this end, we adapted a standard u-net with ResNet-50 encoder 521 

(Ronneberger et al., 2015) to automatically determine the class probability for each pixel of an 522 

input image. Our segmentation aimed to classify each pixel of a microscopic image of a time-lapse 523 

recording into one of four classes: ‘background’, ’axon’, ’axonal swelling’, and ’axonal fragment’. 524 

For the training dataset, we selected 33 images and created corresponding image labels (masks) 525 

using GIMP (v.2.10.14, RRID:SCR_003182). For each image, a label image with the same height 526 

and width was created, in which each pixel value denotes a pixel class. Specifically, the classes 527 

‘background’, ‘axon’, ‘axonal swelling’, and ‘axonal fragment’ had the values 0, 1, 2, and 3, 528 

respectively. For each pixel of the input image, we retained 4 values that reflect the probability 529 

distribution of the pixel over the four classes. We assigned each pixel the most probable class to 530 

create a segmentation map. During training, the CNN observed an input image, produced an output 531 

and compared this output to the label. The weights of the network were adapted via 532 

backpropagation so that the output better fitted the label. The weight changes were derived from a 533 

pixelwise loss function, i.e. the cross-entropy loss: 534 

𝐿𝑜𝑠𝑠(𝑃, 𝑌)  =  − ∑ 𝑌(𝑥, 𝑦, 𝑐) 𝑙𝑜𝑔(𝑃(𝑥, 𝑦, 𝑐))𝑥,𝑦,𝑐 ; 535 

with 𝑃(𝑥, 𝑦, 𝑐) 𝑎𝑛𝑑 𝑌(𝑥, 𝑦, 𝑐) being the probability of class c at pixel (𝑥, 𝑦) for the prediction and 536 

ground truth of the network, respectively. 537 

 538 

We trained a mean ensemble consisting of eight neural networks for 180 epochs using the Adam 539 

optimizer, a batch size of four and a learning rate of 0.001 that decreased by a factor of ten after 540 

every 60 epochs. The input images were standardized by the image-net mean and standard 541 
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deviation (Deng et al., 2009). For data augmentation, we used random cropping (size 512 x 512), 542 

image flipping along the horizontal axis and rotation by a random angle between -90° and +90°. 543 

 544 

Validation of the EntireAxon CNN compared to human experts 545 

To measure how well the EntireAxon CNN segments unknown images (Fig. 2C), we used a second 546 

validation set comprising eight images that were labeled by three human experts (A. Palumbo, 547 

S.K.L., L.E.H.). Importantly, the EntireAxon CNN did not update its parameters during training 548 

to fit the validation set, but only used the training set. 549 

For each image, the EntireAxon CNN inferred a segmentation. We generated a binary mask from 550 

the prediction of the network, where 1 denotes the respective class and 0 all other classes. We 551 

computed a binary label mask in the same manner. We counted the true positive (TP), false positive 552 

(FP), and false negative (FN) pixels and computed the recall (sensitivity) and precision (Forman 553 

and Scholz, 2010): 554 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 555 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 556 

Recall and precision were calculated for each class separately on each validation image. The mean 557 

recall and precision over all eight validation images were determined subsequently. 558 

A mean of 96.42 % of pixels in the axonal images were ‘background’ pixels, while only 2.77 % 559 

represented the class ‘axon’, 0.58 % ‘axonal swelling’, and 0.23 % ‘axonal fragment’ pixels. This 560 

reflects a challenging degree of class imbalance, where the probability of having any positives for 561 

a class in a validation image is low. Thus, we did not use the computed recall and precision of the 562 

individual images or the mean recall and precision to compute the mean F1 score, i.e., the harmonic 563 

mean of recall and precision. This has been shown to lead to bias, especially when a high degree 564 
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of class imbalance is present in the dataset (Forman and Scholz, 2010) as it may result in undefined 565 

values for an image for recall (due to the absence of TP), precision (in case the CNN does not 566 

recognize the few positives), and F1 score (in case either recall or precision are undefined). To 567 

avoid bias, we computed the total TP, FP, and FN of all validation images from which we 568 

calculated the mean F1 score (Forman and Scholz, 2010): 569 

𝑚𝑒𝑎𝑛 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗  𝑇𝑃𝑡𝑜𝑡𝑎𝑙

2 ∗ 𝑇𝑃𝑡𝑜𝑡𝑎𝑙 +  𝐹𝑃𝑡𝑜𝑡𝑎𝑙  +  𝐹𝑁𝑡𝑜𝑡𝑎𝑙
 570 

In addition, we computed a consensus label between human expert 1 and 2, 1 and 3 as well as 2 571 

and 3 and compared the EntireAxon CNN versus the remaining expert (human expert 3, 2, and 1, 572 

respectively) to the consensus labels. Mean F1 scores for all classes were computed as described 573 

above. 574 

 575 

Image preprocessing 576 

Prior to the analysis of AxD after hemin exposure, we preprocessed the time-lapse recordings in 577 

ImageJ (v1.52a, RRID: RRID:SCR_003070) using a custom-written macro. Specifically, each 578 

individual recording was converted from a 16-bit into an 8-bit recording to make it compatible 579 

with the ImageNet (8-bit) pre-trained ResNet-50. The recording was aligned automatically with 580 

the ImageJ plug-in “Linear Stack Alignment with SIFT” as described previously (Lowe, 2004). 581 

The following settings were used: initial Gaussian blur of 1.6 pixel, 3 steps per scale octave, 582 

minimum image size of 64 pixel, maximum image size of 1024 pixel, feature descriptor size of 4, 583 

8 feature descriptor orientation bins, closest/next closest ratio of 0.92, maximal alignment error of 584 

25 pixel; inlier ratio of 0.05, expected transformation as rigid, “interpolate” and “show info” 585 

checked. Black edges appearing on the recording after alignment were cropped.  586 

 587 

AxD analysis using the EntireAxon CNN 588 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2020.08.26.269092doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.269092
http://creativecommons.org/licenses/by/4.0/


28 

 

All recordings of AxD after hemin exposure were automatically analyzed by the trained 589 

EntireAxon CNN, which classified each pixel as one of the four different classes ‘background’, 590 

‘axon’, ‘axonal swelling’, and ‘axonal fragment. For each experimental condition (i.e. hemin 591 

concentration), the sum percentage of all pixels per class on all images of that experimental day 592 

were added at each time point (‘Axont1.5–24h, Axonal swellingt1.5-24h, Axonal fragmentt1.5-24h). To 593 

determine the changes for the classes ‘axon’, ‘axonal swelling’, and ‘axonal fragment’ over time, 594 

we calculated the sum percentage of pixels for all given time points (ti with I = 1.5 to 24 hours) of 595 

the corresponding class over the sum of the pixels of all three classes at baseline: 596 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ′𝑐𝑙𝑎𝑠𝑠′𝑎𝑟𝑒𝑎 (𝑡𝑖)597 

=  
  ′𝐶𝑙𝑎𝑠𝑠′

𝑡𝑖

𝐴𝑥𝑜𝑛𝑡1.5ℎ + 𝐴𝑥𝑜𝑛𝑎𝑙𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡1.5ℎ + 𝐴𝑥𝑜𝑛𝑎𝑙𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑡1.5ℎ
∗ 100 598 

 599 

Classification of the morphological patterns of AxD using attention-based RNN 600 

We used the segmentation videos derived from the original microscopic images using the CNN to 601 

identify four morphological patterns of AxD: granular, retraction, swelling, and transport 602 

degeneration (Fig 7A). To reduce the dimensions of the input, the segmentation video was 603 

converted into a series of normalized histograms (H), one for each (time) frame. Thus, the RNN 604 

did not operate on the microscopic images directly, but rather on more efficient representations of 605 

the data. To compute a histogram for a frame ti, we compared the pixels of the frames ti and ti+1. 606 

Each pixel was assigned into one of 16 classes that consisted of pairs (𝑐1, 𝑐2) ∈  {0,1,2,3}2 of the 607 

four segmentation classes (i.e., four times four possible configurations, 16 class pairs). For 608 

example, the class (background, axon) means that in frame ti, the pixel was classified as 609 

background, while in frame ti+1, it was an axon pixel. For T time steps, we therefore computed T-610 

1 histograms. 𝐻0(𝑡𝑖, (𝑐1, 𝑐2)) is the number of pixels that belong to class 𝑐1 at time-frame 𝑡𝑖 and 611 
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that belong to 𝑐2 at time-frame 𝑡𝑖+1. Additionally, we normalized each histogram to sum up to 1 612 

(i.e. we divided by the sum over all pairs): 613 

𝐻(𝑡𝑖, (𝑐1, 𝑐2))  =  𝐻0(𝑡𝑖, (𝑐1, 𝑐2)) / ∑ 𝐻0(𝑡𝑖, (𝑎, 𝑏))

𝑎,𝑏

 614 

Of note, the histograms were computed over small patches (height and width < 90 pixels) during 615 

training and during inference on windows of size 32x32 pixels. 616 

We used an encoder-decoder RNN with attention (Bahdanau et al., 2016). The encoder 𝑓𝑒𝑛𝑐   617 

consisted of a gated recurrent unit (GRU) that obtained the histogram time sequence 𝐻 as input. 618 

The encoder computed the hidden representation of the histograms: 619 

𝑉 =  𝑓𝑒𝑛𝑐(𝐻);  𝑉 ∈ ℝ𝑇 𝑥 𝑑, 𝐻 ∈ ℝ𝑇 𝑥 16  620 

For our purpose, we used an architecture that was able to base the decision for a degeneration class 621 

on the previous class predictions. To this end, the output �⃗�𝑖 was computed iteratively in C+1 steps 622 

as a sum of the previous output and the output of the decoder 𝑓𝑑𝑒𝑐: 623 

�⃗�𝑖 = �⃗�𝑖−1 + 𝑓𝑑𝑒𝑐(ℴ(�⃗�𝑖−1), 𝑠𝑖−1); �⃗� ∈ ℝ𝐶 , 𝑠𝑖−1 ∈ ℝ𝑑   624 

𝑓𝑑𝑒𝑐(ℴ(�⃗�𝑖−1), 𝑠𝑖−1)  =  𝑊𝑜𝑢𝑡𝑧𝑖;   𝑊𝑜𝑢𝑡 ∈ ℝ𝐶 𝑥 𝑑 625 

C is the number of degeneration classes (4) and d is the hidden dimension (we used 256); 𝑖 =626 

 1, 𝐼, 𝐶 + 1. ℴ is the sigmoid function. The decoder employed a GRU that depended on the context 627 

vector 𝑐𝑖  and the hidden state vector 𝑠𝑖−1: 628 

𝑧𝑖, 𝑠𝑖  =  𝐺𝑅𝑈(𝑐𝑖, 𝑠𝑖−1); 𝑧𝑖 ∈ ℝ𝑑  629 

The entries of the initial hidden vector 𝑠1 were all zero. The context vector is a weighted sum of 630 

the encoder representations. At each iteration, these weights can change, enabling the network to 631 

focus on different time-steps. We assumed that a specific pattern of degeneration happened only 632 
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in a limited number of time frames that were fewer than the whole input video. The weights 633 

depended on the current state of the decoder and the current output: 634 

𝑐𝑖  =  𝑉𝑇�⃗�𝑖; �⃗�𝑖  ∈ ℝ𝑇 635 

�⃗�𝑖 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥( 𝑊𝑎𝑡𝑡 [𝑠𝑖−1, 𝑅𝑒𝐿𝑈(𝑊𝑖𝑛�⃗�𝑖−1)] );  𝑊𝑎𝑡𝑡 ∈ ℝ𝑇 𝑥 2𝑑,  𝑊𝑖𝑛 ∈ ℝ𝑑 𝑥 𝐶 636 

Here, [�⃗�, �⃗⃗�] is the concatenation of two vectors. The final output 𝑦 is normalized by the sigmoid 637 

function: 638 

𝑦 =  ℴ(�⃗�𝐶+1 )  ∈  [0, 1]𝐶 . 639 

Apart from the weights used by the GRUs, 𝑊𝑖𝑛, 𝑊𝑎𝑡𝑡, and 𝑊𝑜𝑢𝑡 are learnable weights. 640 

The EntireAxon RNN was trained with 162 images for 60 epochs using the lamb optimizer (You 641 

et al., 2020) with a batch size of 128. We used a learning rate of 0.01 that was reduced by a factor 642 

of ten every 15 epochs and an additional weight decay of 0.0001. The two GRUs (encoder and 643 

decoder) contained three layers, and we used dropout with a p-value of 0.9. To increase the RNN 644 

robustness against varying axon thickness, we also added eroded versions of the segmentation data 645 

using a cross-shape as kernel with the sizes three, five, and seven. Accordingly, each image existed 646 

six times in the dataset: three eroded versions and three unchanged copies, to keep a 50 % chance 647 

of having the original image for training. 648 

 649 

RNN cluster analysis 650 

The unnormalized class output �⃗�𝐶+1  was computed by the matrix-vector product 𝑊𝑜𝑢𝑡𝑧𝐶+1. Where 651 

𝑧𝐶+1 was a 256-dimensional vector representation of the input sample, computed by the model. 652 

For the classes to be linearly separable, the vector representations of each class needed to be close 653 

to each other in the 256-dimensional space. To visualize the relationships of the specific samples, 654 
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we employed t-distributed stochastic neighborhood embedding (T-SNE) to compute a 2-655 

dimensional representation of the high-dimensional data. 656 

 657 

Ten-fold cross-validation of the RNN 658 

To validate the RNN, we used ten-fold cross-validation (Hastie et al., 2009). The dataset 𝑆 was 659 

divided into 10 subsets, ensuring that each subset included at least one sample of each class: 𝑆 =660 

 ⋃ 𝑆𝑖
10
𝑖=1 ;  𝑆𝑖  ∩  𝑆𝑗  =  ∅, 𝑖 ≠ 𝑗. We trained ten models for i=1,..,10 on 𝑇𝑟𝑎𝑖𝑛𝑖 = 𝑆 / 𝑆𝑖 and test 661 

them on 𝑇𝑒𝑠𝑡𝑖 = 𝑆𝑖. Subsequently, we combined and evaluated all test samples 𝑇𝑒𝑠𝑡 =662 

⋃ 𝑇𝑒𝑠𝑡𝑖
10
𝑖=1 . Mean recall, precision, and F1 score were determined as described above. 663 

 664 

Analysis of morphological pattern of AxD using the EntireAxon RNN 665 

All AxD segmentations after hemin exposure were automatically analyzed with the trained 666 

EntireAxon RNN, which predicted the occurrence of the four morphological patterns of AxD in a 667 

pixel-wise manner. Of note, a pixel can be predicted to belong to 0, 1 or multiple morphological 668 

patterns. Only pixels previously identified as degenerated over time were considered by applying 669 

a ‘fragmentation mask’ that included all no-background pixels that changed to either background 670 

or fragment during the recording time. 671 

For each experimental condition (i.e., hemin concentration), the percentage of the occurrence of 672 

each morphological pattern was calculated as the sum of all pixels per morphological pattern on 673 

all images of that experimental day divided by the ‘fragmentation mask’ as follows: 674 

 ′𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛′[%]675 

=  
 ∑ 𝑝𝑖𝑥𝑒𝑙 𝑜𝑓 𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑖

∑ 𝑝𝑖𝑥𝑒𝑙 𝑛𝑜 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 → 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  𝑜𝑟 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡
∗ 100 676 

 677 
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Statistical analysis 678 

Six biological replicates for each concentration were employed in each experiment to assess 679 

hemin-induced AxD. We did not perform a priori power analysis as this was an exploratory study. 680 

Normality was evaluated with the Kolmogorov-Smirnov test, variance homogeneity using the 681 

Levené test, and sphericity by the Mauchly test. When the data were normally distributed and 682 

variance homogeneity was met, one-way ANOVA followed by the Bonferroni post hoc test was 683 

performed. In case the data were not normally distributed, the Kruskal-Wallis test was performed 684 

for multiple comparisons of independent groups followed by the post hoc Mann-Whitney U test 685 

with α-correction according to Bonferroni to adjust for the inflation of type I error due to multiple 686 

testing. For the repeated testing with covariates, a repeated measures ANOVA was performed with 687 

Greenhouse-Geisser adjustment if sphericity was not given. Linear regressions were performed 688 

for AxD patterns. Data are represented as mean ± 95 % confidence interval (CI) except for the 689 

nonparametric data of the AUC for axonal fragments, where medians are given. A value of 690 

P < 0.05 was considered statistically significant. For the Kruskal-Wallis test followed by Mann-691 

Whitney U, P =0.05/k was used, with k as the number of single hypotheses. K = 3 for AUC 692 

analyses (comparison of three different concentrations of hemin vs. 0 µM hemin), thus α = 0.0167 693 

was considered statistically significant. K = 6 for the comparison of the linear regression slopes 694 

(comparison of the four AxD patterns against each other), thus α = 0.0083 was considered 695 

statistically significant. The detailed statistical analyses can be found in Tables S1-3. All statistical 696 

analyses were performed with IBM SPSS version 23 (RRID:SCR_002865), except linear 697 

regressions that were performed with GraphPad Prism version 8 (RRID:SCR_002798).  698 
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List of abbreviations 699 

AxD axonal degeneration 700 

CNN convolutional neural network 701 

FP false positive 702 

FN false negative 703 

GRU gated recurrent unit 704 

PBS phosphate buffered saline 705 

PDMS polydimethylsiloxane 706 

PMMA polymethyl methacrylate 707 

RNN recurrent neural network 708 

TP true positive 709 

  710 
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Figure legends 886 

 887 

Figure 1. Microfluidic device for the enhanced throughput cultivation of axons. (A) The microfluidic device 888 

incorporates 16 individual microfluidic units for axon cultivation. One microfluidic unit consists of two wells that are 889 

connected through compartments and microgrooves (MG). (B) Primary cortical neurons are seeded into the soma 890 
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compartment from which their axons grow through the MG into the axon compartment. Directed growth is supported 891 

by culture medium microflux due to different medium volumes between the two wells. (C) Phase-contrast image of 892 

primary cortical axons that were spatially separated from their somata by the MG at day in vitro 7, which we confirmed 893 

by immunofluorescence staining of dendrites using microtubule-associated protein 2 (MAP2, green, 1:4000) and 894 

axons using synaptophysin (red, 1:250). DAPI (blue, 1:1000)) was used for nuclear counterstaining (top). Scale 895 

bar: 100 µm.  896 
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 897 

Figure 2. EntireAxon CNN for the enhanced throughput analysis of AxD. (A) The flow chart of the EntireAxon 898 

CNN. The AxD data was separated into training, validation, and testing data. We adapted a standard u-net with 899 

ResNet-50 encoder (Ronneberger et al., 2015; He et al., 2015) and used a CNN ensemble, which combines predictions 900 

from multiple CNNs to generate a final output and is superior to individual CNNs (Dietterich, 2000; Huang et al., 901 

2016; Vuola et al., 2019). (B) We manually labeled the training data to segment each pixel into the four classes 902 

‘background’, ‘axon’, ‘axonal swelling’, and ‘axonal fragment’, which are displayed in the output image in black, 903 

dark grey, intermediate grey, and light grey, respectively. We trained an ensemble comprising 8 CNNs to segment the 904 

four classes. (C) The EntireAxon CNN was validated with a separate validation dataset to assess its performance 905 

(recall, precision, and mean F1 score), which was compared to human experts (ground truth was labeled by human 906 

expert 1). (D) The EntireAxon CNN was applied to data on AxD induced by the exposure of hemin, which is used to 907 

model of hemorrhagic stroke in vitro.  908 
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 909 

Figure 3. Performance of the EntireAxon CNN compared to human experts. (A) Validation of the EntireAxon 910 

CNN performance for all four classes ‘background’, ‘axon’, ‘axonal swelling’ and ‘axonal fragment’ in before unseen 911 

phase-contrast microscopic images. (B) Comparison of the mean F1 scores between the EntireAxon CNN and two 912 

human experts on the ground truth (human expert 1 who also labeled the training images) to recognize background, 913 

axon, axonal swelling and axonal fragments. (C) Phase-contrast validation image, its EntireAxon CNN segmentation 914 
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mask, and the consensus labeling masks of two human experts that show the segmentation overlap (cyan) or difference 915 

(red) between the labels. Scale bar: 100 µm. (D) Comparison of the mean F1 scores between the EntireAxon CNN 916 

and the human expert on the consensus labeling of the other two human experts.  917 
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 918 

Figure 4. Time- and concentration-dependent hemin-induced AxD. (A) Primary cortical axons treated with hemin 919 

(50, 100, 200 µM) degenerated compared to vehicle-treated axons (0 µM) that continued to grow. Scale bar: 50 µm. 920 

For complete time-lapse videos including segmentation, refer to Video S1-4. (B) Quantification of AxD over 24 hours 921 
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in phase-contrast images. To determine the time course, the sum of pixels in each class and hemin concentration over 922 

time was normalized to the baseline of that class and condition. The quantification of the phase-contrast images over 923 

24 hours revealed significantly smaller axon areas starting at 11.5 hours after 200 µM (P = 0.020), at 14 hours after 924 

100 µM (P = 0.040), and at 15 hours after 50 µM (P = 0.018) hemin treatment compared to control (0 µM). The axonal 925 

fragment area significantly increased from 9.5 hours onwards in 200 µM hemin (P = 0.037) and from 17.5 hours in 926 

100 µM hemin (P = 0.044), while the axonal swelling area increased from 6 hours onwards in 100 µM hemin 927 

(P = 0.019) and 200 µM hemin (P = 0.010) and from 8 hours in 50 µM hemin (P = 0.030). N = 6 independent cultures 928 

of primary cortical neurons. Means + 95 % CI are given. One-way ANOVA with Greenhouse-Geisser correction. +, 929 

*, # P < 0.05; + = 50 µM vs. 0 µM, * = 100 µM vs. 0 µM, # = 200 µM vs. 0 µM. For detailed statistical information, 930 

refer to Table S1.  931 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2020.08.26.269092doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.269092
http://creativecommons.org/licenses/by/4.0/


47 

 

 932 

Figure 5. Area under the curve (AUC) analysis of hemin-induced AxD. While axons exposed to hemin showed a 933 

decline in axon area, axonal swelling and axonal fragment area increased. N = 6 independent cultures of primary 934 

cortical neurons. Means ± 95 % CI are given for axon and axonal swelling area, medians for fragment area. * P < 0.05 935 

vs. 0 µM for axon and swelling area, * P < 0.0167 for fragment area due to manual Bonferroni correction for 936 

nonparametric data. For exact p values, refer to Table S2.  937 
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 938 

Figure 6. Four morphological patterns of AxD. (A) Schematic overview of the proposed AxD morphological 939 

patterns: granular degeneration, retraction degeneration, swelling degeneration, and transport degeneration. (B) Phase-940 

contrast recordings of the four morphological patterns of AxD in primary cortical axons. Granular degeneration (G) 941 

is characterized by the fragmentation of the axon (white arrows). During retraction degeneration (R), the axonal 942 

growth cone retracts in the proximal direction and the part of the axon in proximity of the growth cone disintegrates 943 

accompanied by axonal swellings (white arrows). During swelling degeneration (S), many axonal swellings enlarge 944 

resulting in axonal fragments (white arrows). During transport degeneration (T), axonal swellings are transported 945 

along the axon prior to the degeneration of the axon (white arrows). Scale bar: 20 µm. For complete time-lapse videos 946 

including segmentation, refer to Videos S5-8.  947 
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948 

Figure 7. Recognition of four morphological patterns of AxD by the EntireAxon RNN. (A) Schematic workflow 949 

of the RNN to recognize and quantify morphological patterns of AxD based on the identification of seven clusters. 950 

The EntireAxon CNN segmentation masks were used for the RNN training, which determined the change in class 951 

over time. Based on the 16 different possible class pairs, the RNN determined seven clusters (cluster 0-6). To visualize 952 

the relationships of the specific samples, we employed t-distributed stochastic neighborhood embedding (T-SNE) to 953 

compute a 2-dimensional representation of the high-dimensional data. (B) The clusters classify the four morphological 954 

patterns of AxD with yellow indicating included and purple indicating excluded clusters: granular (G), retraction (R), 955 

swelling (S), and transport degeneration (T). Clusters of granular degeneration overlap with recognized clusters of 956 

other morphological patterns (retraction, swelling, and transport degeneration). For more details on the morphological 957 

changes underlying the cluster analysis, refer to Supplementary Fig. S3. (C) 10-fold cross-validation of the four 958 

morphological patterns of AxD.  959 
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960 

Figure 8. Concentration-dependent differences in the morphological patterns of hemin-induced AxD. (A) The 961 

classification of granular (G), retraction (R), swelling (S), and transport degeneration (T) in primary cortical axons 962 

treated with 200 µM hemin. For the complete time-lapse video including segmentation, refer to Video S9. (B) Linear 963 

regressions of the four morphological patterns of AxD in hemin-induced AxD. The area classified for each AxD 964 

pattern was normalized to the total degeneration area. Dotted lines show 95 % confidence bands. N = 6 independent 965 

cultures of primary cortical neurons. Granular degeneration: F(1,22) = 19.330, P < 0.001. Retraction degeneration: 966 

F(1,22) = 0.066, P = 0.800. Swelling degeneration: F(1,22) = 16.900, P < 0.001. Transport degeneration: 967 

F(1,22) = 5.757, P = 0.025. For the comparison of the slopes between the different AxD patterns, refer to Table S3.  968 
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