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ABSTRACT 88 

 89 

Numerous reports have suggested that infectious agents could play a role in 90 

neurodegenerative diseases, but specific etiological agents have not been convincingly 91 

demonstrated. To search for candidate agents in an unbiased fashion, we have developed a 92 

bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including 93 

sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline 94 

was tested using publicly available RNA-seq data. We then applied this pipeline to a novel RNA-95 

seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis (ALS) 96 

patients and controls, and identified sequences corresponding to known bacteria and viruses, as 97 

well as novel virus-like sequences. The presence of these novel virus-like sequences, which were 98 

identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We 99 

believe this pipeline will be a useful tool for the identification of potential etiological agents in the 100 

many RNA-seq data sets currently being generated. 101 

 102 

 103 

 104 

 105 

INTRODUCTION 106 

 107 

Background of organisms in neurodegeneration 108 

 109 

 110 

Infection has been proposed to play a role in multiple neurodegenerative diseases1, 111 

including amyotrophic lateral sclerosis (ALS)2. ALS is the most common motor neuron disease in 112 

adults, with the majority of individuals dying within 3-5 years of symptom onset. The disease is 113 

defined by the degeneration and death of motor neurons in the brain and spinal cord, resulting in 114 

progressive weakness and eventually death, typically from respiratory muscle weakness3. Around 115 

5-10% of ALS cases are inherited, termed familial ALS (fALS), with the remaining cases 116 

considered sporadic ALS (sALS). After decades of study, the etiology of sALS remains a mystery, 117 

although suspected risk factors for ALS include exposure to heavy metals, pesticides, chemical 118 

solvents, cigarette smoke, and unidentified factors related to US military service4–7. 119 

Along with these environmental risk factors, there has been a long history, with variable 120 

success, in the search for pathogens that might contribute to ALS8–12 and other neurodegenerative 121 

diseases such as Alzheimer’s disease (AD)13–15, Parkinson’s disease (PD)16–18, and multiple 122 

sclerosis (MS)19. 123 

Diverse pathogens have been reported in the blood, cerebrospinal fluid (CSF) and central 124 

nervous system (CNS) from ALS patients. For example, bacteria that have been detected include 125 

Cutibacterium acnes, Corynebacterium sp, Fusobacterium nucleatum, Lawsonella clevelandesis, 126 

and Streptococcus thermophilus in CSF20, and mycoplasma in blood21. Fungi, including Candida 127 

famata, Candida albicans, Candida parapsilosis, Candida glabrata, and Penicillium notatum, 128 

have been detected in CSF, while Malassezia globosa, Cryptococcus neoformans11, and Candida 129 

albicans have been found in various regions of the CNS11,22,23. The search for viruses that 130 

contribute to ALS pathology is much more extensive and includes studies on herpes virus9,24, 131 

enterovirus9,25–28, human immunodeficiency virus (HIV)29,30, and human endogenous retrovirus 132 

(HERV-K)31–33. Importantly, multiple studies using immunohistochemistry have shown an 133 
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increased load of various pathogens in ALS samples compared to controls in multiple tissues 134 

suggesting these pathogens are present and cannot be simply attributed to contamination9,11,20,22,23. 135 

Ultimately, the presence of ALS dysbiosis is unresolved and remains an active area of investigation 136 

with evidence for34–38 and against39 it. 137 

The biological role that these alternative microbiotas play in ALS is also unclear. ALS 138 

patients may have a compromised blood brain barrier (BBB) or blood spinal cord barrier (BSCB) 139 

function40,41. It has been reported that ALS patients also have elevated Gram negative 140 

endotoxin/lipopolysaccharide (LPS) in the blood42. Patients with ALS also display activation of 141 

the innate immune system along with changes in blood43,44, spinal cord and motor neurons45, but 142 

if and how bacteria might influence activation is an active area of research. A “dual hit” hypothesis 143 

by Correia et al. suggests inflammation via LPS may contribute to mis-localization and 144 

aggregation of ALS-implicated protein TAR DNA-binding protein 43 (TDP-43)46.  145 

Numerous studies have looked for biomarkers of ALS47 using metabolomics48,49, 146 

neuroinflammation50,51 , DNA methylation52,53, gene expression54, microRNA expression55,56 and 147 

our previous study which analyzed protein levels of poly(GP) in C9ORF72-associated ALS 148 

(c9ALS)57. The search for pathogens using sequencing data from blood samples in ALS patients 149 

has been conducted before58–61, but previous efforts have not looked for novel pathogens.  150 

Next-generation sequencing (NGS) technologies have shown broad detection of pathogens 151 

in a target-independent unbiased fashion62–65. However, designing a microbial detection 152 

experiment is non-trivial considering the variety of methods66 and algorithms67 that can be applied. 153 

Our primary goal when designing a new pipeline was to be conservative and unbiased with regards 154 

to discovery of novel pathogens. Furthermore, we wanted our pipeline to allow for the 155 

quantification of both novel and known pathogens. While other pipelines have used reads that do 156 

not map to the host genome (unmapped reads) for microbial identification and quantification, these 157 

pipelines cannot be used for discovery as they rely on existing databases of microbial genomes68–158 
71. Thus, we opted for de-novo assembly of unmapped reads into contigs, followed by alignment 159 

of unmapped reads back to these contigs for quantification. A similar pipeline known as IMSA72 160 

uses this strategy, but disregards contigs that might be identified by translated amino acid sequence 161 

similarity using BLASTX (a set we call the “dark biome”) as well as subsequent contigs with no 162 

BLASTN or BLASTX hit (a set we call the “double dark biome”).  163 

  We validated our pipeline by using datasets with known bacterial or viral infections. We 164 

also examined the differences in microbial identification between polyA and total RNA recovery 165 

in multiple tissues, and investigated the effects of globin depletion of blood samples. We then used 166 

our pipeline on a novel blood dataset (termed “Our Study”) as well as on five other published ALS 167 

datasets from blood or spinal cord samples, analyzed each dataset individually, and analyzed 168 

across datasets for changes in microbiota. While we did not identify any microbes enriched in the 169 

blood of ALS patients, we did identify and validate a novel virus-like sequence, demonstrating the 170 

potential of the bioinformatic pipeline we have established. 171 

 172 

 173 

 174 

MATERIALS AND METHODS 175 

 176 

Blood Collection and RNA Extraction 177 

A total of 120 RNA whole blood samples constitute Our Study, which included 30 healthy 178 

controls (from general population that do not have blood relatives suffering from ALS, CTL), 30 179 
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pre-symptomatic C9ORF72 mutant carriers (C9A), 30 symptomatic C9ORF72 ALS cases (C9S), 180 

and 30 symptomatic C9ORF72-negative ALS cases (SYM). PAXgene blood RNA tubes were 181 

collected at Mayo Clinic Jacksonville and at University of Miami.  All 120 RNA samples selected 182 

for RNA-seq were received and processed at Mayo Clinic Jacksonville using PAXgene blood RNA 183 

kit following manufacturer’s recommendations (Qiagen). Blood RNA was of high quality, 184 

assessed in an Agilent Bioanalyzer (Agilent), with RNA integrity values ranging from 7.4 to 9.8, 185 

with a median value of 8.7. RNA samples were then sent to The Jackson Laboratory for globin 186 

depletion, library preparation and sequencing of total blood RNA. 187 

 188 

Globin Depletion 189 

 Due to the abundance of large haemoglobin RNA transcripts present in the blood, a globin 190 

depletion step, using the Ambion GLOBINclear kit (AM1980), was performed before sequencing 191 

of the blood RNA samples in order maximize coverage on non-globin genes. In brief, one 192 

microgram of total RNA was used as starting material, and specific biotinylated oligos were used 193 

to capture globin mRNA transcripts. The capture oligos were hybridized with total RNA samples 194 

at 50°C for 30 min. Streptavidin magnetic beads were then used to bind to the biotinylated capture 195 

oligos hybridized to globin mRNA by incubating at 50°C for 30 min. The magnetic streptavidin 196 

beads-biotin complex were then captured to the side of the tubes by a magnet, and the resulting 197 

supernatant is free of globin mRNA. The globin depleted RNA was further purified by RNA 198 

binding beads and finally eluted in elution buffer. The resulting RNA free of >95% globin mRNA 199 

transcripts was then processed for next generation sequencing. Of note, to assess the efficiency of 200 

the globin RNA depletion, 10% of the samples processed were selected randomly and amplified 201 

using a Target-Amp Nano labeling kit (Epicentre). Samples were normalized to 100 ng input and 202 

reverse transcribed. First strand cDNA was generated by incubating at 50°C for 30 min with first 203 

strand premix and Superscript III. This was followed by second strand cDNA synthesis through 204 

DNA polymerase by incubating at 65°C for 10 min and at 80°C for 3 min. In-vitro transcription 205 

was then performed at 42°C for 4 hours followed by purification using RNeasy mini kit (Qiagen).  206 

  Due to the large number of samples, the globin depletion step was performed in two batches. 207 

We provided guidelines on how samples would be divided among the batches and also for how 208 

samples would be grouped in the sequencing runs in order to minimize technical variability. The 209 

Jackson Laboratory personnel were blinded to the identity of the samples.  210 

 RNA-seq of total blood RNA (globin and ribosomal RNA depleted) was performed in an 211 

Illumina HiSeq4000 with >70 million read pairs per sample. Raw reads were then sent back to us 212 

for bioinformatics analyses. 213 

 214 

Quantitative RT-PCR for blood RNA samples 215 

A total of 500 ng of total blood RNA was used for reverse transcription polymerase chain 216 

reaction (RT-PCR), using the High Capacity cDNA Transcription Kit with random primers 217 

(Applied Biosystems). Quantitative real-time PCR (qRT-PCR) was performed using SYBR 218 

GreenER qPCR SuperMix (Invitrogen). Samples were run in triplicate, and qRT-PCRs were run 219 

on a QuantStudio 7 Flex Real-Time system (Applied Biosystems).  220 

 221 

List of primers and their sequences:  222 

RDRP forward 5’-GCTGTCAAATCGGTTTCCAAC-3’;  223 

RDRP reverse 5’-CTGCCTTCGTCATCTTGGAG-3’;  224 

GAPDH forward 5’-GTTCGACAGTCAGCCGCATC-3’;  225 
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GAPDH reverse 5’-GGAATTTGCCATGGGTGGA-3’. 226 

 227 

Transcriptomics 228 

See pipeline description in results for an overview of the pipeline; see bioinformatics 229 

supplement File S1 for a more detailed description of the analysis pipeline, versions, and statistical 230 

quantification. All data in this study was processed identically using the pipeline. 231 

 232 

 233 

Statistical Analysis 234 

To assess statistical differences between conditions, a two tailed Student’s t-test is 235 

calculated using normalized coverage for contigs or binned normalized coverage for 236 

species/genus, etc. The number of contigs or genus/species is used to obtain an adjusted p-value 237 

using scipy in Python. Cutoff for statistical significance is less than an adjusted p-value of 0.05 238 

unless otherwise stated.  239 

 240 

 241 

Data availability 242 

Raw sequencing data for Our Study dataset is available in the NCBI Sequence Read 243 

Archive under the accession number (PRJN). All other datasets are publicly available and all of 244 

the code used in this manuscript is available at https://github.com/Senorelegans/MysteryMiner. 245 

Supplemental material available at figshare: https:// doi.org/(INSERT).  246 

 247 

 248 

 249 

 250 

RESULTS 251 

Pipeline description 252 

Mystery Miner is written as a Nextflow pipeline. Below is a short overview of the Mystery 253 

Miner pipeline (Fig1). A more in-depth explanation, list of software and versions used, and typical 254 

parameters of each step is described in the bioinformatics supplement, and all of the code used in 255 

this manuscript can be found at https://github.com/Senorelegans/MysteryMiner. 256 

Raw reads were first checked for quality using FastQC then trimmed to remove both 257 

adaptor contamination and low quality basecalls using Trimmomatic. Trimmed reads were then 258 

mapped to the host genome using multiple alignment algorithms in series (STAR, Bowtie2) and 259 

unmapped reads were retained for contig assembly. Filtering out host reads made downstream 260 

assembly faster and required less memory. We assembled contigs from unmapped reads with the 261 

SPAdes assembler (with “-rna” setting). This assembler was chosen for its recent use in studies of 262 

microbial diversity73 and proven robustness to biological and technical variation74. The species 263 

each contig belongs to was identified with BLASTN using default settings, and the top hit for each 264 

contig was retained (a set we call “regular biome”). Contigs with no BLASTN hits were then 265 

filtered to remove highly repetitive regions (DUST) and retained if they had a greater than 60% 266 

pairwise alignment (LAST) between contigs assembled from a single sample, group/condition, or 267 

all samples.   268 

We then identified contigs that lacked detectable nucleotide similarity to any GenBank 269 

entry but showed similarity at the amino acid level using BLASTX (“dark biome”). Furthermore, 270 

contigs with no BLASTN or BLASTX hits were labelled as “double dark biome” (also filtered by 271 
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DUST and LAST). Every contig in the “regular biome” and “dark biome” were then queried 272 

against the Joint Genome Institute Server for additional taxonomic information. As Mystery Miner 273 

is an agnostic tool, it cannot distinguish between true tissue or cell-associated microbes and 274 

experimentally introduced contamination. 275 

For quantification, we mapped the non-host reads using Bowtie2 to the contigs obtained 276 

from SPAdes. Next, we mapped reads to contigs using samtools mpileup (default mapq score) to 277 

calculate the amount of reads over each base pair in a contig. We then calculated coverage on the 278 

contigs by summing all of the counts for each base pair in a contig and dividing by the length of 279 

the contig. We then calculated normalized coverage by library size using the number of mapped 280 

reads to the host genome. This gave us normalized coverage (NC) for a contig or binned 281 

normalized coverage (BNC) for multiple contigs within a species/genus, etc. To assess statistical 282 

differences between conditions, a Student’s t-test was calculated through NC or BNC, using the 283 

number of contigs or genus/species to obtain an adjusted p-value using scipy in Python.  284 

 285 

 286 

 287 

 288 
 289 

Figure 1. Diagram of Mystery Miner Pipeline 290 

Reads were first checked with FastQC and trimmed using Trimmomatic (1. grey). Reads were then 291 

aligned to the host genome using various aligners (2. blue). Non-host (unmapped) reads were 292 

assembled into contigs with RNA SPAdes and regular biome contigs were identified with 293 

BLASTN (3. yellow). Unidentified contigs were filtered for repetitive sequences with Dust, filter 294 

by single, group or all with LAST, and dark biome contigs were identified with BLASTX. Double 295 

dark biome unidentified BLASTX contigs were sent directly to quantification (4. purple). Dark 296 

biome and regular biome contigs were assigned complete taxonomy using the JGI server and 297 

filtered one last time to remove mammalian/host genome contigs (5. Green). Non-host reads were 298 

then mapped to all contigs and normalized coverage was calculated for subsequent statistical 299 

analysis. 300 

 301 

 302 
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Validating Mystery Miner on datasets with known bacterial or viral infection 303 

 304 

 To confirm that Mystery Miner is able to recover and quantify known bacterial infections 305 

from sequencing data, we utilized an in vitro model of Chlamydia trachomatis infection 306 

(Humphrys 2016)75. In this study, epithelial cell monolayers were infected with Chlamydia 307 

trachomatis; and polyA RNA (6 samples) and total RNA (6 samples) were sequenced 1 hour and 308 

24 hours post infection (hpi). Using the Mystery Miner pipeline, out of 5.32 X 106 reads from all 309 

of the samples, 6.04 X 105 reads remained unmapped (~11.34%) after trimming and mapping to 310 

the host genome (File S2). From these non-host reads, 3,257 contigs were assembled and 1,199 of 311 

these contigs were identified as regular biome (File S3). An additional 27 contigs had no BLASTN 312 

hit. Of these, we identified 2 dark biome (BLASTX identified) and no double dark biome (no 313 

BLASTX or BLASTN hit) contigs (File S4 and File S5).  314 

 Using Mystery Miner we successfully identified, and found significantly elevated levels, 315 

of Chlamydia trachomatis (BNC by species) in 24 hours post infection (hpi) samples compared to 316 

1 hpi samples in both polyA (Padj = 0.004) and total RNA (Padj = 0.0005). In addition to 317 

Chlamydia trachomatis, we identified 6 additional bacterial species and one viral species 318 

(Alphapapillomavirus 7) in the samples (Figure 2A), including significantly elevated levels of 319 

Mycoplasma hyorhinis contigs in total RNA samples. No significant differences were observed in 320 

the dark or double dark contigs (File S6). 321 

 To confirm that the pipeline can detect known viral infections, we ran Mystery Miner on a 322 

total RNA dataset from an in vitro model of severe acute respiratory syndrome coronavirus 323 

(SARS-CoV) 1 or 2 infection (Emanuel202076). In this study human epithelial Calu3 cells were 324 

infected with SARS-CoV-1 or SARS-CoV-2 (4, 12, or 24 hours), mock (4 or 24 hours), or 325 

untreated (4 hours).  326 

Out of the 2.81 X 108 reads obtained from all of the samples, 8.23 X 107 reads remained 327 

unmapped (~29%) after trimming and mapping to the host genome (File S2). From these non-host 328 

reads, 42,816 contigs were assembled, of which 1,346 regular biome, 27 dark biome, and 7 double 329 

dark biome contigs passed the filtering steps (File S2, File S3, File S4, File S5) 330 

 Mystery Miner successfully identified both SARS-CoV-2 and SARS-CoV-1 isolates and 331 

found significantly elevated levels of each virus compared to controls (Figure 2B). Hereafter we 332 

refer to SARS-CoV-1 or SARS-CoV-2 infected cells as COV1 or COV2 to avoid confusion with 333 

recovered names of contigs. Consistent with the viruses being similar, we identified both SARS-334 

CoV-2 and SARS-CoV-1 in both the COV1-24hr and COV2-24hr samples when compared to 335 

mock-24hr. However, when we compared COV2-24hr to COV1-24hr, we were able to distinguish 336 

SARS-CoV-1 isolates from SARS-CoV-2 in the appropriate samples (i.e., SARS-CoV-2 was 337 

significantly elevated in COV2).  Similar results were seen in the 12 hour samples but the 4 hour 338 

samples did not have sufficient viral reads to detect either SARS-CoV virus (File S7). To simulate 339 

a novel virus, we ran Mystery Miner on versions of the BLASTN and BLASTX databases obtained 340 

before SARS-CoV-2 was discovered and were able to properly identify SARS-CoV-2 as a bat 341 

related coronavirus77 (Figure S1) (File S7). 342 

 Collectively, these data show that Mystery Miner is able to identify potential bacterial and 343 

viral infections, properly identify infected samples using quantification, and detect significant 344 

differences between infected samples and controls for bacteria, viruses, and isolates of a virus.  345 

 346 

 347 

 348 
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 349 

 350 

 351 

 352 

Figure 2. Heatmap of binned normalized coverage for bacterial or viral infected datasets. A. 353 

Regular biome contigs binned by species from Humphrys et al., 2016. Time refers to 1or 24 hours 354 

post infection (hpi) of epithelial cell monolayers with Chlamydia trachomatis (green). Pulldown 355 

refers to library enrichment for polyA RNA (red) or total RNA (black). B. Regular virome of 356 

contigs binned by name from Emanuel et al., 2020 for SARS-CoV-2 infected cells (COV2) (red), 357 

or SARS-CoV-1infected cells (COV1) (black), mock virus (orange), or untreated sample (purple). 358 

Time refers 4,12, or 24 hpi of Calu3 cells with indicated virus (green). Top 10 hits per experiment 359 

shown for brevity. 360 

 361 

 362 

 363 

 364 

 365 

 366 

Effects of library pulldown or globin depletion in RNA-seq datasets 367 

  368 

In order to compare effects of library enrichment or depletion, we compared recovered 369 

pathogens in a dataset that has polyA enrichment or rRNA depleted total RNA from blood or 370 

colonic tissue (VonSchack2018)78. When we compared polyA RNA vs total RNA and looked at 371 

BNC by superkingdom of bacteria we found significantly more reads map to bacteria for total 372 

RNA than polyA RNA (Padj = 0.0349), in blood but not in colon (Padj=0.11709) (Figures S2 and 373 

File S8). We found similar amounts of significant BNC by species for polyA RNA vs total RNA 374 

in blood (29) and in colon (26). We then looked at significant BNC by genus and found double the 375 

amount in blood (14) compared to colon (7), with only one significant genus (Actinomyces) found 376 

in both comparisons. We did not find any significant differences in coverage when we looked at 377 

the species, genus or superkingdom level for viruses (File S8). We conclude that library 378 
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enrichment with total RNA compared to polyA RNA increases bacterial recovery and diversity in 379 

blood. 380 

We next looked at a RNA-seq dataset from whole blood with globin depleted (GD) vs non-381 

globin depleted (NGD) total RNA (Shin201479). With BNC by superkingdom, we found 382 

significantly increased levels in globin depleted vs. not-depleted samples for both bacteria (Padj = 383 

0.004) (Figure S3) and viruses (Padj = 0.030) (Figure S4). We also found significant differences 384 

in BNC by species (Figure S5) or genus (Figure S6) primarily from E. coli with elevated levels in 385 

globin-depleted blood RNA. We did not find any significant differences when we looked for 386 

viruses at the species or genus level (File S9). 387 

 388 

 389 
Figure 3. Log number of bacterial species vs Log reads for Assembly in Our Study. Scatterplot 390 

where each dot is a sample from a dataset with log number of bacterial contigs assembled on the 391 

Y-axis and Log reads used in SPAdes on the X-axis. Samples show a modest correlation (Pearson's 392 

r=0.37) between library size and bacterial species recovered. Data fit with a regression (black line) 393 

and 95% confidence interval (gray area). 394 

 395 

 396 

 397 

 398 

 399 
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Analysis of Our Study 400 

  We used Mystery Miner on our novel RNA-seq dataset of globin depleted and rRNA 401 

depleted total blood RNA from 120 individuals. These samples were from four subject groups 402 

including healthy control participants (CTL), ALS symptomatic C9ORF72 negative patients 403 

(SYM), C9ORF72 positive ALS symptomatic patients (C9S) and C9ORF72 positive 404 

asymptomatic individuals (C9A).  405 

The entire dataset contains a combined 8.64 X 109 reads.  Approximately 2.7% (2.34 X 406 

108) of the reads did not map to the human genome. From these non-host reads 2,976,988 contigs 407 

were assembled and 17,047 BLASTN contigs (regular biome) were identified. A total of 25,815 408 

contigs had no BLASTN hit and after filtering we identified 2,980 dark biome (BLASTX 409 

identified) and 859 double dark biome (no BLASTX or BLASTN hit) contigs (File S2, File S3, 410 

File S4, File S5). 411 

In general, we found a modest positive correlation between library size and number of 412 

bacterial contigs assembled, species detected (Figure 3), and genera detected for each sample as 413 

well as a homogenous mixture of samples with respect to disease status. No specific taxonomy or 414 

contig sequence correlated with participant class within the dataset. Yet, by pooling bacterial read 415 

counts across all of the samples, we found alpha proteo-bacteria, Actinobacteria, Firmicutes, and 416 

Bacteroidetes as the most highly represented taxonomies, consistent with other blood biome 417 

studies80 (Figure S6). Most of the bacterial genera (~65%) assigned to the dark biome contigs were 418 

also found in the regular biome, however this was not the case in the viral sets, as only 5% (4/78) 419 

of dark viral contigs were observed in the regular biome (File S10). This observation suggested 420 

that our pipeline might be identifying novel viral sequences.  421 

Within the dark biome contigs, we noted numerous contigs with a region of protein 422 

sequence similarity to RNA-dependent RNA polymerase (RdRP) from multiple RNA viruses, 423 

showing highest similarity to the velvet tobacco mottle virus (first row in heatmap of Figure 4, 424 

complete metadata shown in Figure S7). Our attention was drawn to the largest (~5 kb) dark biome 425 

contig (one of the contigs showing similarity to the velvet tobacco mottle virus) hereafter labeled 426 

as “RDRP contig”. To confirm the presence of the RDRP contig in the original samples, we 427 

designed primers to the RDRP contig and performed reverse transcriptase polymerase chain 428 

reaction (RT-PCR) on seven samples, four of which had high coverage (predicted present) and 429 

three with zero coverage (predicted absent). We found typical levels for detection of a virus81 in 430 

the samples with high coverage and detected nothing in samples with zero coverage (Table 1). We 431 

conclude that Mystery Miner is biologically validated and can recover unknown pathogens from 432 

human subjects. 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 
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 446 

 447 

 448 

 449 
Figure 4. Heatmap of dark biome contigs binned by species in Our Study.  450 

Heatmap of normalized coverage of dark biome contigs binned by species. The highest coverage 451 

belongs to contigs that show high similarity to velvet tobacco mottle virus. Zero coverage is blue 452 

and goes to red with increasing values. These samples were from four subject groups including 453 

healthy controls [(CTL) green], C9ORF72 negative ALS symptomatic [(SYM) purple], C9ORF72 454 

positive ALS symptomatic [(C9S) blue] and C9ORF72 positive asymptomatic [(C9A) red] 455 

patients. Sex indicated as light blue (male) and pink (female). Top 20 species sorted by binned 456 

normalized coverage was shown for brevity. 457 

 458 

 459 
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 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 
Figure 5. Log number of bacterial species vs Log reads for Assembly for ALS Datasets. 469 

Scatterplot where each dot is a sample from a dataset with log number of bacterial contigs 470 

assembled on the Y-axis and Log reads used in SPAdes on the X-axis. ALS datasets show a high 471 

correlation (Pearson's r=0.88) between library size and bacterial species recovered. Data fit with a 472 

regression (black line) and 95% confidence interval (gray area). 473 

 474 

 475 

Analysis of published ALS datasets 476 

 We next sought to explore whether similar results would be obtained from other ALS 477 

datasets. To this end, we examined five other publicly available ALS datasets, consisting of two 478 

that used total RNA from blood (Linsley201482, Gagliardi 201858), and three datasets from spinal 479 

cord (Brohawn201683, Ladd201784, Brohawn 201985). We have provided a summary table of 480 
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datasets for all studies used in this paper (Table 2). As we observed in Our Study, we first noted 481 

that increased library size correlated with an increased number of bacterial contigs assembled, 482 

species detected, and genera detected (Figure 5, and Figure S8-10 show all datasets used in this 483 

study).  484 

We then looked at the total overlap of genus or species to determine if there are similarities 485 

in recovered microbial or viral sequences between datasets. For genus in the regular bacteriome, 486 

our dataset had the highest number of unique genus (185), followed by Ladd2017 (117), and 487 

Gagliardi2018 (38). The highest number of overlapping bacterial genus was between our dataset 488 

and Ladd2017 (133) followed by the intersection between our dataset, Ladd2017 and 489 

Gagliardi2018 (61) and there was a modest overlap (24) for 9/10 datasets (Figure 6). We observed 490 

roughly the same trend in the regular bacterial biome at the species level and in the dark bacterial 491 

biome (S Figure 11, File S11). In contrast, the regular virome of each dataset was relatively unique 492 

with very low amounts of overlap (<= 3) between datasets (species and genus shows a similar 493 

pattern). Interestingly, the highest overlap for species in the dark virome was between our dataset 494 

and Ladd2017 (13), one of which is similar to RDRP viruses, although the contigs in Ladd’s data 495 

were not similar to the velvet tobacco mottle virus in our dataset (Figure S12, File S12).  496 

In addition to comparing datasets using taxonomy, we also compared contigs between 497 

datasets for nucleotide similarity (> 70%) using LAST (File S1 for methods). We found that in 498 

general, datasets in the regular biome with the largest amount of contigs have the most overlap. 499 

Unsurprisingly, in the dark biome we observed less overlap by nucleotide similarity and that our 500 

RDRP contig does not share nucleotide similarity with contigs from any dataset. In addition, we 501 

also compared the nucleotide similarity of double dark biome contigs and found there is not a large 502 

percentage of similar contigs between datasets (File S13). 503 
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 504 
 505 

Figure 6. Upset plots of overlapping genus in the regular bacteriome between datasets. 506 

Upset plots are Venn diagram-like plots. A set refers to a dataset used in this study and each set is 507 

on a row with total amounts in a set as a blue bar plot on the left (ordered by set size). The black 508 

histogram on top shows the counts that are in the intersection of sets (a single dot for one dataset 509 

or connected dots for overlap of multiple datasets). Intersections less than 4 are removed for 510 

visualization purposes.  511 

 512 

 513 

 514 

Comparison of taxonomy by condition within ALS datasets 515 

Finally, we looked for differences in ALS vs control samples for each dataset. In the 516 

Gagliardi2014 dataset, when we compared ALS patients with the FUS mutation to controls, we 517 

found 3 significant differences in BNC by species in the regular bacteriome (Neisseria sp., 518 

Pseudomonas sp., Sphingomonas sp.) and one significant difference in BNC by genus in the dark 519 

bacteriome (photobacterium). In ALS patients with mutations in SOD1 compared to controls, we 520 

found two species significantly different in the regular bacteriome (Hydrogenophaga crassostreae, 521 

Sphingomonas hengshuiensis) (Gagliardi FUS and SOD1 supplement). We did not find anything 522 

significant in sporadic ALS, or in ALS patients with TARDBP mutations with regards to 523 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.27.428546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428546


 16 

genus/species (regular or dark biome or viruses) for Gagliardi2014. We found no significant 524 

statistical differences between ALS and control samples for genus/species of viruses/bacteria in 525 

the regular/dark biome for any of the remaining ALS datasets. 526 

 527 

Meta analysis between datasets 528 

 529 

Since our dataset and many others had no significant comparisons for ALS vs control 530 

groups within each dataset, a meta-analysis between datasets using this criteria would be difficult. 531 

As a second pass analysis we created a less stringent filtering method in order to compare the 532 

presence of microbes for each group between datasets (ALS vs. ALS; or controls vs. controls) 533 

(Figure 7). We assigned a contig to a condition if ≥ 2 samples from that condition contain at least 534 

90% of the summed normalized coverage (from all samples) to the contig. This filtering greatly 535 

reduced the number of comparable genus/species for each dataset and, for example, reduced the 536 

genus of the regular bacteriome in our dataset from 305 for all samples to 33 (SYM:8, C9S:6, 537 

C9A:2, CTL:17) (File S14). 538 

When we looked at ALS or control contigs in the regular bacteriome, the highest number 539 

of unique genus or species was from Ladd2017, and in general there was a small amount of overlap 540 

between datasets (≤1 for ALS or ≤ 8 for controls) (Figure 7). When we looked at genus in the dark 541 

bacteriome we saw no overlap for ALS contigs and low overlap (≤ 1) between control conditions 542 

(species was similar) (File S14). In the regular virome there was no overlap between datasets and 543 

only our study (one contig from ALS) and Ladd2017 (three from ALS, five from controls) had 544 

contigs that passed the filter (similar values for species). When we looked in the dark virome by 545 

genus there was no overlap between datasets, and our dataset had only one genus (Sobemovirus 546 

from controls) with the rest coming from Ladd2017 (18 from controls, 5 from ALS) (File S15). In 547 

conclusion, despite our conservative and loose approaches, we did not find any convincing 548 

evidence in ALS samples that the presence (or lack of presence) of an organism (or multiple 549 

organisms) was different compared to control samples. 550 

 551 

 552 
Fig 7. Upset plots of overlapping genus between datasets in the regular biome for ALS or 553 

controls. 554 

Upset plots are Venn diagram-like plots. A set refers to a contig that was assigned to a condition 555 

from a dataset. Each set is on a row with total amounts in a set as a blue bar plot on the left (ordered 556 

by set size). The black histogram on top shows the counts that are in the intersection of sets (a 557 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.27.428546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428546


 17 

single dot for one dataset or connected dots for overlap of multiple datasets). A. ALS contigs in 558 

the regular bacteriome. B. Control contigs from the regular bacteriome. 559 

 560 

 561 

Discussion 562 

 563 

We have created Mystery Miner to search for and quantify known and unknown microbes 564 

in RNA-seq datasets as a tool for researchers to study dysbiosis and identify infectious agents. We 565 

validated the pipeline by recovering and quantifying Chlamydia and SARS-CoV reads from RNA-566 

seq datasets from intentionally infected cells. Interestingly, we also identified Mycoplasma reads 567 

in the Chlamydia dataset, suggesting that Mystery Miner may also be able to identify unsuspected 568 

bacterial infections. We also use published data to investigate the difference of polyA vs total RNA 569 

recovery of bacterial species in multiple tissues. Perhaps surprisingly, we did not see a consistent 570 

difference in the recovery of bacterial reads between the two types of RNA-seq libraries, 571 

considering that bacterial transcripts are not expected to be polyadenylated.  However, it is well-572 

recognized that polyA selection is imperfect, and libraries constructed from polyA-selected RNA 573 

routinely contain transcripts thought not to be polyadenylated (e.g., rRNA).  We also found 574 

increased recovery of bacterial species with globin RNA depletion in blood. This could be the 575 

result of an effective increase in read depth for bacteria when not sequencing globin, or an increase 576 

in contamination from the globin depletion step. We stress that our bioinformatic approach alone 577 

cannot distinguish between contamination and the true existence of microbial sequences in human 578 

tissue. 579 

We then used Mystery Miner on Our Study dataset consisting of 8.64 X 109 reads.  This 580 

dataset was generated from whole blood total RNA that was depleted for both ribosomal and globin 581 

transcripts. It encompasses samples from controls, participants with a C9ORF72 hexanucleotide 582 

expansion (symptomatic and pre-symptomatic), and C9ORF72 negative ALS patients. We found 583 

no statistical difference in microbial sequence read coverage between controls and any class of 584 

ALS patients, examining either individual contigs or using various taxonomical binning 585 

approaches. We also did not detect any batch effects or obvious age- or sex- biases in the recovery 586 

of microbial reads (Figure S7). Overall, we found no evidence of blood microbial sequences 587 

contributing to either C9ORF72 negative ALS or symptomatic patients harboring the C9ORF72 588 

hexanucleotide expansion. However, ALS is a CNS disease, so our findings in these blood samples 589 

do not necessarily preclude a role for microbes in this disease.  590 

 591 

A unique aspect of Mystery Miner is that it tracks non-human reads that do not have 592 

significant BLASTN hits in GenBank. We were intrigued by the identification of a large contig 593 

(>5kb) in the dark biome of our ALS dataset that showed protein sequence similarity to RNA-594 

dependent RNA polymerases, the essential replicase of RNA viruses. To validate that this virus-595 

like sequence was not an artifact of contig assembly or a contaminant introduced during library 596 

construction or sequencing, we used RT-PCR of the original patient samples to demonstrate that 597 

this sequence was present in positive samples identified through the RNA-seq analysis and not 598 

detectable in negative samples.  We cannot extrapolate from this specific example to determine 599 

what fraction of the "dark" and "double dark" sequences represent true novel microbial sequences 600 

present in human blood, but we note that analysis of human cell free blood DNA has reported the 601 

identification of thousands of novel bacterial sequences86. We suggest that Mystery Miner is a 602 

generally useful tool for the identification of novel microbial sequences in RNA-seq data. 603 
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 604 

To extend our analysis we processed publicly available blood and spinal cord ALS datasets 605 

through our pipeline. As observed in our dataset, library size generally correlated with number of 606 

bacterial contigs assembled and number of bacterial genera/species recovered. When the microbial 607 

sequences we found in our dataset were compared to the other datasets we found similar 608 

genera/species and, not surprisingly, larger datasets generally had greater overlap. One dataset 609 

(Ladd2017) yielded comparable recovery of bacteria and viruses for the regular biome but a far 610 

greater recovery bacteria and viruses in the dark biome compared to all the other datasets. This 611 

study used laser capture microdissection (LCM) to isolate cervical spinal cord motor neurons and 612 

had comparable read amounts per sample to other studies and was conducted in the same 613 

laboratory as two other studies (Brohawn2016, Brohawn2019). We are unsure why this dataset 614 

yielded a much larger dark biome compared to the other datasets. Potentially these differences are 615 

a byproduct of using LCM to acquire samples. 616 

  617 

We then analyzed several publicly available ALS datasets for statistically significant 618 

differences between recovered microbial sequences in ALS and control samples.  Only one dataset 619 

(Gagliardi2018) had any significant microbial sequence differences between control and ALS 620 

samples, specifically ALS patients with FUS or SOD1 mutations.  However, the sample number 621 

in this sub-study was small (N = 2-3), and in the case of the SOD1 patients the excess microbial 622 

reads were in the control samples. In the absence of additional information (e.g., batch assignments 623 

for the samples) it is difficult to conclude that these sequence/sample correlations are meaningful. 624 

Finally, we compared identified microbial sequences in the control and ALS samples across the 625 

datasets and did not identify any genera/species that were preferentially recovered in either sample 626 

type. 627 

 628 

Using our bioinformatic analysis pipeline Mystery Miner, we have not identified an 629 

association between ALS pathology and sequences corresponding to known or unknown microbial 630 

species. However, there are intrinsic limitations in using "repurposed" RNA-seq data to assay 631 

tissue-associated microbial sequences, including the relatively small number of non-human reads 632 

(<1% of total) upon which the analysis is based. This limited sequence signal could preclude 633 

identification of rarer microbes. Perhaps more problematic is the possibility that contaminating 634 

sequences obscure true tissue-associated microbial sequences.  Any candidate microbes identified 635 

using Mystery Miner that correlate with human phenotypes will necessarily require independent 636 

validation. Despite these limitations, we believe Mystery Miner will be a useful tool for future 637 

researchers investigating known and unknown microbes that could contribute to disease, as our 638 

analyses have shown it to be sensitive to bacterial/viral agents in sequencing data. 639 

 640 

 641 

 642 
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 653 

 654 

Condition Sample 

GAPDH 

RT-PCR 

Ct Value 

RDRP 

RT-PCR Ct 

Value 

RDRP 

RNA-seq 

Normalized 

Coverage 

SYM LP00274 20.562019 36.401 1.56 

C9S LP00041 20.783213 36.346 3.39 

C9S LP00192 20.899612 35.636 0.67 

C9A LP000180 19.982108 34.832 1.11 

C9S LP000183 20.176418 undetermined 0 

C9S LP000197 20.125161 undetermined 0 

C9A LP000157 20.062433 undetermined 0 

 655 

 656 
TABLE 1. RT-PCR AND NORMALIZED COVERAGE RESULTS FOR RDRP CONTIG 657 
Quantitative RT-PCR and normalized coverage results from the 5180 bp RDRP contig. For the RDRP contig positive 658 
samples (top 4) with high normalized coverage and detectable Ct values and negative samples (bottom 3) with no 659 
normalized coverage and undetectable Ct values. GAPDH was used as a positive control for qRT-PCR and shows 660 
comparable levels for all samples. These samples were from three conditions C9ORF72 negative ALS symptomatic 661 
patients (SYM), C9ORF72 positive ALS symptomatic patients (C9S) and C9ORF72 positive asymptomatic 662 
individuals (C9A). 663 
 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 
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Name Groups # Samples Tissue Pulldown 

Humphrys2016 1- or 24-hours post 

infection with 

Chlamydia 

trachomatis 

12 Cultured epithelial 

cell monolayers 

PolyA 

Total RNA 

VonSchack2018 PolyA or Total 

RNA from blood or 

colon 

16 Whole Blood 

 Colon 

PolyA RNA  

Total RNA 

Shin2014 Globin depleted  

Not globin depleted  

24 Whole Blood Total RNA 

Emanuel2020 Severe acute 

respiratory 

syndrome 

coronavirus 1 or 2 

infection 

Controls 

18 Calu3 cells Total RNA 

Our Study C9ORF72 negative 

ALS, 

C9ORF72 positive 

and symptomatic 

ALS, 

C9ORF72 positive 

asymptomatic 

participants 

Controls 

120 Whole Blood Total RNA 

hemoglobin 

and rRNA 

depleted 

Linsley2014 ALS 

type 1 diabetes, 

sepsis, 

multiple sclerosis 

patients before and 

24 hours after the 

first treatment with 

IFN-beta 

Controls 

134 Whole blood Total RNA 

Gagliardi2018 Sporadic ALS, 

ALS with 

mutations in 

FUS, SOD1, 

TARDBP 

Controls 

20 Peripheral blood 

mononuclear cells  

Total RNA 

Brohawn2016 ALS 

Controls 

15 Cervical spinal 

cord 

Total RNA 

rRNA depleted 
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Ladd2017 ALS 

Controls 

10 Laser capture 

microdissection 

(LCM) to isolate 

cervical spinal cord 

motor neurons  

Total RNA 

Brohawn2019 ALS, Alzheimer’s 

disease (AD), 

Parkinson’s disease 

(PD) 

Controls 

53 Cervical spinal 

cord 

Total RNA 

 673 

 674 
TABLE 2. STUDY DESIGN FOR DATASETS USED IN THIS PAPER 675 
Overview of the datasets used in this paper. The first three studies are only used to validate our pipeline. The six 676 
subsequent studies are ALS related from both blood and spinal cord. 677 
 678 

 679 

 680 

Supplemental Figures 681 

 682 
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 683 
 684 

Figure S1. Heatmap of normalized coverage of regular Virome from Emanuel2020 with 685 

BLAST to nt database from 05/10/2019 686 

Heatmap of normalized coverage of dark biome contigs binned by species (top 30 species). The 687 

nucleotide database was from 5/10/2019 before the discovery of SARS-CoV-2. The top row 688 

shows the same row from the main text but identified as a bat SARS like coronavirus.  689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 
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 697 
 698 

Figure S2. Boxplot of normalized coverage for superkingdom Bacteria in VonSchack2018 699 

Boxplot of normalized coverage of regular biome contigs binned by superkingdom Bacteria. 700 

Blood shows significantly more reads in total RNA vs polyA RNA compared to Colon tissue. 701 

 702 

 703 

 704 
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 705 
Figure S3. Boxplot of normalized coverage for superkingdom Bacteria in Shin2014 706 

Boxplot of normalized coverage of regular biome contigs binned by superkingdom Bacteria. 707 

Globin depletion (GD) has significantly more coverage than non-globin depleted (NGD) blood. 708 

 709 

 710 

 711 
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 712 
Figure S4. Boxplot of normalized coverage for superkingdom Viruses in Shin2014 713 

Boxplot of normalized coverage of regular biome contigs binned by superkingdom Viruses. 714 

Globin depletion (GD) has significantly more coverage than non-globin depleted (NGD) blood. 715 

 716 
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 717 
Figure S5. Heatmap of normalized coverage of regular Bacteriome binned by species from 718 

Shin2014  719 

Heatmap of normalized coverage of regular biome contigs binned by bacteria species (top 20 720 

species shown for brevity). Globin depletion (GD) is red and non-globin depletion is blue 721 

(NGD). 722 

 723 
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 724 
 725 

Figure S5. Heatmap of normalized coverage of regular Bacteriome binned by genus from 726 

Shin2014  727 

Heatmap of normalized coverage of regular biome contigs binned by bacteria genus. Globin 728 

depletion (GD) is red and non-globin depletion is blue (NGD). 729 

 730 
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 732 
Figure S6. Log coverage binned by phylum from our ALS dataset  733 

Coverage is summed for all of the samples and alpha proteo-bacteria, Actinobacteria, 734 

Firmicutes, and Bacteroidetes are the most highly represented. 735 

 736 

 737 

 738 

 739 
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 741 
Figure S7. Heatmap of normalized coverage of dark biome contigs binned by species with 742 

metadata  743 

Heatmap of normalized coverage of dark biome contigs binned by species (top 30 species shown 744 

for brevity). The highest coverage belongs to contigs that show high similarity to velvet tobacco 745 

mettle virus. Zero coverage is blue and goes to red with increasing values. These samples were 746 

from four conditions including control patients [(CTL) green], ALS symptomatic patients 747 

[(SYM) purple], C9-ORF positive ALS symptomatic patients [(C9S) blue] and C9-ORF positive 748 

asymptomatic patients [(C9A) red]. Other metadata include gender, lane, run, and age at 749 

collection. 750 

 751 
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 752 
 753 

Figure S8. Log Bacterial contigs vs log reads for Assembly. Scatterplot where each dot is a 754 

sample from a dataset with log number of Bacterial contigs assembled on the Y-axis and Log 755 

reads used in SPAdes on the X-axis. Aside from the Shin, Humphrys, and Emanuel datasets there 756 

is a general trend of increased number of bacterial contigs with amount of reads. 757 

 758 

 759 
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 761 
 762 

Figure S9. Log number of bacterial species vs log reads for Assembly. Scatterplot where each 763 

dot is a sample from a dataset with log number of number of bacterial species detected on the Y-764 

axis and Log reads used in SPAdes on the X-axis. 765 

 766 

 767 

 768 

 769 

 770 
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 773 
Figure S10. Log number of bacterial genus vs log reads for Assembly. Scatterplot where each 774 

dot is a sample from a dataset with log number of number of bacterial genus detected on the Y-775 

axis and Log reads used in SPAdes on the X-axis. 776 

 777 

 778 

 779 
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 788 
Figure S11. Upset plots of Bacteria for genus/species of regular/dark genome 789 

Upset plots are venn diagram-like plots. Each set is on a row with total amounts in a set as a blue 790 

bar plot on the left. The black histogram on top shows the counts that are in the intersection of 791 

sets (a single dot for one set or connected dots for multiple sets). The highest number of 792 

overlapping bacterial genus is between our dataset and Ladd2017 (133) followed by the 793 

intersection between our dataset, Ladd2017 and Gagliardi2018 (61) and there is a modest overlap 794 

(24) for 9/10 datasets. This is roughly similar in the Bacterial species figure and in general the 795 

larger datasets have more unique and the highest number of overlap. 796 

 797 

 798 

 799 

 800 

 801 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.27.428546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428546


 34 

 802 
 803 

 804 

Figure S12. Upset plots of Viruses for genus/species of regular/dark genome 805 

Upset plots are venn diagram-like plots. Each set is on a row with total amounts in a set as a blue 806 

bar plot on the left. The black histogram on top shows the counts that are in the intersection of 807 

sets (a single dot for one set or connected dots for multiple sets). The regular virome of each 808 

dataset is relatively unique with very low amounts of overlap (<= 3) between datasets (species 809 

and genus shows a similar pattern). Interestingly, the highest overlap for species in the dark 810 

virome is between our dataset and Ladd2017 (13). 811 
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 813 
Figure S13. Upset plots of Bacteria in the regular biome for genus/species in ALS and 814 

Control contigs 815 

Upset plots are venn diagram-like plots. Each set is on a row with total amounts in a set as a blue 816 

bar plot on the left. The black histogram on top shows the counts that are in the intersection of 817 

sets (a single dot for one set or connected dots for multiple sets). We assigned a contig to a 818 

condition if >= 2 samples from that condition contain at least 90% of the summed normalized 819 

coverage (from all samples) to the contig. In the genus and species from ALS samples there is a 820 

low amount of overlap between datasets ( <= 1). When we look at control samples there is a 821 

much higher overlap for both genus and species. 822 
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 826 
 827 

 828 

Figure S13. Upset plots of Bacteria in the dark biome for genus/species in ALS and Control 829 

contigs 830 

Upset plots are venn diagram-like plots. Each set is on a row with total amounts in a set as a blue 831 

bar plot on the left. The black histogram on top shows the counts that are in the intersection of 832 

sets (a single dot for one set or connected dots for multiple sets). We assigned a contig to a 833 

condition if >= 2 samples from that condition contain at least 90% of the summed normalized 834 

coverage (from all samples) to the contig. Conditions with no recovered viruses have been 835 

omitted for clarity. Similarly to the regular bacteriome, there is no overlap in ALS samples and a 836 

small amount of overlap in the conditions. 837 
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