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Abstract 

White-nose syndrome has caused massive mortality in multiple bat species and spread across 

much of North America, making it one of the most destructive wildlife diseases on record. This 

has also resulted in it being one of the most well-documented wildlife disease outbreaks, making 

it possible to look for changes in the pattern of spatial spread over time. We fit a series of spatial 

interaction models to the United States county-level observations of the pathogenic fungus, 

Pseudogymnoascus destructans, that causes white-nose syndrome. Models included the distance 

between caves, cave abundance, measures of winter length and winter onset, and species richness 

of all bats and hibernating bats only. We found that the best supported models included all of 

these factors, but that the particular structure and most informative covariates changed over the 

course of the outbreak, with winter length displacing winter onset as the most informative 

measure of winter conditions, and evidence for the effects total species richness and hibernation 

varying from year to year. We also found that weather had detectable effects on spread. While 

the effect sizes for cave abundance and species richness were relatively stable over the length of 

the outbreak, distance became less important as time went on. These findings indicate that 

although models produced early in the outbreak captured important and consistent aspects of the 

spatial spread of white-nose syndrome, there were also changes over time in the factors 

associated with spread,  suggesting that forecasts may be improved by iterative model 

refinement. 

Keywords: Pseudogymnoascus destructans, spatial dynamics of disease, network model,  

 

Introduction 

The outbreak of white-nose syndrome (WNS) in North American bats is driving massive 

declines in multiple hibernating bat species (Frick et al., 2010, 2015; Langwig et al., 2012, 

Thogmartin et al., 2012) and continues to spread across the continent (Lorch et al., 2016; Hoyt et 

al., 2021). The etiological agent of WNS is the psychrophilic fungus Pseudogynmoascus 

destructans (Lorch et al., 2011; Verant et al., 2012; Warnecke et al., 2012), which is known to 

infect at least 12 species of North American cave-dwelling bats (Turner et al., 2014; Frick et al., 

2015, 2016; Hoyt et al., 2021), and has caused declines of up to 99%  in abundance of Myotis 
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septrionalis, M. lucifugus, M. sodalis and Perimyotis subflavus populations (Frick et al., 2010, 

2015; Langwig et al., 2012; Thogmartin et al., 2012).  Since its earliest detection in Schoharie 

County, NY in 2006, the pathogen has been detected in hibernacula, places including caves and 

mines where bats hibernate, in 39 states (Hoyt et al., 2021).  This combination of host mortality 

and spatial extent makes WNS one of the most damaging wildlife diseases known, along with 

chytridiomycosis in frogs (Rohr et al., 2008) and facial tumor disease in Tasmanian devils 

(McCallum et al., 2007).  

The well-documented spread of WNS since 2006 offers a valuable opportunity to consider how 

our understanding of the spatial dynamics of this disease has changed over time. A comparison 

of multiple models fit to the pattern of spatial spread during the first 6 years of WNS expansion 

in the United States found that a gravity model based on distance between counties and the 

number of hibernacula in each county better explained the observed pattern of spatial spread than 

models based solely on distance (Maher et al., 2012). The best-supported model also included a 

covariate for the average winter length in each county whereby longer winters were associated 

with a greater probability of occurrence of P. destructans (Maher et al., 2012). In addition to 

determining the role of distance, hibernacula abundance, and climate in the observed spread of 

WNS, this model was used to create forecasts for the future spread of WNS, summarized as the 

median number of new counties infected each year and the distance from origin over time 

(Maher et al., 2012). These forecasts also captured the order in which counties recorded 

infections in many cases (USFWS; www.fws.gov/whitenosesyndrome/maps.html, 2019).  

Pseudogynmoascus destructans has continued to spread steadily across North America, 

providing an ever-lengthening time series of newly infected counties. (It appears that once a 

county has been infected, it never becomes “uninfected” again.) Studies of the disease dynamics 

within and between hibernacula have highlighted the role of environmental conditions within 

hibernacula (Wilder et al., 2011; Langwig et al., 2012; Lilley et al., 2018), finding that longer 

time spent hibernating leads to higher fungal loads (Langwig et al., 2020) and mortality (Lorch et 

al., 2011, Warnecke et al., 2012). Ongoing research also aims to determine whether autumn 

swarming or winter movements are more important to transmission between hibernacula 

(Kramer et al., 2019; Langwig et al., 2015, 2020). In this context, the previous finding that 

winter duration increases spread rate raises the question of whether the average length of winter 
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(as tested by Maher et al. in 2012) matters because of regional differences in bat behavior or 

whether the specific conditions of each year drive spread.  If the latter is the case, differences in 

spread rate could correlate with the number of hibernacula visited during autumn swarming or 

outcomes of mid-winter movements. The larger number of winter observations, compared to 

when the first model was created, offers additional information for answering this question. 

Spread since 2012 also included long-distance dispersal to Washington in the winter of 2015-

2016 (Lorch et al., 2016). The Maher et al. (2012) model predicted a median year of arrival in 

this region of 2026 based on a probabilistic forecast with a wide range of possible arrival times. 

This raises the question whether the long distance spread to Washington was an event consistent 

with the existing understanding of spatial dynamics of spread. Or did the short period of disease 

progression to that point prevent effective forecasts of future dynamics? While the dispersal of P. 

destructans to Washington has been suggested to be human-mediated (Hoyt et al., 2021), human-

aided dispersal may have been a factor in earlier spread as well, and therefore implicitly 

recognized by the model.  

Here, we revisit the spatial spread of WNS to assess how well earlier models matched 

subsequent spatial dynamics and factors influencing disease transmission. We extend the models 

previously developed to focus on three specific questions: 1) Do year-to-year weather conditions 

have a detectable relationship to spatial spread? 2) Was bat species richness, which was not well 

supported in the earlier modeling approach, a more important factor in subsequent spread? and 3) 

Were the effects of various factors in the original model stable during subsequent spread in space 

and time? 

 

Methods 

Data 

Time of infection by county was obtained from the U.S. Fish and Wildlife Service 

(USFWS; www.fws.gov/whitenosesyndrome/maps.html, 2019), recording the first year in which 

either WNS was observed, the infectious agent P. destructans was discovered (e.g. in a soil 

sample), or both. Given that fall and winter are the crucial periods for transmission (Langwig et 
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al., 2020; Hoyt et al., 2021) and detection (Warnecke et al., 2012; Langwig et al., 2015), the 

epidemic year was assumed to begin June 1st and end May 31st.  

Number of caves in each county in the contiguous United States was provided by Maher 

et al. (2012) and the Euclidean distance between county centroids from the same reference 

(Maher et al., 2012). County-level bat species richness was estimated from NatureServe 

(www.natureserve.com) for the 46 bat species occurring in the contiguous United States at any 

point in the year, as provided by Maher et al. (2012). Each species was classified as hibernating 

or non-hibernating based on USGS information (USGS, 2020).  

 We quantified average and annual winter conditions using the minimum daily 

temperature from all operational weather stations in the contiguous United States between June 

1st 2006 – May 31st 2018 obtained from the NOAA’s National Climatic Data Center (NCDC; 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/). Length of winter was calculated at each weather station 

as the number of days with temperatures below 10°C between June 1st and May 31st of the 

following calendar year. A smooth representation of the length of winter for the contiguous USA 

(NAD83 projection, resolution of 0.124 degrees) was obtained using anisotropic ordinary kriging 

performed with ArcGIS (ver 10.7, www.esri.com). The mean winter length was then calculated 

for each county using the package ‘raster’ (ver 2.9-23) in R (Hijmans 2019 citations). This was 

the same procedure used in Maher et al. (2012). We used the average length of winter for each 

county over the full time period as a measure  of the winter climate of each county. 

In addition to winter length, we also considered the number of days from June 1 until the 

onset of winter as another indicator of winter conditions, where onset of winter was defined as 

the first two consecutive days with a minimum daily temperature reading below 10°C for each 

operational weather station. The number of days until the start of winter for each county was 

interpolated as above and rounded to the nearest whole number. 

Model 

 Following Maher et al. (2012), gravity models were fit to the observed time of infection 

to estimate the effects of weather, distance between counties, cave density, and bat species 

richness on the spatial spread of the epidemic. All models were of the form  

𝑝"#$ =
1

1 + 𝑒)*  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428526doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428526
http://creativecommons.org/licenses/by/4.0/


where 𝑝"#$  is the probability that county i does not become infected from previously infected 

county j and 𝑓 is a function describing the inverse of transmission intensity from j to i. The basic 

version of f is: 

𝑓 = 𝛽0 +
𝛽2 ∗ 𝑑#$
(𝑛#𝑛$)23

 

where 𝑑#$is the distance between county i and county j, 𝑛#is the number of caves in county i and 

𝑛$is the number of caves in county j. The fit parameter 𝛽0is the background infection rate, and 𝛽2 

and 𝛽3 adjust the distance and product of cave densities respectively. Alternative models were 

constructed by adding additional terms to the function f (Supplementary Table 1). We fit a total 

of 19 models with each winter condition measure crossed with the two species richness 

estimates.  

A change from Maher et al. (2012) is the inclusion of time-varying environmental variables. 

Previous models used fixed values for all variables representing each county, including the 

average length of winter in each county over the period of epidemic spread. Here, we also 

considered models that replaced the average winter conditions with the annual conditions 

corresponding to each year, as we hypothesized that specific annual conditions might affect 

either bat behavior or infection intensity and thus influence pathogen transmission (Verant et al., 

2012; Langwig et al., 2015; Langwig et al., 2020). We also considered models where the 

probability of transmission depended on conditions in the prior winter, with the rationale that the 

observation of WNS in a bat colony (symptomatic disease) may reflect arrival of the fungus (the 

pathogen) in the previous winter.  

Unknown parameters were estimated using maximum likelihood; model selection was 

performed using Akaike’s Information Criterion (AIC). To consider the role of accumulating 

information and the influence of unique spread events on model fit, we calculated the AIC value 

annually for each model. We considered models with consistently low AIC values to be the most 

robust, but recognize that fluctuations in model performance from year-to-year provide 

additional insight into the interaction between epidemic pattern and covariates, and guard against 

model selection being dominated by the conditions of a single, possibly anomalous year at which 

evaluation occurred. The difference in AIC between the model with the lowest AIC in that year 
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and each of the other models in that year (ΔAIC) was calculated for years 2008-2018. Similarly, 

we looked at the estimated parameter values for years 2009-2018, focusing on the models that 

had 𝛥AIC = 0 at some point during the epidemic (Figure 3). We excluded the first two years of 

estimates because these early estimates were less reliable and exhibited larger changes than for 

later years (Supplementary Table 2).  

 

Results 

Annual measures of winter severity in U.S. counties were more strongly correlated with 

average winter severity (Pearson’s r = 0.89) than winter start (Pearson’s r = 0.88, Figure S1). 

There was noticeable variation from year to year in both measures, as well as signatures of 

distinct winter patterns in some parts of the United States (Figure 1), for example some areas are 

always below the temperature that would be considered winter in other areas. Winter length and 

winter start were strongly negatively correlated, as earlier starts were generally associated with 

longer winters (Pearson’s r = -0.93, Supplementary Figure 1). 

The best fit model at the end of our study period (winter of 2018-2019) included county-

to-county distance, cave abundance, species richness of hibernating bats, and the average length 

of winter in the previous year (Supplementary Table 1). This model was not the most supported 

when fit to observations of the WNS outbreak prior to 2018 (Figure 1). Changes in model fit 

over the course of the epidemic showed that some measure of winter severity was part of the 

most informative model in every year (Fig 1, Supplementary Table 2). Average measures of 

winter severity had the lowest AIC in 6 of 11 years, while annual measures from the previous 

year had the lowest AIC in 3 years and annual measures from the present year had lowest AIC in 

two years. There were large shifts from year to year in which model was most supported (𝛥AIC 

< 2, Figure 1). Species richness was included in 8 out of 9 supported models, including those for 

all years following the winter of 2014-2015. The start of winter was the most informative 

measure of winter severity prior to 2015-2016, after which winter length dominated the top 

performing models. These shifts in the most supported explanatory factors likely indicate some 

combination of increased discriminatory power as data accumulated and alterations in the spread 

process as new areas were affected. 
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Estimated values of parameters associated with background transmission (𝛽4), winter 

severity (𝛽5), distance (𝛽6), winter severity (𝛽7), and bat species richness (𝛽8)varied over the 

course of the outbreak (Figure 3). Early in the outbreak the models including winter length had a 

higher estimate of background infection rate, suggesting the other covariates in these models 

were not capturing as much of the pattern of spread, but in later years the estimates of 

background transmission were similar across models. (Figure 3a). As expected, winter length 

was positively correlated with the probability WNS was observed. Similarly, winter start had a 

negative relationship (Figure 3b), with the magnitude of the effect of winter conditions declining 

over time (moving towards zero) for both measures. The estimated effect of distance on spread  

declined by almost an order of magnitude over time in all models (Figure 3c). Cave density had a 

more stable influence on spread patterns (Figure 3d). Finally, the estimated species richness 

parameter was stable and similar whether considering total bat richness or hibernating bat 

richness (Figure 3e).  

 

Discussion 

The well-resolved spatial dynamics of WNS allowed us to distinguish aspects of the 

dynamics that remained consistent as spread continued across the continent from those that 

changed as the outbreak proceeded. Winter conditions remained an important factor in spatial 

dynamics throughout the outbreak, but the most informative measure of winter conditions 

changed over the course of the epidemic, which could be due to differing drivers in different 

regions or correlations with unmeasured causal mechanisms related to winter severity . However, 

our analysis indicates that year-to-year variation in winter conditions is playing a measurable 

role in epidemic dynamics despite strong correlations with average climate in each county. We 

found that geographic patterns in species richness are related to the probability of transmission 

between counties, and detection of this relationship has become more reliable as the outbreak has 

proceeded. In addition we found that the effect of distance on transmission declined from 

estimates by Maher et al. (2012), and this decline was gradual, rather than an abrupt response to 

the 2016 detection of P. destructans in Washington State (Lorch et al., 2016). 
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The long distance transmission event to Washington State was of particular interest as 

this either represented the realization of an event (albeit one of low probability) encompassed by 

the model of Maher et al. (2012), or an unforeseen possibility demonstrating that models fit early 

in the outbreak missed important aspects influencing spread. The suggestion that this spread was 

human-mediated due to its extreme distance from the nearest known infected hibernacula (Hoyt 

et al., 2021) could be consistent with either explanation. The inclusion of species richness in 

most of the supported models in recent years represents one possible signal of the spread to the 

western United States. The community of bats in the western U.S. has different species and 

higher richness than the region where WNS emerged, and these areas are separated by a 

relatively species-poor area through the middle of the country (Maher et al., 2012). At the same 

time we did not observe an abrupt change in the parameter controlling the influence of distance 

in the model after this long distance event, instead accumulating data was already indicating 

distance was less of a barrier than found early in the epidemic.  

It is important to note how the geographic pattern in species richness may correlate with 

additional factors we were unable to consider here. The sign of the estimated parameter means 

that the model estimated probability of transmission went down as species richness increased. 

The continental pattern of spread has been from an area of low richness in the Northeast, along 

the Appalachian Mountains, then towards the Ozark Plateau, where more species ranges overlap. 

West of the Ozark Plateau, species richness declines into the Great Plains, and then more species 

occur west of the 100th meridian. As such, the model may reflect a bottleneck of suitable 

hibernacula that corresponded to a relative increase in richness. Further, the geography of species 

richness reflects a combination of ecological and evolutionary processes (Miller-Butterworth et 

al., 2014) and ignores population heterogeneity (e.g. Wilder et al., 2015). Thus, it is possible that 

the specific mechanism associated with this covariate has nothing to do with the ecological 

community and it would be premature to conclude that counties with greater species richness in 

the western U.S. necessarily have low risk of pathogen transmission.  

The influence of winter conditions on spatial spread of WNS is of interest not only for 

understanding relative risk of different bat populations (Maher et al., 2012; Wilder et al., 2011; 

Lilley et al., 2018), but also because of the importance of environmental conditions in disease 

severity (Langwig et al., 2012; Hayman et al., 2016) and hypothesized pathways of transmission 
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between hibernacula (Langwig et al., 2020). Research suggests that bat movements during the 

winter may be a driver of transmission between hibernacula (Langwig et al., 2020) and ambient 

temperature affects bat activity during winter (Bernard & McCracken, 2017). Our findings 

suggest that aspects of winter severity related to winter length and the timing of winter onset 

both improve model performance, with winter onset appearing more informative early in the 

epidemic, while length of winter is favored over the full period up to the present. We also found 

evidence that the conditions in particular winters drive transmission risk and that this is 

detectable despite the strong correlation with average conditions. However, although the 

previous winter is more valuable for predicting the risk of transmission when looking at the full 

period to the present, the tendency for the best fit model to vary between years suggests we 

should not overestimate the strength of this inference. A signal of the previous winter could 

indicate detection occurring the year after fungal arrival in a hibernacula (Langwig et al., 2015). 

Improving this aspect of the model may depend on improved understanding of which factors lead 

to the onset of hibernation or movement among hibernacula.  

Examining how models of the spread of WNS have changed over time provided a richer 

understanding of spatial spread in this ongoing outbreak. At all time points, distance, cave 

density, and winter conditions best explained the spread, suggesting that even models fit to the 

exponential phase of an epizootic can provide information sufficient for assessing risk and 

designing interventions. At the same time, the models best able to explain the observations 

changed significantly as the outbreak proceeded, as did the relative strength of multiple factors in 

those models. Hence, the effort of updating the model provides additional insight into WNS 

dynamics and will facilitate improved forecasts of future spread. This aspect of disease modeling 

is likely important to any long term outbreak event and highlights the value of revisiting even 

high performing models.  
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Figure 1: Best-supported models at the end of each year from 2009-2018. All models with 

𝛥𝐴𝐼𝐶 < 2 for any year (from 2009-2018) are included and a mark indicates 𝛥𝐴𝐼𝐶 < 2 for the 

given year. 
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Figure 2. Variation in parameter estimates from models fit at the end of each year from 2009-

2018. Selected models appeared in the best fit models and represent several combinations of 

winter conditions and species richness data. 
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Supplementary Table 1: Transmission intensity function and AIC by outbreak year for each model (2007 represents infection observed 
after winter 2006-2007). 

  f 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Gravity (caves) 
𝛽" +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

6 78 255 495 759 1067 1455 1901 2349 2751 3187 3486 

Gravity (caves) + average winter length 
𝛽" + 𝛽-𝑊𝐿012 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 78 252 472 727 1010 1413 1860 2290 2671 3105 3403 

Gravity (caves) + annual winter length 
𝛽" + 𝛽-𝑊𝐿033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 75 247 475 723 1008 1412 1861 2302 2677 3098 3407 

Gravity (caves) + previous winter length 
𝛽" + 𝛽-𝑊𝐿402 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 75 254 475 730 1007 1410 1871 2303 2696 3124 3367 

Gravity (caves) + average winter onset 
𝛽" + 𝛽-𝑊𝑂012 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 76 246 466 719 995 1400 1849 2289 2671 3108 3405 

Gravity (caves) + annual winter onset 
𝛽" + 𝛽-𝑊𝑂033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 80 255 475 735 1057 1448 1891 2323 2697 3151 3434 

Gravity (caves) + previous winter onset 
𝛽" + 𝛽-𝑊𝑂402 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
 

8 74 240 473 724 1017 1424 1869 2308 2682 3108 3431 

Gravity (caves) + average winter length + species richness 
𝛽" + 𝛽-𝑊𝐿012 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 80 252 474 729 1012 1413 1862 2289 2665 3092 3384 
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Gravity (caves) + average winter length + hibernating 
species 

𝛽" + 𝛽-𝑊𝐿012 +
𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 80 246 474 729 1011 1411 1862 2290 2667 3091 3382 

Gravity (caves) + annual winter length + species richness 
𝛽" + 𝛽-𝑊𝐿033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 77 246 477 725 1010 1414 1862 2295 2667 3076 3377 

Gravity (caves) + annual winter length + hibernating species 
𝛽" + 𝛽-𝑊𝐿033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 76 239 477 725 1010 1413 1863 2298 2671 3077 3378 

Gravity (caves) + previous winter length + species richness 
𝛽" + 𝛽-𝑊𝐿402 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 77 255 476 732 1008 1411 1871 2296 2680 3103 3346 

Gravity (caves) + previous winter length + hibernating 
species 

𝛽" + 𝛽-𝑊𝐿402 +
𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 77 250 476 732 1009 1410 1872 2300 2687 3105 3345 

Gravity (caves) + average winter onset + species richness 
𝛽" + 𝛽-𝑊𝑂012 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 78 244 468 720 995 1398 1850 2288 2666 3096 3387 

Gravity (caves) + average winter onset + hibernating species 
𝛽" + 𝛽-𝑊𝑂012 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 78 239 468 723 995 1397 1850 2289 2669 3096 3387 

Gravity (caves) + annual winter onset + species richness 
𝛽" + 𝛽-𝑊𝑂033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 82 255 477 737 1045 1444 1883 2307 2676 3114 3399 

Gravity (caves) + annual winter onset + hibernating species 
𝛽" + 𝛽-𝑊𝑂033 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 82 251 477 766 1049 1448 1887 2314 2684 3121 3404 

Gravity (caves) + previous winter onset + species richness 
𝛽" + 𝛽-𝑊𝑂402 +

𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝑆𝑅 

10 76 239 475 726 1019 1425 1868 2298 2672 3087 3396 
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Gravity (caves) + previous winter onset + hibernating 
richness 

𝛽" + 𝛽-𝑊𝑂402 +
𝛽$𝑑&'
(𝑛&𝑛'*

+,
+ 𝛽6𝐻𝐵 

10 76 233 474 726 1019 1426 1869 2302 2675 3089 3400 
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Supplementary Table 2: 𝛥AIC by outbreak year (2007 represents infection observed after winter 
2006-2007) 

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Gravity (caves) 4.4 21.8 28.9 40.8 72.6 57.5 52.4 61.3 86.7 111.4 140.9 

Gravity (caves) + average winter length 3.8 18.7 5.6 8.4 15.2 15.6 11.6 2.8 5.9 29.1 58.4 

Gravity (caves) + annual winter length 0.7 13.8 8.9 4.3 13.1 14.7 12.6 14.5 12.6 22.0 62.0 

Gravity (caves) + previous winter length 1.1 21.2 8.5 11.4 11.9 12.3 22.6 15.4 31.7 48.5 21.8 

Gravity (caves) + average winter onset 2.4 12.3 0.0 0.0 0.0 3.1 0.0 1.0 6.8 32.5 60.5 

Gravity (caves) + annual winter onset 6.4 21.4 9.2 16.5 62.5 50.7 42.6 35.8 32.8 74.9 89.5 

Gravity (caves) + previous winter onset 0.0 6.9 7.0 5.4 22.8 27.1 20.0 20.1 17.1 32.6 86.2 
Gravity (caves) + average winter length + species 
richness 5.7 19.1 7.6 10.4 17.1 15.7 13.6 1.3 0.0 16.0 38.8 
Gravity (caves) + average winter length + 
hibernating species 5.6 12.9 7.6 10.3 16.8 14.1 13.6 2.8 2.8 15.7 37.2 
Gravity (caves) + annual winter length + species 
richness 2.7 13.0 10.6 6.0 15.1 16.6 13.8 7.4 2.8 0.0 32.0 
Gravity (caves) + annual winter length + hibernating 
species 2.5 5.8 10.4 6.3 15.1 16.0 14.4 10.8 6.7 1.7 33.1 
Gravity (caves) + previous winter length + species 
richness 3.1 22.1 10.1 13.1 13.9 13.6 21.9 8.5 15.8 27.2 1.3 
Gravity (caves) + previous winter length + 
hibernating species 2.8 17.0 9.9 13.4 13.9 12.2 23.4 12.4 22.5 29.3 0.0 
Gravity (caves) + average winter onset + species 
richness 4.4 11.0 1.8 1.7 0.2 0.8 1.7 0.0 1.7 20.0 42.4 
Gravity (caves) + average winter onset + hibernating 
species 4.2 5.8 2.0 4.2 0.5 0.0 1.6 1.4 4.6 20.7 42.2 
Gravity (caves) + annual winter onset + species 
richness 8.2 22.2 11.2 18.0 50.8 46.9 34.2 19.5 11.7 37.8 53.9 
Gravity (caves) + annual winter onset + hibernating 
species 8.3 17.3 11.1 47.4 53.9 50.3 38.5 26.7 19.9 45.3 58.7 
Gravity (caves) + previous winter onset + species 
richness 2.0 6.1 8.7 7.4 24.8 27.7 19.4 10.9 7.4 11.1 51.0 
Gravity (caves) + previous winter onset + hibernating 
richness 1.7 0.0 8.3 7.4 24.8 28.6 20.5 14.8 10.8 13.1 54.8 
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Figure S1: Correlation between average winter conditions and annual winter conditions. A) 

Winter length for each county over the period June 1, 2005- May 31, 2018. B) Winter onset, as 

defined by first two consecutive days < 10C, for each county over the period June 1, 2005-May 

31, 2018. 

 

 

Figure S2: Relationship between average winter length and the average winter onset for U.S. 

counties. 
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