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ABSTRACT

Motivation: Deep learning techniques have yielded tremendous progress in the field of computational
biology over the last decade, however many of these techniques are opaque to the user. To provide
interpretable results, methods have incorporated biological priors directly into the learning task; one
such biological prior is pathway structure. While pathways represent most biological processes in the
cell, the high level of correlation and hierarchical structure make it complicated to determine an
appropriate computational representation.
Results: Here, we present pathway module Variational Autoencoder (pmVAE). Our method encodes
pathway information by restricting the structure of our VAE to mirror gene-pathway memberships.
Its architecture is composed of a set of subnetworks, which we refer to as pathway modules. The
subnetworks learn interpretable latent representations by factorizing the latent space according to
pathway gene sets. We directly address correlation between pathways by balancing a module-specific
local loss and a global reconstruction loss. Furthermore, since many pathways are by nature
hierarchical and therefore the product of multiple downstream signals, we model each pathway as a
multidimensional vector. Due to their factorization over pathways, the representations allow for easy
and interpretable analysis of multiple downstream effects, such as cell type and biological stimulus,
within the contexts of each pathway. We compare pmVAE against two other state-of-the-art methods
on two single-cell RNA-seq case-control data sets, demonstrating that our pathway representations
are both more discriminative and consistent in detecting pathways targeted by a perturbation.

Availability and implementation: https://github.com/ratschlab/pmvae

1 Introduction

Transcriptomic analysis methods must find a balance between their ability to address the complexity of noisy molecular
measurements, while simultaneously provide insight into complex biological processes. To gain biological insight into
any high-dimensional molecular experiment, it is key to accurately identify and quantify the biological mechanisms
underlying the observed changes across perturbations, cell states, or any other source of variability. A typical
representation of underlying biological mechanisms are pathways; their structures remain mostly constant, but their
changes in activity dictate a cell’s every action. Therefore, accurate estimation of pathway activity is a crucial aspect
of the interpretation of single cell RNA-seq (scRNA-seq) data. Additionally, pathways have complex responses to
perturbations, such as drugs, disease state, and environment. Identification of these effects on the expression level is
challenging, since it is necessary to differentiate between effects due to perturbation versus inherent effects, such as cell
type. This is further complicated by the fact that measurements may have multiple technical artifacts, such as batch
effects and sparsity [16, 48]. Fortunately, deep learning techniques have successfully addressed many of the technical
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peculiarities of scRNA-seq data and may soon be integrated into typical bioinformatic workflows [32]. Their utility
thus far has been demonstrated in tasks such as cell-type prediction [2], data harmonization [30, 35, 51], denoising [11],
perturbation prediction [31] and visualization [35]. While effective, each of these models are black boxes and it is
difficult to deduce from the model output what underlying biological mechanisms are driving the results.

A natural way to open up the black box of deep learning models is to interpret its learned parameters. For example, one
can use variational autoencoders (VAEs) [21] on gene expression data and interrogate its latent representation. Way
and Greene [52] correlate learned latent representations against external data, such as gene ontology terms and cancer
subtype information, in order to explain the latent components. While this approach has proven fruitful [10, 23, 47, 53],
it requires careful analysis to identify what each component is capturing, especially since all components are likely not
fully disentangled [29] and thus could represent a combination of biological effects.

The use of the standard fully-connected layers in a deep learning model can introduce difficulties in interpretation. These
layers lead to underspecified models in the sense that connections would exist between all pairs of genes, which allow
the model to learn combinations of such biological effects based off of correlations not supported by our understanding
of biology. One emerging approach has been to integrate prior information from biology, such as pathway gene sets, to
constrain connections between entities known to interact [4, 13, 24, 33, 34, 38]. This integration of prior information not
only aids in interpretability of the model but also its regularization.

Two approaches to integrate prior information in the form of pathways have been adopted: 1) represent each pathway as
a gene set; or 2) represent the pathway as a hierarchical model. Models of the first approach take the form of factor
analysis based methods that restrict latent factors to only explain genes within a pathway, as done in f-scLVM [4].
The Interpretable Autoencoder (interpretable AE) [38] is a modified hybrid between an auto encoder and a factor
analysis model [45], by limiting the decoder to a linear projection and imbuing it with pathway information through
regularization terms. While useful for finding overarching pathway changes, these approaches do not directly address the
problem that many of these pathways are highly overlapping. PLIER [34] avoids this problem by clustering pathways
through linear combinations of gene sets that are then represented as a single latent factor, but it is not intended to
strictly model the activity of a single pathway.

The aforementioned overlap issue is significant when trying to quantify the downstream effects of a perturbed pathway.
Genes that participate in a target pathway may also participate in downstream or adjacent pathways which introduce
redundancies that are difficult to model. To take this effect into account, other methods have used hierarchical
representations of pathways and their interactions. Similar to the flat representations, the methods first restrict the
connections between the input layer and the initial hidden layer, in order to represent low-level pathway membership.
After this first hidden layer, they connect hidden nodes to one another based upon a known pathway or biological
process hierarchy. In DCell [33], GO annotations are used in order to hierarchically connect hidden nodes to represent
the hierarchy of biological processes. In contrast, KPNN [13] uses the known signaling structure of signaling proteins,
complexes, and families in order to represent the signaling cascades within a cell. To address additional difficulties in
optimization due to redundancy within the hierarchy, DCell uses shortcut connections [26,46], which also help optimize
its large number of layers, and KPNN introduce a novel layer normalization scheme. While these work take pathway
structure into account, they operate in a supervised learning domain, and learn representations suited for a prediction
task.

An additional shortcoming of each pathway encoding scheme is that a single pathway is represented as unidimensional.
Many higher-level pathways (e.g., the immune system) will contain possibly disparate signals from more specific and
independent pathways (e.g., T-cell and B-cell signaling). This indicates that some pathways, like the immune system,
require a richer representation than more specific pathways. The varying level of specificity naturally leads to the idea
that some pathways can be represented by more than one dimension, and be reported in more detail than simply having
increased or decreased activity. It has also been experimentally shown that some pathways are context dependent, which
would require a multidimensional representation to fully capture its diversity [41, 54].

In this paper we present pathway module VAE (pmVAE), an unsupervised method to learn directly interpretable
multidimensional pathway representations that take into account both pathway redundancy and context-specific
activations. pmVAE incorporates pathways defined as a bag-of-genes, and constructs a latent space factorized by these
pathways, resulting in multidimensional pathway representations. Through our pathway-module training procedure we
are able to provide accurate pathway activities, even for highly correlated pathways.

2 Methods

pmVAE extends the VAE framework [21]. VAEs are probabilistic models that learn compressed representations of
high dimensional data. They consist of two sets of functions, an encoder and a decoder, often parameterized by

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428664
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JANUARY 28, 2021

neural networks, with parameter sets θ and φ respectively. These models are optimized to learn distributions over low-
dimensional latent variables, z, often referred to as embeddings or latent representations, from some high dimensional
input data, x, by maximizing a lower bound on the log-likelihood of the data:

log p(x; θ, φ) ≥ Eq(z|x;θ) [log p(x | z;φ)]−KL(q(z | x; θ)||p(z)) (1)

where KL is the Kullback-Leibler divergence which regularizes the complexity of the embedding distribution. To make
this optimization tractable, the posterior over latent representions, q(z | x) is often approximated with an isotropic
Gaussian distribution and the prior over latent representations, p(z) is chosen to be a standard Gaussian. For a Gaussian
likelihood p(x | z), the above optimization can be equivalently formulated as minimizing

LVAE(x; θ, φ) = ||x̂− x||2 + β ·KL(q(z | x; θ)||p(z)) (2)

where the expectation is approximated at a single sample z, such that x̂ is the mean of the likelihood function evaluated
at the drawn sample and implicitly depends on both θ and φ.

Optimization of VAEs are usually performed using online gradient based methods such as stochastic gradient descent,
or popular second order methods, such as ADAM [20].

Figure 1: pmVAE is a variational autoencoder for expression data whose architecture incorporates prior knowledge
about interacting genes using pathway modules. Pathways, defined as gene sets, are downloaded from community
curated, public databases. Each pathway has a corresponding module which encodes and decodes only the genes
participating within that pathway, producing latent representations and reconstructions specific to their pathway. Global
reconstruction is achieved by summing over all pathway module outputs and a global latent representation of the
input expression vector is achieved by concatenation of the latent representations from each pathway module. This
constructs a latent space factorized by pathway where sections of the embedding explicitly capture the effects of genes
participating in the pathway. We implement a custom training procedure to address optimization challenges caused by
overlapping pathways, for example, due to hierarchical relationships. More details can be found in the methods section.

2.1 Pathway modules produce pathway specific representations

The pathway modules within pmVAE construct a latent space factorized by pathways. A graphic representation of the
model is shown in Figure 1. Given a set of K pathways, each represented as a set of genes, pmVAE consists of K
pathway modules, which each behave as a VAE constrained to the set of genes that participate in its pathway.

Let N be the number of total genes, Np be the number of genes in pathway p, x(p) be the expression of the genes
participating in pathway p and let θp and φp be the parameters of the encoder and decoder within the pathway p module.
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Then the pathway p module encodes x(p) into a pathway-specific embedding z(p), which is then decoded into the
reconstruction vector x̂(p). A global embedding vector, z is obtained by concatenation over all local embeddings
provided by the pathway modules, i.e. q(z | x) =

∏
p q(z

(p) | x(p)) and a global reconstruction is obtained by summing
over the local reconstructions provided by each module by casting each x̂(p) into a sparse vector with non-zero elements
corresponding to the participating genes. This is achieved in practice by connecting the outputs of each module to the
set of genes participating in the pathway (see Figure 1).

pmVAE minimizes the loss function:

LpmVAE(x; θ, φ) = ||x̂− x||2 +
1

K

∑
p

N

Np
||x̂(p) − x(p)||2 + β ·KL(q(z | x)||p(z)) (3)

which consists of the usual global reconstruction and KL terms (the first and last of Equation 3), but also introduces a
set of local reconstruction terms (middle). We additionally use an auxiliary pathway module that is connected to all
genes in order to capture effects that could exist but are not contained within the ontology defining the pathway. This
module is not included in the local reconstruction terms.

These local reconstruction terms enforce independence relationships between the modules, encouraging each module
to independently reconstruct the genes participating in its pathway. Owing to the hierarchical nature of pathways,
modules can exhibit some degree of redundancy, in the form of overlapping gene sets. This redundancy introduces
degeneracies in the optimal solutions, causing problems in optimization. Due to the degeneracy, it can happen that one
module is able to explain the effects of other overlapping modules, resulting in XOR-type behavior [13]. To see how
this behavior arises, consider a naive loss function without the local reconstruction terms and a pathway gene set that
is upstream from, and therefore overlapping with, a targeted pathway. If, through their mutual genes, the upstream
pathway module is able to capture effects of the targeted pathway, then these effects will not be represented again in the
targeted pathway, as this would result in a needlessly complex latent representation. The local reconstruction terms
address this redundancy by enforcing independence relationships between modules.

We compute the local reconstruction terms in practice by performing an additional K gradient steps, each computed on
the parameters of exactly one module, as shown in Figure 2. This process can be considered as some extreme form of
the dropout regularization technique [42], in which all but one of the modules are dropped out in the forward pass. To
prevent the model from favoring large pathways over small pathways, each local reconstruction term is weighted by
size of the pathway relative to the global gene size N

Np
. Furthermore, the 1

K term introduces a trade off between an
accurate global reconstruction and the independent local reconstructions.

Finally, We make the usual Gaussian assumptions on the posterior and prior distributions over the embeddings and
perform online optimization with the ADAM scheme [20].

2.2 Parallelization using dense masking layers

In order to take advantage of GPU-accelerated matrix multiplications, we define dense masking layers that parallelize
the forward passes through all pathway modules. Theses masks are binary matrices which are element-wise multiplied
with the usual kernel matrices of each layer in the network.

Two types of masks are used, defined below. Let L be the number of hidden layers, {hl}L−1l=0 be the dimensions of
the hidden layers within each module, g be the number of genes and Pk be the set of indices corresponding to genes
participating in pathway k. The assignment mask M assigns genes to pathway modules and is defined as:

M =

M
1

...
MK

 Mk ∈ {0, 1}h0×g (Mk)ij =

{
1, if j ∈ Pk
0, otherwise

The separation masks {Σl}L−2l=1 remove the connections between pathway modules at each hidden layer. They are block
diagonal matrices defined as:

Σl =

Σl11 . . . Σl1K
...

. . .
...

ΣlK1 . . . ΣlKK

 Σlij=

{
1hl+1×hl , if i = j

0hl+1×hl , otherwise

Let φ be the non-linear activation function and � be the element-wise matrix multiplication operator. For the lth hidden
layer let Wl and bl be the usual kernel and bias terms, yl be the output of the layer. Then the forward pass at each
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Figure 2: Visualization of the extra gradient steps in the training of pmVAE to compute the local reconstruction for
the (a) first and (b) second module. In each step, gradients are not allowed to flow through the parameters of other
modules, represented by greyed-out boxes. This procedure can be thought of as an extreme form of dropout [42] where
all pathways except for one are dropped out. Due to the redundancies that exist between pathways, due in part to their
hierarchical nature and cause optimization challenges, these extra gradient steps are necessary. If the redundancies are
unaccounted for, it could happen, for example, that a single module explains the effects of a set of genes that mutually
participate in other modules. By explaining these effects, this module effectively turns off the others, preventing them
from capturing any effects [13]. This XOR behavior, i.e. where only a single module needs is needed to explain
redundant effects seen across several modules, is a natural consequence of regularization, since a model that would
re-capture these effects in multiple modules is needlessly complex. To alleviate this, these extra gradient steps are used
to enforce independence between modules.

hidden layer (omitting the sampling step of the bottleneck layer) is defined as:

y1 = φ((M �W0)x + b0)

yl+1 = φ((Σl �Wl)yl + bl) for l ∈ {1, . . . , L− 2}
x̂ = φ((MT �WL−1)yL−1)

3 Data

To provide clear, quantitative comparisons against the other models, we wanted to identify datasets in which a
perturbation with known downstream effects was applied. We consider two single cell RNA-seq case-control datasets
from two independent sources where roughly half the cells were targeted with signaling molecules.

3.1 Pathway gene sets defined by Reactome [12]

We use pathway gene set annotations defined by Reactome [12] and maintained by MSigDB v4 (level C2) [44] in all
experiments. The gene sets in Reactome are expert curated and hierarchically structured. There are a total of 674 gene
sets with a median gene set size of 27 genes.

3.2 Interferon β stimulated cells from Kang et al. [19]

The Kang et al. dataset is a single cell dataset composed of peripheral blood mononuclear cells from eight lupus patients
sequenced using droplet single-cell RNA-sequencing, with and without Interferon β stimulation. Preprocessing, in the
form of library size normalization, removal of low variance genes and log scale transform, as well as pathway selection,
was inherited from Rybakov et. al. [38], and yielded a dataset of 13,576 cells (7, 217 = 53.2% stimulated cells) by 979
genes, annotated with a total of 134 Reactome pathways, with a median gene set size of 21.

The signalling structure of pathways influenced by Interferon-β stimulation is summarized in Figure 3a. The interferon
pathway is expected to be targeted as two of its child pathways are expected to change: Interferon-α/β signaling
[36, 37] and Antiviral mechanism by IFN-stimulated genes [56]. We keep the suggestion of Rybakov et.
al. [38] and consider four pathways to be the key pathways affected by the stimulation, which are among the parents
and children of the targeted pathway in the Reactome hierarchy. As Interferon-γ and Interferon-β signal through two
different receptors [36, 37], the Interferon γ pathway, which is one hierarchical level below, was not considered as an
affected pathway.
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3.3 TCR stimulated cells after guide RNA transduction from Datlinger et al. [7]

The Datlinger et al. dataset is a single cell dataset composed of Jurkat cells (immortalized human T-lymphocytes) that
have been transduced with targeting and non-targeting gRNAs. Cells were starved or stimulated using anti-CD3 and
anti-CD28 antibodies We only considered cells which had been transduced with non-targeting gRNA.

We filter genes that were expressed in less than 3 cells and filter cells with less than 200 expressed genes or greater than
10% mitochondrial RNA. We perform library size normalization using the 85th percentile of each cell, rescale cells by
a single randomly selected cell’s 85th percentile, log-transform all values and rank genes by variance as described in
Satija et al. [39] using the scanpy package [55]. Pathways with fewer than 15 genes in the top 5,000 highly variant
genes are removed and genes participating in the remaining pathways are whitelisted from further removal. Finally, we
remove low variance genes until we have 2,000 genes, that either participate in a retained pathway or pass the variance
filter. This preprocessing procedure yields a dataset composed of 1,728 cells (853 = 49.6% stimulated) by 2,000 genes,
annotated by 137 pathways with a median pathway size of 24 genes.

Since cells were targeted using anti-CD3 and anti-CD28 antibodies, we consider TCR signaling and
Co-stimulation by the CD28 family to be the targeted pathways, the signaling structure is shown in Figure 3d.
CD3 is a subunit of the TCR/CD3 complex [8] which transmits the activated TCR signal and enables the interaction of
the T-cell receptor with other signaling molecules [3, 17, 27]. CD28 activation, together with TCR activation, results in
co-stimulatory pathway activations [1]. We additionally considered all parent and child pathways, according to the
Reactome hierarchy, of the two targeted pathways to be key pathways affected by the stimulation. From the set of
retained pathways this includes Adaptive immune system.

4 Results

4.1 Hyper-parameters and model selection

For both datasets, pmVAE was trained using 1,200 epochs on 75% of the dataset. We initialize all kernels using uniform
He initialization [14] and use ELU activations [6]. Multidimensional pmVAE modules use 4 latent dimensions per
pathway. We perform a grid search over the learning rate (1e-2, 5e-2, 1e-3, . . . , 1e-5), β (1, 1e-1, . . . , 1e-8), and the
architecture of the module encoders and decoders (one or two hidden layers with a width of 12 units). For the larger
Kang et al. dataset we used a batch size of 256, and for the Datlinger et al. we used a batch size of 128. We perform
model selection to choose parameters that lead to well-regularized models that did not need to sacrifice modeling power,
by selecting the model with the largest β whose reconstruction error is within some tolerance (e.g., 15%) of the model
with the minimum reconstruction error. For Kang et al. this selected a learning rate of 1e-3, β = 1e-5 and module
encoders and decoders of a single layer and for Datlinger et al. this selected a learning rate of 5e-4, β = 1e-5, and
module encoders and decoders of a single layer. On a single GeForce RTX 2080 Ti GPU, training pmVAE requires less
than 4GB RAM and under 90 minutes for the Kang et al. dataset and under 30 minutes for the Datlinger et al. dataset.

We compare against two baseline methods, a linear factor analysis model, f-scLVM [4] and a hybrid factor analysis
model, Interpretable Autoencoder (interpretable AE) [38], which is an auto encoder that has a linear decoder that
reconstructs expression signals as a linear combination over gene sets defined by pathway membership. PLIER [34]
was not considered because its latent variables cluster pathways instead of providing a single pathway score.

For interpretable AE, we inherit the parameters selected on the Kang et al. dataset. For the analysis of the Datlinger
et al. dataset, we perform a grid search over the learning rate (1e-2, 5e-3, 1e-3, . . . , 5e− 5) and the parameter λ0
(1, 1e-1, . . . , 1e-8). Using the reconstruction error for model selection, we select a learning rate of 0.005 and λ0 = 0.01.
For f-scLVM, we use the suggested 3 dense factors and its deterministic optimization scheme.

Datlinger et al. Kang et al.

pmVAE 3.15e-03 1.00e-04
Interpretable AE 0.10 1.00e-04
f-scLVM 0.89 0.14
1D pmVAE 0.10 1.00e-04

Table 1: Median P-values from the hypergeometric test using the top 5 ranked pathways for the different methods and
the two datasets over the 10 randomly seeded run. The hypergeometric test determines if the targeted pathways are
overrepresented in the top 5 most accurate pathways in identifying perturbed cells. If the targeted pathways are also the
accurate pathways, this shows that the model correctly identifies the relevant pathways to the perturbation. We see that
pmVAE is the only method that is significantly enriched (P-value < 0.05) with targeted pathways in both datasets.
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4.2 Multidimensional pathway representations outperform unidimensional ones in identifying underlying
biological effects

To demonstrate that increasing the dimensionality of a pathway leads to more accurate representations, we first compare
4-dimensional pmVAE, against the two unidimensional baseline methods, f-scLVM and interpretable AE, as well as a
unidimensional pmVAE (1D pmVAE). We apply each method to two scRNA-seq datasets, Datlinger et al. [7] and Kang
et al. [19]. Data preprocessing details are provided in Sections 3.2 and 3.3. In this task, we would like to demonstrate
that the target and directly related pathways discriminate between the perturbed and control cells. Afterward, we learn a
logistic regression model to predict stimulation status using the trained embeddings and compute the accuracy of this
model on the yet unseen test data.

Figure 3: Stimulation targets and accuracy of pmVAE and baselines to predict stimulation status for the two considered
experiments, top row: Kang et al. [19], bottom row: Datlinger et al. [7]. (a) and (d) Signaling structure, of the pathways
targeted in the each experiment along their parents and children pathways, as defined by Reactome [12]. Square boxes
represent pathways, curved boxes represent stimulation, lines between pathways represent hierarchical relationships and
arrows represent activation events. For example, Interferon-β targets Interferon-α/β signaling, which targets
Antiviral mechanism by IFN-stimulated genes, both of which are contained in Interferon signaling.
(b) and (e) Logistic regression accuracies to classify perturbation status trained on pmVAE module embeddings and
corresponding weights from baseline models, interpretable ae [38] and f-scLVM [4]. Error bars show the best and
worst accuracy over 10 randomly seeded training procedures (10x cross-validation for f-scLVM). When considering
the key pathways in each experiment, we observe that pmVAE consistently produces embeddings that are either as
discriminative or better than baseline methods. (c) and (f) pmVAE logistic regression accuracies to classify perturbation
status using the embeddings from each pathway module. The key pathways (orange) are among the most informative
across all other Reactome pathways (blue). The most discriminative pmVAE modules are significantly enriched (P-Value
< 0.05) in the top 5 pathways for the key pathways in each experiment.

In Figure 3e we see that pmVAE is able to achieve high accuracy in the perturbed pathway, TCR signaling (accuracy:
0.78), and the other two related pathways (Adaptive immune system accuracy: 0.63, Co-stimulation by CD28
accuracy: 0.80). Key pathway selection criteria are described in Section 3.1. When comparing the unidimensional
methods, we find that the 1D pmVAE has significantly higher accuracy than the interpretable AE when using TCR
signaling (1D pmVAE accuracy: 0.72; interpretable AE accuracy: 0.64; Mann Whitney U test p-value: 5.6 ·
10−4) Interestingly, 1D pmVAE has decreased performance for pathways that are more distant to the perturbed
pathway. In comparison, interpretable AE has the best performance when using the most distant upstream pathway,
adaptive immune system. When considering only this pathway, we find that 1D pmVAE is outperformed, though
not significantly (pmVAE accuracy: 0.63; interpretable AE accuracy: 0.66; Mann Whitney U test p-value: 0.1). The
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f-scLVM model has lowest accuracies across all pathways of interest. Top ten most accurate pathways for each model is
given in the Supplemental Tables.

After demonstrating that pmVAE outperforms 1D pmVAE and interpretable AE in the target pathway on the Datlinger
et al. dataset, we applied all methods to the Kang et al. dataset. Following the same experimental structure introduced
in [38], we used Reactome as our pathway annotation with the key pathway being Interferon α/β signaling, with
the following associated pathways: Cytokine signaling in the immune system, Interferon signaling,
and Anti-viral mechanism by interferon-stimulated genes. Figure 3b reveals the performance for each
method across the target pathway, Interferon α/β signaling and related pathways. We find that pmVAE matches
or has greater performance in discriminating stimulated cells in comparison to all methods across all pathways. Again,
the top ten most accurate pathways for each model are given in the Supplemental Tables. Both pmVAE and 1D pmVAE
significantly outperform all other methods using the Interferon α/β signaling representation (pmVAE accuracy:
0.97; 1D pmVAE accuracy: 0.97; interpretable AE accuracy: 0.76; f-scLVM accuracy: 0.44). The only pathway in
which 1D pmVAE is outperformed by the other models is Cytokine signaling in the immune system. This
pathway is the most upstream pathway of all considered, meaning that this pathway must take into account the most
downstream effects. Since the pathway activation in the 1D pmVAE can only be represented unidimensionally, we
believe its representation is confounded by changes in other pathways. Overall, we observe that performance is greatly
increased once the number of dimensions is increased.

4.3 pmVAE achieves the highest accuracy in detecting cell stimulation status using key pathway
representations

To quantify the sensitivity and specificity of our pathway score, we applied pmVAE again on the Kang et al. and
Datlinger et al. datasets. In both datasets, we aim to identify that the target and directly related pathways best
discriminate between the perturbed and control cells in comparison to irrelevant pathways.

Figure 3c displays our performance on the Kang et al. dataset on the same task as described in Section 4.2 across
all Reactome gene sets (134 in total) that have at least 12 genes. This figure demonstrates that pmVAE is well
calibrated: all key pathways, shown in orange, are found to have the highest discriminative power when compared
against irrelevant pathways, shown in blue, (median enrichment score using the top 5 pathways: 1.00 · 10−4; test:
hypergeometric). Interpretable AE also achieves a significant enrichment score when considering only the top 5 most
discriminative pathways (median p-value: 1.00 · 10−4; test: hypergeometric), but f-scLVM does not (p-value: 0.14; test:
hypergeometric).

When we consider the Datlinger et al. dataset shown in Figure 3f, we again find that the most relevant pathways have
the highest discriminative power (median enrichment score using the top 5 pathways: 3.15 · 10−3; test: hypergeometric).
Neither interpretable AE nor f-scLVM have significant enrichment within the top 5 most discriminative pathways
(interpretable AE median p-value: 0.10; f-scLVM p-value: 0.89; test: hypergeometric).

Furthermore, we sought to demonstrate that pmVAE does not suffer from module degeneracy, where strongly discrimi-
native models can cause modules that contain overlapping genes to become less discriminative even though they are
affected by the perturbation (see Section 2.1). Therefore, we would like to show that all relevant pathways have a
discriminative ability comparable to the most discriminative pathway. We demonstrate this quantitatively by computing
the average of the distance to the top rank among key pathways. The median value across all seeds is summarized in
Table 2 and we find that pmVAE has the smallest values for both datasets.

Datlinger et al. Kang et al.

pmVAE 17.5 2.0
Interpretable AE 19.5 16.4

Table 2: Median average rank difference to top ranked pathway. A high score here means that there is high variablity in
the discriminative ability of the pathways, indicating that the modules could be degenerate. pmVAE has low scores for
each experiment.

4.4 Multidimensional pathway embeddings capture nuanced and context specific effects

In Sections 4.2 and 4.3, we quantitatively demonstrated that our multidimensional pathway representations are more
discriminative of the underlying biological stimulus. In this section, we seek to demonstrate that these representations
capture relevant biological signals that are important to a pathway. To more closely interrogate the pathway signals
learned and show the benefit of the multidimensional representation, we use embeddings learned from the Kang et
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Figure 4: tSNE projections [50] computed from the 4-dimensional embeddings of the Interferon-α/β, Cytokine
signaling in immune system, TCR Signaling, and Cell cycle modules. Each point represents a cell and is
colored by its cell type, each column displays the projections of a single pathway, and cells from the control condition
are greyed out in the top row, while cells from the stimulated condition are greyed out in the bottom row. We include two
pathways targeted by the stimulation (Interferon-α/β and Cytokine) and two pathways not targeted (TCR and Cell
cycle). These modules capture effects within the pathway contexts. For example, the perturbed Interferon-α/β
and Cytokine modules strongly capture stimulation signals, while TCR signaling, which plays a role in cell-typing,
captures cell-type specific effects. The Cell cycle is included as a control as we do not expect, nor observe, strong
effects due to cell type or stimulus. More analysis of captured effects is discussed in Section 4.4.

al. dataset to visualize various pathway representations. We do so by considering four pathways and their activation
within different cell contexts. Two of the considered pathways are affected by the stimulation, Interferon α/β
signaling and Cytokine signalling in the immune system. We also consider two pathways unaffected by
the stimulation, TCR signaling, which is specific to T-cells, and a control pathway Cell cycle, which we expect to
capture neither stimulation not cell type effects. We visualize the embeddings of these modules by computing tSNE
projections [50] on each of the 4-dimensional embeddings, shown in Figure 4.

We observe that only pathways directly related to the stimulation (Interferon α/β and Cytokine signalling in
the immune system) are able to explain effects due to the stimulation, as evidenced by their ability to to discriminate
between the stimulated (colored along the first row) and control (colored along the second row) cells. Furthermore,
the module for the TCR signaling pathway, whose behavior is specific to cell-type context and is not involved in
Interferon-β response, produces embeddings that capture cell-type specific contexts without capturing any stimulation
effects. Finally, we observe that the control pathway, Cell cycle is unable to effectively discriminate either the
stimulation status or the cell type, as we do not expect this pathway to be affected by either.

Interestingly, in the Interferon α/β representation, we find that the control cells without Interferon-β stimulus do
not cluster by cell type, however, after stimulation we find strong clustering by cell type (Supplementary Figure 1). This
behavior is not shared by its parent pathway Cytokine signalling in the immune system, whose control cells
cluster by cell type, indicating that the response of Interferon-α/β is specific to its cell type context, a claim that is
supported in the literature. van Boxel-Dezaire et al. [49] show that this cell type specific effect is caused by differences
in the downstream transcription factors STAT1, STAT3, and STAT5 for CD4, CD8 T cells, B cells, and monocytes from
human blood treated with Interferon-β. Additionally, this effect was also shown independently through a microarray
experiment directly measuring differences between monocytes and T-cells after treatment with Interferon-β [15]. While
modelling a context dependent response as observed in the Kang et al. dataset is difficult to accomplish in a univariate
representation, it is easily captured in these multidimensional embeddings.

5 Discussion

In this paper, we presented pmVAE, a method to learn multidimensional pathway representations that are directly
interpretable and reveal responses and effects that are specific to different pathway activities. By incorporating pathway
membership into the architecture design, pmVAE constructs a latent space factorized by pathway. No further post-hoc
analysis methods are required to identify such effects. This means that representations learned by pmVAE can be
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used to directly associate pathway states to clinically relevant features, quickly illuminating biological mechanisms
underlying the data.

Through the use of our pathway module training procedure, we are able to address the problem of learning representations
when pathways are highly overlapping, a complication innate to most pathway structures. We have empirically shown
through the use of two scRNA-seq datasets containing biological noise from both direct stimulation, cell type, and in
one example gRNA transduction, that our method produces biologically relevant and accurate pathway representations.
We find that both pmVAE, and the one-dimensional variant of our model, 1D pmVAE, outperform baseline methods in
being able to discriminate the cell state using the representation of the directly stimulated pathway. Additionally, we
find that our learned representation of the true perturbed pathway is not only discriminative of the underlying biological
signal, but that the closely related pathways, up- or downstream, are comparably discriminative.

We also demonstrate that our multidimensional pathway representations, as opposed to their unidimensional counterparts,
are necessary to explain some pathway effects. For example, we observed that Interferon-β induces a cell-type dependent
response in its target, Interferon α/β. While a unidimensional representation would struggle to explain such a
context-dependent behavior, we find this effect clearly explained within the multidimensional pmVAE Interferon
α/β signaling module. Though we have demonstrated that some pathways effects require multidimensional
representations to be explained, it is likely that this is not true for all pathways. Proper model regularization, achieved
through the KL term and the tuning of its weight β, removes unnecessary complexity and effectively determines the
correct dimensionality of each pathway module.

Redundancies between overlapping pathways, due in part to their hierarchical nature, result in degenerate solutions
which make optimization challenging. To address this challenge, pmVAE enforces independence relationships between
pathway modules by introducing local reconstruction terms for each module in the loss function. However, this
independence ignores known pathway-pathway interactions arising from signaling effects. Learning pathway-factorized
representations that explicitly model these effects, for example by incorporating known signaling interactions into
the architecture [13, 22, 33, 40] is an interesting direction of future work. For example, after appropriate modeling of
pathway-pathway interactions, remaining correlation could be attributed to sources of technical noise or bias, as can be
done in mixed effect modelling.

Finally, although we have validated our method using only scRNA-seq data, we believe that our approach could work on
other expression-based methods, such as bulk RNA-seq, CyTOF, DIA mass spectrometry, or any other technology that
contain multiple measurements for each pathway of interest per sample. Through integration of multiple technologies
one could be used to gain a more holistic understanding of cellular states. However, since these technologies might
not have direct feature correspondences, the integrative analysis of them is challenging [18, 25]. While features sets
might not be easily comparable, the pathway structure underlying these feature sets are shared. This indicates that
pathway-factorized latent representations, like those learned by pmVAE, could be used more easily integrate [5,9,28,43]
these technologies.
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