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ABSTRACT 36 

Genome-wide association studies (GWASs) have identified thousands of risk loci for many psychiatric 37 

and substance use phenotypes, however the biological consequences of these loci remain largely 38 

unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 39 

substance use phenotypes (collectively termed “mental health phenotypes”) using expression 40 

quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation due to 41 

predicted genetically regulated expression between pairs of mental health phenotypes, and compared 42 

the results with the genetic correlations. We identified 1,645 genes with at least one significant trait 43 

association, comprising 2,176 significant associations across the 16 mental health phenotypes of which 44 

572 (26%) are novel. Overall, the transcriptomic correlations for phenotype pairs were significantly 45 

higher than the respective genetic correlations. For example, attention deficit hyperactivity disorder and 46 

autism spectrum disorder, both childhood developmental disorders, showed a much higher 47 

transcriptomic correlation (r=0.84) than genetic correlation (r=0.35). Finally, we tested the enrichment 48 

of phenotype-associated genes in gene co-expression networks built from prefrontal cortex. Phenotype-49 

associated genes were enriched in multiple gene co-expression modules and the implicated modules 50 

contained genes involved in mRNA splicing and glutamatergic receptors, among others. Together, our 51 

results highlight the utility of gene expression data in the understanding of functional gene mechanisms 52 

underlying psychiatric disorders and substance use phenotypes.  53 
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INTRODUCTION 54 

  55 

Psychiatric and substance use disorders are a leading cause of disease burden and account for 28.5% of 56 

global years lived with disability (1). Genome-Wide Association Studies (GWAS) have identified hundreds 57 

of genomic regions that are linked to the risk to develop a psychiatric disorder (2–4) and provide novel 58 

insights into the genetic architecture of psychiatric disorders and into the sharing of genetic risk factors 59 

across mental health phenotypes (5). The Brainstorm Consortium used GWAS data to estimate genetic 60 

correlations (rg) across ten psychiatric disorders, revealing considerable sharing of common genetic risk 61 

(5). However, relatively few studies have explored sharing of pathological or molecular mechanisms 62 

which contribute to these disorders. The majority (~93%) of disease-associated genetic variants are 63 

located in non-protein coding regions of the genome (6) suggesting that genetic mutations act through 64 

the regulation of gene expression rather than by directly altering the protein product. In the present 65 

study, we will integrate genetic and transcriptomic information from the brain to explore sharing of 66 

transcriptomic mechanisms across 16 mental health phenotypes.  67 

 68 

Previous studies have integrated genetic and gene expression data to gain pathophysiological insights 69 

into a more limited subset of psychiatric disorders (7,8). Gandal et al. compared levels of differential 70 

gene expression in postmortem brain samples from patients with autism (ASD), schizophrenia (SCZ), 71 

bipolar disorder (BD), depression (DEP), and matched healthy controls and revealed significant overlap 72 

of disease-related signatures between ASD, SCZ, BD, and DEP (9). Transcriptomic changes were most 73 

severe in ASD and least severe in DEP, with SCZ and BD showing intermediate levels of severity. 74 

Although this study provided important new insights into the sharing of molecular mechanisms across 75 

mental health disorders, comparison of observed levels of gene expression is susceptible to reverse 76 

causation, where traits may affect gene expression levels (10,11). Imputation of gene expression levels 77 
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based on whole-genome and RNA sequence reference data from healthy participants provides a unique 78 

way to investigate how the genetically regulated component of gene expression is shared across 79 

disorders (10,11).  80 

 81 

We and others have shown that biologically relevant functional networks are critical for understanding 82 

pathway convergence of manifold genetic risk variants in neuropsychiatric diseases (12). Genetic co-83 

expression networks model correlated levels of gene expression and provide a way to explore how the 84 

activity of multiple biologically related genes within the same co-expression network influence disease 85 

risk. We have previously generated co-expression networks in 13 brain tissues from healthy GTEx donors 86 

and report an association between four co-expression networks and Major Depressive Disorder, 87 

suggesting a role for synaptic signalling and neuronal development pathways (12). In their study of post-88 

mortem gene expression in patients vs. healthy controls, Gandal et al. (13) explored module-level 89 

differential expression and showed that a module strongly enriched for microglial markers was 90 

upregulated specifically in ASD while several other modules were downregulated across ASD, SCZ, and 91 

BD.  92 

 93 

In the present study, we conduct a comprehensive exploration of differences in genetically regulated 94 

levels of gene expression across 16 mental health phenotypes, including 11 psychiatric disorders and 6 95 

substance use phenotypes. First, we integrate GWAS summary statistics with gene expression data from 96 

the prefrontal cortex of 533 healthy PsychENCODE donors. Second, we perform a systematic exploration 97 

of differences in genetically regulated levels of gene expression for the 16 individual phenotypes and 98 

delineate genetic and transcriptomic overlap across phenotypes. Third, we generate co-expression 99 

networks and explore enrichment of GWAS signal within network modules. Finally, we will use LD score 100 
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regression (14) to partition GWAS heritability and determine the contribution from SNPs included in 101 

phenotype-associated networks before and after accounting for baseline functional annotations.  102 

 103 

METHODS 104 

Description of the GWAS Summary statistics 105 

We included 10 psychiatric disorders and 6 substance use phenotypes (which we collectively refer to as 106 

“mental health” phenotypes) in our analyses. We selected only mental health phenotypes with 107 

significant SNP-based heritability (Z-score>2). Details on the individual GWAS samples, including sample 108 

sizes and SNP-based heritability estimates, are provided in Table 1 and Supplementary Table 1.  109 

 110 

PsychENCODE RNAseq data 111 

We obtained a gene expression matrix derived from the prefrontal cortex in 532 healthy control 112 

subjects from the PsychECODE project (http://resource.psychencode.org/) (15). The gene expression 113 

data were normalised from the full (healthy subjects and diseased cases) Fragments Per Kilobase of 114 

transcript per Million (FPKM) count matrix expression matrix as described by Gandal et al. (16), and 115 

filtered so that only genes with FPKM >= 0.1 in at least 10 samples are retained. 116 

 117 

TWAS FUSION 118 

We used TWAS FUSION (11) to integrate eQTL information from the PsychENCODE project with GWAS 119 

summary statistics for 16 mental health phenotypes (Table 1) to identify genes whose genetically 120 

predicted expression levels are associated with each phenotype. We used expression weights generated 121 

by the PsychENCODE consortium (16), and Linkage Disequilibrium information from the 1000 Genomes 122 

Project Phase 3 (17). These data were processed with the beta coefficients or odds ratios from each 123 

GWAS to estimate the expression-GWAS association statistic. For each phenotype, we corrected for 124 
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multiple testing using the false discovery rate (18) (FDR<0.05). We performed empirical Brown’s test 125 

(19) to combine TWAS FUSION P values to rank order genes based on their strength of association across 126 

the 16 phenotypes. We restricted this analysis to genes for which TWAS FUSION association statistics 127 

results were available for all 16 phenotypes. 128 

 129 

MAGMA 130 

We performed gene-based analyses using MAGMA v1.07 (20), which assigns SNPs to their nearest gene 131 

using a pre-defined genomic window. We defined the genomic window as 35 kb upstream or 10 kb 132 

downstream of a gene body. The gene-based test statistic based was calculated using the default snp-133 

wise=mean model, which uses the weighted sum of the SNP –log(10) P values while accounting for the 134 

correlation (i.e. linkage disequilibrium) between nearby SNPs. Linkage disequilbrium information was 135 

obtained from the 1000 Genomes Project Phase 3 (17). Multiple testing correction was performed 136 

across all phenotypes using FDR<0.05. We identified novel significant TWAS FUSION genes for each 137 

mental health phenotype by intersecting significant TWAS FUSION results with those identified using 138 

conventional proximity-based methods in MAGMA, as well as the FUMA SNP2GENE function (see Web 139 

resources). For the latter, we used positional gene mapping for all genes (i.e., we included non-protein 140 

coding genes as these were also included in the Fusion analysis), and lead SNPs were identified using 141 

default settings (R
2
 threshold to define independent significant SNPs=0.6). 142 

 143 

Transcriptome-wide correlation analysis 144 

We estimated the genome-wide genetic correlation between each pair of mental health phenotypes as 145 

a function of the predicted gene expression effect from TWAS FUSION using RhoGE (21), after excluding 146 

the MHD region. Briefly, RhoGE estimates the mediating effect of genetically regulated gene expression 147 

(estimated from TWAS FUSION) before calculating the correlation of effect sizes between pairs of traits. 148 
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 149 

Genetic correlations and estimates of h
2

SNP  150 

LD Score Regression was used to estimate SNP-based heritability (h
2

SNP) and genetic correlations 151 

between each pair of the 16 traits, after exclusion of the MHC region. SNP-based heritability for case-152 

control phenotypes was estimated on the liability scale (see Supplementary Table 1 for the sample and 153 

population prevalence of each trait). Multiple testing was corrected for by adjusting P values based on 154 

false discovery rate (FDR) across all tests.  155 

 156 

Hierarchical cluster analysis 157 

We performed hierarchical clustering analysis for both transcriptomic and genetic correlations in order 158 

to examine the underlying genetic and transcriptomic structure between the 16 traits. Complete-linkage 159 

clustering was implemented using the hclust function in R (22), where dissimilarity between trait pairs 160 

was defined as one minus the (genetic or transcriptomic) correlation. 161 

 162 

Gene co-expression network analysis 163 

Gene co-expression networks were individually constructed from 532 prefrontal cortex control samples, 164 

generated by the PsychENCODE project, using the weighted gene co-expression network analysis 165 

(WGCNA) package in R (23). A signed pairwise correlation matrix using Pearson’s product moment 166 

correlation coefficient was calculated. A “soft-thresholding” value of 14 was selected by plotting the 167 

strength of correlation against a series (range 2 to 20) of soft threshold powers. The correlation matrix 168 

was subsequently transformed into an adjacency matrix, where nodes correspond to genes and edges to 169 

the connection strength between genes. The adjacency matrix was normalised using a topological 170 

overlap function. Hierarchical clustering was performed using average linkage, with one minus the 171 

topological overlap matrix as the distance measure. The hierarchical cluster tree was cut into gene 172 
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modules using the dynamic tree cut algorithm (24), with a minimum module size of 30 genes. We 173 

amalgamated modules if the correlation between their eigengenes – defined as the first principal 174 

component of their genes’ expression values – was greater or equal to 0.8.  175 

Gene-set analysis to explore enrichment of heritability in gene co-expression networks 176 

To identify gene co-expression networks enriched with candidate risk genes for each mental health trait, 177 

we performed gene-set analysis of TWAS FUSION gene-level results in tissue-specific gene co-expression 178 

networks using the gene-set analysis function in MAGMA v1.07 (20). For each mental health trait, we 179 

generated MAGMA-format annotation (.annot) files using the default --annot function. For the gene-180 

based analysis, we used the --snp-wise=mean function, which calculates an association statistic for each 181 

gene using the weighted sum of P values for a predefined genomic window (5 kilobases upstream and 182 

1.5 kilobases downstream). The 1000 Genomes European reference panel (Phase 3) (17) was used to 183 

account for Linkage Disequilibrium between SNPs. Finally, we tested for the enrichment of gene-based 184 

association signals within gene co-expression networks from the prefrontal cortex. First, we modified 185 

the intermediary .raw files generated in the gene-based test by substituting each MAGMA gene z-score 186 

with the corresponding TWAS FUSION gene z-score. The module enrichment analyses were re-187 

performed after excluding genes in the MHC region. 188 

Characterisation of gene expression modules 189 

Gene expression modules enriched with neuropsychiatric GWAS association signals were assessed for 190 

biological pathways using g:Profiler (https://biit.cs.ut.ee/gprofiler/) (25). Ensembl gene identifiers within 191 

enriched gene modules were used as input; we tested for the over-representation of module genes in 192 

Gene Ontology (GO) biological process terms, as well as KEGG (26) and Reactome (27) gene pathways. 193 

The g:Profiler algorithm uses a Fisher’s one-tailed test for gene pathway enrichment; the smaller the P 194 

value, the lower the probability a gene belongs to both a co-expression module and a biological term or 195 
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pathway purely by chance. Multiple testing correction was done using g:SCS; this approach accounts for 196 

the correlated structure of GO terms and biological pathways, and corresponds to an experiment-wide 197 

threshold of α=0.05. 198 

Partitioned heritability analysis 199 

We used stratified LD score regression (S-LDSC) to estimate the enrichment and the standardized effect 200 

size of the six associated gene co-expression modules (28). S-LDSC assumes the association statistic for 201 

an associated SNP captures the effects of all nearby tagged SNPs. If a phenotype has a polygenic 202 

architecture, SNPs with a high LD score will have larger association statistics on average than SNPs with 203 

a low LD score. As such, LD within a functional category that is enriched for heritability will increase the 204 

association statistic relative to that of a category that does not contribute to heritability. Thus, S-LDSC 205 

will identify functional categories if SNPs with high LD to that category have higher association statistics 206 

than SNPs with low LD to that category. We generated customized annotation-specific LD scores based 207 

on the gene sets from the genetic co-expression modules using the python script provided by the 208 

developers of LDSC. LD scores were calculated using a default window size of 100kb and 1KG genotype 209 

data as reference data (see Web resources).  We calculated the enrichment of heritability including LD 210 

scores of the co-expression modules before correcting for baseline functional annotations (28) (see Web 211 

resources). The baseline-LD model contains 52 functional annotations, including coding, conserved, and 212 

regulatory annotations (e.g., promoter, enhancer, histone marks, transcription factor [TF] binding sites). 213 

RESULTS 214 

Gene-based results 215 

We calculated the association between imputed genetically regulated gene expression from prefrontal 216 

cortex and 16 neuropsychiatric phenotypes using TWAS FUSION (Supplementary Table 2). We identified 217 

1,645 genes with at least one significant phenotype association (after correction using the false 218 
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discovery rate [FDR] <0.05), comprising 2,176 significant associations across the 16 phenotypes. Of 219 

these, 1,236 were related to psychiatric disorders and 940 to substance use phenotypes. Within 220 

psychiatric phenotypes, the largest number of TWAS FUSION associations was observed for 221 

schizophrenia (N=597) followed by depression (N=185), while smoking initiation (N=312) and drinks per 222 

week (N=260) accounted for the largest number of substance use associations. When compared with 223 

two commonly-used gene mapping tools, conventional MAGMA and FUMA SNP2gene, a total of 572 224 

genes (26%) of the TWAS FUSION genes were novel (Supplementary Table 3). We conducted empirical 225 

Brown’s tests to rank-order genes of which the imputed gene expression levels are most strongly 226 

associated across the 16 phenotypes. Figure 1A illustrates the strength of association for the top 20 227 

genes from the Brown’s analysis across the 16 phenotypes. Interestingly, 8 of the top 20 most strongly 228 

associated genes across all phenotypes showed a significant association with concordant effects in 229 

depression and schizophrenia. It should be noted, however, that most of the associations were linked to 230 

the MHC region, highlighting its importance in mental health phenotypes. Full results are presented in 231 

Supplementary Table 4 (including MHC) and Supplementary Table 5 (excluding MHC). We also selected 232 

the top gene for each phenotype and visualize effect sizes across all 16 phenotypes (Figure 1B). 233 

 234 

Genetic and transcriptomic correlations across 16 phenotypes 235 

All phenotypes exhibited significant SNP-based heritability (Table 1 and Supplementary Table 6). We 236 

estimated correlations across the 16 pairs of phenotypes based on genetic variation (ρg) using LDSC 237 

(Figure 2A; below diagonal) and predicted expression (ρt) using RhoGE (Figure 2A, above diagonal). 238 

Tabulated data for genetic and transcriptomic correlations are shown in Supplementary Table 7 and 239 

Supplementary Table 8, and Supplementary Figure 1 shows the pairwise correlation differences 240 

between phenotypes. The genetic correlations (mean absolute ρg  = 0.23; SD = 0.25) were significantly 241 

lower than the average transcriptomic correlations (mean absolute ρt  = 0.30; SD = 0.31) (paired sample 242 
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t-test; t-statistic=-3.48; P < 0.001). The genetic correlations explained a large proportion of the variance 243 

in transcriptomic correlations (Figure 2B; R
2 

= 0.7808; P < 2.2 × 10
-16

), with the most pronounced 244 

difference between ADHD and ASD, with ρg  = 0.35 (SE = 0.05) and ρt = 0.84 (SE = 0.05).  A hierarchical 245 

cluster analyses of genetic and transcriptomic correlations showed similar groupings between genetic 246 

and transcriptomic correlations (Supplementary Figure 2). Both analyses, for example, were suggestive 247 

of strong sharing of genetic risk factors between anxiety and depression, and between bipolar disorder 248 

and schizophrenia. However, despite these similarities, some interesting differences were also revealed; 249 

for example, ADHD and ASD were grouped together in the transcriptomic cluster analysis but not the 250 

genetic cluster analysis in line with the results from the genetic and transcriptomic correlation analysis.  251 

 252 

Co-expression network analysis 253 

We identified 25 gene co-expression modules which ranged between 85 and 3,042 genes in size. 254 

Biological pathway enrichment analysis showed each module contained genes involved in the same or 255 

similar biological pathways (for example, the immune response [module M9] or trans-synaptic signaling 256 

[M25]; Supplementary Table 9). We tested for the enrichment of TWAS FUSION gene-based association 257 

signals within each module, while adjusting for gene size, gene density, and correlated expression. Six 258 

modules were associated with at least one psychiatric disorder (FDR<0.05) (Figure 3). The strongest 259 

association was found between module M19, enriched with genes involved in mRNA splicing, and 260 

anxiety (FDR = 0.0063). Full results are provided in Supplementary Table 10 (including the MHC region) 261 

and Supplementary Table 11 (excluding MHC). We partitioned the heritability explained by the six 262 

modules (Figure 4A) and showed 7 significant associations after Bonferroni correction for number of 263 

modules and traits (P<0.000054). After including baseline functional annotations, a single module 264 

(module M10), enriched with nucleic acid and RNA metabolism pathways, remained significant in 265 

bipolar disorder and schizophrenia.  266 
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 267 

DISCUSSION 268 

We performed a systematic, network-based, analysis of genetic and transcriptomic risk factors 269 

underlying neuropsychiatric and substance use phenotypes. By integrating GWAS summary statistics for 270 

10 neuropsychiatric and 6 substance use phenotypes with gene expression data from the prefrontal 271 

cortex, we identified 2,176 significant (FDR<0.05) gene-trait associations (representing unique 1,645 272 

genes). After the removal of known gene-based associations, schizophrenia had the largest number of 273 

novel gene-based associations, followed by the substance use traits smoking initiation and drinks per 274 

week. We found evidence of widespread pleiotropic effects underlying phenotype-associated genetically 275 

regulated gene expression. This was most noticeable with depression and schizophrenia, where 8 of the 276 

top 20 most strongly associated genes across all phenotypes, including genes (N=6) in the MHC region, 277 

showed a significant association with concordant effects. We estimated the correlation between 278 

genetically regulated gene expression levels underlying neuropsychiatric and substance use traits. The 279 

transcriptomic correlations were significantly larger than the genetic correlations, and several 280 

phenotype pairs—for example, ASD and ADHD—showed a large difference in the magnitude of 281 

correlation between each method. Gene co-expression modules built from control (i.e. healthy) 282 

prefrontal cortex tissue samples were enriched with neuropsychiatric and substance use association 283 

signals and implicated multiple biologically meaningful pathways in disease/trait susceptibility. 284 

Collectively, these data suggest genetic regulation of gene expression measured from healthy subjects 285 

contains highly relevant biological information for the interpretation of disease susceptibility. 286 

 287 

To prioritise genes whose expression is most strongly associated with multiple traits, we combined and 288 

ranked association signals for the investigated traits using Brown’s method. Increased expression of the 289 

most strongly associated gene, PSMA4, was significantly associated with schizophrenia, cigarettes per 290 
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day, and smoking cessation. The gene PSMA4, located within the 15q25.1 gene cluster, has previously 291 

been associated with nicotine dependence and lung cancer (29), and we recently linked its expression in 292 

multiple GTEx brain tissues to cigarettes per day and smoking cessation (30).  PSMA4 has also been 293 

identified as one of six “high confidence” genes in schizophrenia, based on probabilistic fine mapping 294 

approaches and observed expression profiles (31). Interestingly, using observed expression data, these 295 

authors found decreased PSMA4 expression in prefrontal cortex and hippocampus was associated with 296 

schizophrenia, while we reported the opposite effect direction with imputed (genetically regulated) 297 

gene expression in prefrontal cortex. Our association is consistent with previously reported PSMA4 298 

associations for schizophrenia in brain using transcriptome imputation methods TWAS FUSION (21) and 299 

S-PrediXcan (32). It is possible the observed expression data (GSE21138) were confounded by a hidden 300 

or surrogate variable, such as current smoking status, which may explain the association with PSMA4 in 301 

schizophrenia cases compared to controls, rather than a causal disease process. This highlights a major 302 

advantage of transcriptome imputation methods, which remove environmental noise by focussing on 303 

the genetically regulated component of gene expression.    304 

 305 

We estimated genome-wide genetic correlations at the level of predicted expression and show that 56 306 

of the 112 trait pairs are significantly correlated at FDR<0.05. In line with the large genetic overlap 307 

between these disorders (5), predicted expression levels were strongly correlated between bipolar 308 

disorder and schizophrenia (ρt=0.84) and between anxiety and depression (ρt=0.93). A systematic 309 

comparison of the transcriptomic and genetic correlations revealed a strong relationship (R
2 

= 0.78, P < 310 

2.2 × 10
-16

), although on average the predicted expression levels were found to be more strongly 311 

correlated than genetic variation. For example, ASD and ADHD, two common childhood onset 312 

neurodevelopmental disorders, are more strongly correlated at the transcriptomic level (ρt=0.84) than 313 

the genetic level (ρg=0.35). The strong transcriptomic correlation between ASD and ADHD is not only 314 
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supported by the genetic correlation between the disorders but also their phenotypic similarity, where a 315 

large proportion of children (37-85%)  with ASD have comorbid symptoms of ADHD (33). Furthermore, 316 

exome sequencing of children with ASD and ADHD indicated that they have a similar burden of rare 317 

protein-truncating variants (34). While clinical guidelines dictate ASD cannot be diagnosed in the 318 

presence of ADHD, our data suggests the high co-occurrence of these disorders is due to a shared 319 

genetic regulation (35).  320 

 321 

We can only speculate as to why the genetic correlations are generally lower than their respective 322 

transcriptomic correlations. One possible explanation is the assumptions of LDSC, such as a highly 323 

polygenic genetic architecture underlying the investigated phenotypes, may be violated in our study. For 324 

example, it is possible LDSC yields an underestimate of shared genetic regulation by incorrectly 325 

modelling the contribution of genomic regions more strongly enriched for heritability for some mental 326 

health traits, while the transcriptomic correlation captures a truly high genetic overlap. However, it is 327 

also possible the transcriptomic correlations are inflated due to the local correlation structure of gene 328 

expression at a locus associated with two or more phenotypes. These scenarios may be investigated 329 

using recently developed computational tools for casual inference, such as FOCUS (36) or MR-JTI (37), to 330 

identify a reliable set of independent causal genes underlying each phenotype. 331 

 332 

Our gene co-expression network analysis of prefrontal cortex identified modules of genes enriched with 333 

gene-based associations for four neuropsychiatric disorders (anxiety, bipolar disorder, obsessive 334 

compulsive disorder, autism spectrum disorder), and three substance use phenotypes (cigarettes per 335 

day, cannabis initiation, and age of smoking initiation). The most strongly associated module was 336 

associated with anxiety and strongly enriched in biological pathways associated with mRNA splicing. 337 

Splicing is genetically regulated (38) and can influence gene expression in particular tissues, giving rise to 338 
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different functional effects such as altered neuronal connectivity and synaptic firing properties in the 339 

brain (39). Alternative mRNA splicing events are associated with diverse neuropsychiatric disorders, 340 

including schizophrenia (40), autism spectrum disorder (41), bipolar disorder (42), and major depression 341 

(43), highlighting the importance of alternative splicing in neuropsychiatric disease susceptibility. 342 

Current genomic resources, such as the latest release (version 8) of the Genotype-Tissue Expression 343 

study (GTEx) (38), will help researchers better understand how genetic variants affect gene expression 344 

through alternative splicing events. Other trait-associated modules were enriched with biologically 345 

meaningful pathways. For example, the module M1 was associated with bipolar disorder and enriched 346 

with genes involved in the regulation of metabotropic glutamate receptors. Glutamatergic receptors are 347 

the primary effectors of glutamate, a critical excitatory neurotransmitter, and their dysregulation is 348 

implicated in many neuropsychiatric disorders (44), including bipolar disorder (45). Collectively, these 349 

data suggest gene co-expression networks may be used as a molecular substrate for the biological 350 

characterisation of genetic risk factors underlying neuropsychiatric and substance use traits.  351 

 352 

Stratified heritability analyses revealed significant enrichment of network module co-expression with 353 

mental health traits. Annotations for a single module, enriched with genes involved in nucleic acid and 354 

RNA processing, was significantly associated with bipolar disorder and schizophrenia after adjusting for 355 

baseline annotations. The loss of most modular enrichments after baseline annotation adjustment is in 356 

line with the findings of Kim et al., who explored the association between genes with network 357 

connectivity and 42 traits and showed that significant enrichments of genetic networks were fully 358 

explained by excess overlap between network annotations and regulatory annotations from the baseline 359 

LD-models (46). The loss of module enrichments following baseline annotation can be expected, and 360 

most likely show that observed modular enrichment is explained by current knowledge on functional 361 

and regulatory elements in the human genome, rather than some unexplained biological process.  362 

 363 
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The findings of this study should be interpreted in view of the following limitations. First, the TWAS 364 

FUSION expression imputation approach is only valid if disease risk is mediated through expression and 365 

the expression weights were generated in a disease-relevant or appropriate proxy tissue or cell type. For 366 

example, expression changes associated with depression are most strongly associated with microglial 367 

cells (47), while altered expression underlying schizophrenia is enriched in neurons (48,49). Expression 368 

weights from PyschENCODE were not available at single cell resolution. Therefore, the imputed 369 

expression effects may reflect a mosaic of expression effects from multiple cell types rather than a single 370 

causal cell type, or the sharing of genetic regulation of gene expression (37). The generation of large 371 

single-cell eQTL datasets from the human brain will provide a valuable resource to disentangle cell-372 

specific effects (50,51). Second, the TWAS FUSION approach does not test whether gene expression and 373 

a phenotype are affected by the same causal SNP in a cis-eQTL region. As such, the approach does not 374 

provide direct evidence of causal relationship between expression and disease risk. Mendelian 375 

randomisation-based approaches, such as SMR (52) and MR-JTI (37), may refine our list of gene 376 

candidates by selecting genes most likely associated through pleiotropy, where gene expression and a 377 

phenotype are affected by the same causal variant. Finally, our gene co-expression analyses rely on the 378 

stability (i.e. robustness) of gene co-expression networks in prefrontal cortex. We built signed networks 379 

using similar parameters described by Gandal et al. (16). Using a permutation procedure, these authors 380 

compared each module’s density (that is, the average strength of association, or connectivity, between 381 

genes in a module) to the density of modules of equivalent size. These authors concluded psychENCODE 382 

prefrontal cortex modules were robust to the influence of outlier samples on network architecture, 383 

providing confidence in the stability of our co-expression network. 384 

 385 

Our study highlights the benefits of integrating GWAS studies from mental health phenotypes with large 386 

scale transcriptomic information to identify the functional impact of disease-causing variants. By 387 
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integrating transcriptomic data from prefrontal cortex with GWAS data, we identified hundreds of 388 

candidate risk genes not previously identified using commonly-used proximity-based and eQTL gene 389 

mapping methods. We found a significant difference between transcriptomic and genetic correlations 390 

across all phenotype pairs, and the magnitude of the difference was particularly large for ADHD and 391 

ASD. These data suggest transcriptomic correlations, which take correlations across genes into account, 392 

may provide additional insight into the functional relationship between mental health phenotypes. 393 

Finally, we observed some enrichment and convergence of candidate risk genes for mental health traits 394 

within co-expression networks from prefrontal cortex, suggesting our approach will prove useful in 395 

characterising the functional impact of trait-associated genetic variation. Future analyses could extend 396 

our approach by incorporating additional sources of genomic (for example, epigenetic marks) and 397 

statistical (e.g. SNP priors) information within co-expression networks. 398 

  399 
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Table 1: Sample descriptions and SNP-based heritabilities of 16 mental health traits   

Phenotype (abbreviation) Sample size (N) SNP-based heritability TWAS FUSION (N) 

Case Control Total h
2
snp (se) Z Genes Novel 

Anorexia Nervosa (AN) 16992 55525 72517 0.429 (0.0282) 15.21 74 20 

Attention Deficit Hyperactivity Disorder (ADHD) 19099 34194 53293 0.217 (0.0141) 15.41 53 12 

Autism Spectrum Disorder (ASD) 18382 27969 46351 0.112 (0.0097) 11.54 54 13 

Anxiety Disorders (ANX) 31977 82114 114019 0.125 (0.0090) 13.92 42 41 

Bipolar Disorder (BIP) 20352 31358 51710 0.200 (0.0101) 19.83 171 58 

Depression (DEP) 246363 561190 807553 0.073 (0.0025) 29.00 185 37 

Obsessive Compulsive Disorder (OCD) 2688 7037 9725 0.280 (0.0432) 6.48 15 15 

Post Traumatic Stress Disorder (PTSD) 23212 151447 174659 0.053 (0.0095) 5.53 18 13 

Schizophrenia (SCZ) 40675 64643 105318 0.234 (0.0083) 28.17 597 112 

Tourette’s Syndrome (TS) 4819 9488 14307 0.213 (0.0248) 8.59 27 15 

Drinks Per Week (DrnkWk) - - 537349 0.049 (0.0021) 23.19 260 62 

Smoking Initiation (SmkInit) 311629 321173 632802 0.104 (0.0033) 31.64 312 72 

Cigarettes Per Day (CigDay) - NA 263954 0.073 (0.0069) 10.52 163 36 

Smoking Cessation (SmkCes) 92573 220248 312821 0.060 (0.0039) 15.36 61 19 

Age of Smoking Initiation (AgeSmk) - - 262990 0.047 (0.0028) 16.93 70 23 

Cannabis Use Initiation (CanInit) 43380 118702 162082 0.118 (0.0075) 15.69 74 24 

ADHD: (Demontis et al., 2019); AN: (Duncan et al., 2017); ASD: (Grove et al., 2019); ANX: (Otowa et al., 2016); BIP, (Stahl et al., 

2019); DEP, (Howard et al., 2019); OCD: (Arnold et al., 2018); PTSD: (Nievergelt et al., 2019); TS: (Yu et al., 2019); CanInit: (Pasman 

et al., 2018); SCZ: (Pardiñas et al., 2018); DrnkWk, SmkInit, CigDay, SmkCes, AgeSmk: (Liu et al., 2019). 

  537 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted January 30, 2021. 
; 

https://doi.org/10.1101/2021.01.28.428688
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.01.28.428688
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

FIGURE LEGENDS  538 

Figure 1A: Brown’s method Z scores for the top 20 genes across 16 mental health phenotypes. 539 

Figure 1B: Brown’s method Z scores for the top gene for each mental health phenotype. 540 

Figure 2A: Correlations across the 16 pairs of mental health phenotypes (excluding MHC region) based 541 

on genetic variation (below diagonal) and genetically regulated gene expression (above diagonal). 542 

Figure 2B: Scatter plot of genetic and transcriptomic correlations (excluding MHC region) across 16 543 

mental health phenotype pairs. 544 

Figure 3: Circos plot of TWAS FUSION Z scores, modular enrichments, and significant transcriptomic 545 

correlations across 16 mental health phenotypes. Notes: The outermost circle highlights significant 546 

(FDR<0.05) TWAS FUSION associations; second middle layer shows the distribution of TWAS FUSION Z 547 

scores for each phenotype; the inner most layer shows the enrichment Z scores for each of the six 548 

significant co-expression modules in prefrontal cortex, with darker shading signifying greater 549 

enrichment; the inner ribbons represent significant transcriptomic correlations across phenotype pairs. 550 

Figure 4A. Heritability Enrichment of six co-expression network annotations. The figure illustrates 551 

heritability enrichment of network annotations for Alzheimer’s Disease GWAS. Coloured squares 552 

represent significant enrichment after Bonferroni correction for 16*6 tests (P<5.2 × 10
-4

). Notes: 553 

Enrichment Z scores outside the bounds -20 to 20 have been truncated. See Supplementary Table 12 for 554 

full list of heritability enrichment Z scores. 555 

Figure 4B. Heritability Enrichment of six co-expression network annotations when taking baseline 556 

functional annotations into account. The figure illustrates heritability enrichment of network and 557 

baseline annotations for Alzheimer’s Disease GWAS. Coloured squares represent significant enrichment 558 

after Bonferroni correction for 16*58 tests (P<5.3 × 10
-5

). Notes: Enrichment Z scores outside the 559 

bounds -20 to 20 have been truncated. See Supplementary Table 13 for full list of heritability 560 

enrichment with baseline annotation Z scores. 561 

Supplementary Figure 1: Pairwise differences in genetic and transcriptomic correlations across 16 562 

mental health phenotypes. 563 

Supplementary Figure 2: Hierarchical cluster analyses of genetic and transcriptomic correlations for 16 564 

mental health phenotypes. 565 
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