
Supplementary Material

ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification
using Introspective Variational Autoencoder

Heydari et al.

Heydari et al. | ACTIVA bioR‰iv | 1

Complete Computational Environment
Development and testing were done on Accelerated Computing EC2 instances (p3.2xlarge and p3.8xlarge) of
Amazon Web Services. All requirements and dependencies are automatically installed by our package and are listed in a
requirements file, but for the sake of completeness, they are as follows: Python v3.7.6, PyTorch v1.5.1, NumPy v1.18.5,
SciPy v1.4.1, Pandas v1.2.0, Scanpy v1.6.0, AnnData v0.7.5, and Scikit-learn v0.24.0. For data pre- and post-processing,
we used LoomPy v3.0.6, SeuratDisk v0.0.0.9013, Seurat v3.2.3, scater v1.16.2, and R v4.0.3. The scGAN package was run
in a Docker container (using the provided dockerfile at https://github.com/imsb-uke/scGAN/tree/master/
dockerfile). Reported training times for ACTIVA/scGAN were averages of 5 times on a single NVIDIA-Tesla V100
GPU (Table S1). Inference times were averages of 5 measurements on (i) V100 GPU (GPU time) and (ii) 2.3 GHz
Quad-Core Intel Core i7 (on a 2020 MacBook Pro).

GPU Training Times

Table S1. Training time (in seconds) on 68K PBMC for ACTIVA and scGAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5
times under the same conditions to find an average training time. We have not included cscGAN times since training that model took
longer than scGAN. We can see that ACTIVA trains much faster (6.3 times faster on average). scGAN (and cscGAN) were run in a
Docker container (by Marouf et al.)

Iteration ACTIVA scGAN
1 25968.2447 164225.5618
2 26218.7306 165308.7142
3 25935.2738 164391.8113
4 26091.8337 165281.5137
5 25915.67332 164988.1371

Average 26027.1584
(¥7.2 hours)

164839.14762
(¥45.7 hours)

Table S2. Training time (in seconds) on Brain Small for ACTIVA and scGAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5
times under the same conditions to find an average training time. We have not included cscGAN times since training that model took
longer than scGAN. ACTIVA trains approximately 17 times faster than scGAN. scGAN (and cscGAN) were run in a Docker container
(using the Dockerfile located at https://github.com/imsb-uke/scGAN/tree/master/dockerfile).

Iteration ACTIVA scGAN
1 8277.4867 142371.9793
2 7922.1005 141103.8196
3 8107.3591 143008.7401
4 7983.4031 142532.3804
5 8084.2473 142173.5900

Average 8074.9193
(¥2.2 hours)

142238.1018
(¥39.5 hours)

2 | bioR‰iv Heydari et al. | ACTIVA

https://github.com/imsb-uke/scGAN/tree/master/dockerfile
https://github.com/imsb-uke/scGAN/tree/master/dockerfile
https://github.com/imsb-uke/scGAN/tree/master/dockerfile

Choosing Adversarial Constant m

Ensuring the numerical balance between the KL divergence regularization of real and fake samples is crucial to ACTIVA’s
sample quality. Therefore an m that is extremely large or small could result a�ect how realistic the generated cells are.
The adversarial training in IntroVAE is similar to Energy-based GANs [Zhao et al. (2016)]. The following are two strategies
we followed for choosing an appropriate value of m, based on Zhao et al. (2016):

1. An e�ective strategy is to train the model as VAE for n epochs and track the minimized KL divergence. This will
provide an estimate of the capacity of Gen’s reconstruction of single cells without a critic’s input. Then, set m to be
a value close to minimized KL divergence after n epochs. This feature is already implemented in our package, with
a default VAE-only training of 10 epochs. In practice, we found that values of m roughly close to this minimized
divergence performed well.

2. Another strategy for choosing m can be a rough grid-search starting from large values of m (which could be the
upper bound of KL values) and gradually going to 0.

Network Architecture
3.1 Encoder Network

Fig. S1. The encoder network of ACTIVA.

Enc consists of fully connected layers, with Rectified Linear Units (ReLU) [Nair and Hinton (2010)] as the activation
between two layer, where we also perform batch normalization operation in [Io�e and Szegedy (2015)] (denoted as BN)
after ReLU . The input to the network is x œ RM , which goes through the network with layers {1024,512,256,128}, as
shown in Fig. S1. Adam [Kingma and Ba (2015)] optimizer is used with a learning rate lr = 0.0002, and moving average
decay rates —1 = 0.9, —2 = 0.999. Gradients are calculated on mini-batches of size 128, with the adversarial constant
m = 110.

3.2 Generator Network

Fig. S2. Architecture of ACTIVA’s generator network.

The generator network mirrors the encoder network, consisting of an input latent vector z œ RD going through the layers
{256,512,1024,M} as shown in Fig. S2. Note that in the last layer of the generator (mapping from 1024 to M), we use

Heydari et al. | ACTIVA bioR‰iv | 3

ReLU without BN . This is because we want to ensure that all generated values are non-negative. Similar to the encoder,
we optimize the network using Adam with a learning rate lr = 0.0002, —1 = 0.9, —2 = 0.999. Gradients are calculated on
128-cell mini-batches.

3.3 Automated Cell Type Network (ACTINN)

Fig. S3. Automatic cell-type identification network of ACTIVA, which is ACTINN.

Ma and Pellegrini (2019) use a fully connected neural network architecture for supervised classification of cell-types.
scRNAseq data is usually high dimensional and often sparse, making neural network a promising method for analyzing
such data. We implemented ACTINN in PyTorch, and used it for identifying cell-types and conditioning ACTIVA. Our
implementation has same architecture as in Ma and Pellegrini (2019) which was implemented in TensorFlow (S3). Cross
entropy is used to measure the loss between the predicted classes and the actual cell types. Optimization is done with
Adam and an exponential "staircase" decay is used, with initial learning rate being lr = 0.0001 and a decay rate of
0.95 applied after every 1000 optimization steps. Our implementation of ACTINN in PyTorch di�ers from the original
implementation in two ways: (1) we do not use a SoftMax layer between the last hidden layer and the output layer (due to
the implementation of cross-entropy in PyTorch), and (2) we train for fewer number of epochs (between 5-10 as opposed
to 50 epochs in the original implementation). Although we train for fewer epochs that Ma and Pellegrini (2019), we did
not notice a drop in the accuracy of our model; that is, our results on 68K PBMC closely match the results found by
Abdelaal et al. (2019) (results are shown in Tables S4-S5). Gradients are calculated on mini-batches of size 128.

4 | bioR‰iv Heydari et al. | ACTIVA

Downsampling and Data Augmentation

Fig. S4. Downsampling process for evaluating the impact of data augmentation with ACTIVA (Test splits shown in red frames and
Training splits are in blue frames, with ACTIVA generated in purple frame). We first separate the test set from the training set, and
subsequently label cluster 2 cells to differentiate them from all other clusters. Cells from all other clusters (besides cluster 2) are used
in all training and testing modes. For cluster 2 cells, we randomly subsample a fraction of the cells (10%, 5%, 1% or 0.05%) and
use this subset in addition to all other cells to train ACTIVA. In other words, ACTIVA and the RF will include (i) training data from all
other clusters and (ii) one of the downsampled version of cluster 2 cells (highlighted in light blue). For the performance evaluation of
RF without data augmentation ("no-augmentation"), we only use the desired cluster 2 subset and all other training cells to train the
classifier. For training mode ACTIVA augmentation, we generate 1500 cells for data augmentation, and add to the training cells we
used in "no-augmentation" mode. So for training the RF in augmentation mode, we use (i) training data from all other clusters, (ii) one
of the downsampled version of cluster 2 cells (highlighted in light blue) and (iii) 1500 ACTIVA generated cells [trained on the same
donwsampled data in (ii)].

Heydari et al. | ACTIVA bioR‰iv | 5

Additional Results
5.1 Accuracy of the Classifier on Each Dataset
As mentioned in the main manuscript, the sub-population cell generation depends on correctly classifying the cell-types.
Here, we show that ACTIVA’s classifier, ACTINN, can classify rare-cell population, with training cells as few as 71 cells
(see Table S5). We did observe that in some cases, if the number of training samples for a specific cluster is extremely
low, then ACTIVA does not learn that cell-type (as it is expected from any machine learning model); for example, the
classifier does not learn the 10th cell-types of the PBMC data, since there were only 19 training cells available (out of
61K training cells). However, for cluster 2 cell population, having 50 cells resulted in an F1 score of 0.74. This was useful
for studying the impact of data augmentation with ACTIVA, as described in Section 4 of the main manuscript.

Table S3. Accuracy of ACTIVA’s classifier network (ACTINN) on the test sets of Brain Small and 68K PBMC. Three metrics were used:
(1) Accuracy-number of correct predictions over all predictions; (2) F1 Score (Non-Weighted): unweighted mean of per-label accuracy
(not counting for cell-type imbalance); and (3) Weighted F1 Score: per-type accuracy but weighted by the number of cells for each
cell-type.

Test Set Accuracy F1 Score (Non-Weighted) Weighted F1 Score
Brain Small 0.9649 0.9674 0.9654
68K PBMC 0.9223 0.7448 0.9216

Table S4. Here we present the accuracy of ACTIVA’s classifier network on the test and training set for Brain Small dataset (see main
text Section 4.3 and Fig. 4).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 978 0.97 0.97 0.97 8808 0.99 1.00 0.99
1 304 0.98 0.99 0.98 2738 0.99 1.00 0.99
2 271 0.90 0.93 0.92 2439 0.98 0.99 0.98
3 182 0.99 0.96 0.97 1646 1.00 0.98 0.99
4 141 0.99 0.94 0.97 1271 1.00 0.99 0.99
5 59 0.98 0.98 0.98 535 1.00 0.99 1.00
6 35 1.00 0.94 0.97 323 1.00 0.97 0.98
7 27 1.00 0.93 0.96 243 0.99 0.99 0.99

Table S5. Here we present the accuracy of ACTIVA’s classifier network on the test and training set for 68K PBMC dataset(see main
text Section 4.3 and Fig. 4).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 1791 0.89 0.90 0.90 15768 0.99 1.00 1.00
1 1545 0.88 0.87 0.88 13608 1.00 0.99 1.00
2 1515 0.93 0.96 0.95 13344 1.00 1.00 1.00
3 697 0.91 0.87 0.89 6145 1.00 0.99 1.00
4 483 0.99 0.98 0.99 4258 1.00 0.99 1.00
5 466 0.97 0.97 0.97 4105 1.00 1.00 1.00
6 413 1.00 1.00 1.00 3644 1.00 1.00 1.00
7 71 0.98 0.82 0.89 626 1.00 0.95 0.97
8 8 0.00 0.00 0.00 71 1.00 0.68 0.81
9 2 0.00 0.00 0.00 19 0.00 0.00 0.00

6 | bioR‰iv Heydari et al. | ACTIVA

5.2 Gene Expressions

Fig. S5. UMAP of Synthetic Cells (generated by ACTIVA and scGAN with a subset of real data as training data) compared to real data
(not used in training) colored by gene expression. Plots shown in the same column are for the same dataset. Column A: UMAP of
6991 cells generated by ACTIVA and scGAN, respectively, along with the test set, colored by the gene expression of two markers genes
of 68K PBMC data. Column B: 1997 ACTIVA and scGAN generated cells compared to the testing set, colored by the gene expression
of two marker genes. For both datasets, we see that cells generated by ACTIVA resemble the real data well while more diversity is
present among the generated cells.

Heydari et al. | ACTIVA bioR‰iv | 7

5.3 Manifold Analysis

Fig. S6. UMAP of cells generated by ACTIVA compared to real test cells (not used in training) from 20K Brain Small. The histograms
on top and right of the UMAP plot display the counts of cells on the horizontal and vertical axis, respectively. This figure shows that
ACTIVA has learned the underlying distribution of the real data while having some diversity in the generated samples (which is desired
for generative models).

Fig. S7. t-SNE of all the cells in the test set (in grey), real cluster 2 cells (in blue), and ACTIVA generated cells when trained with
only 0.05% of cluster 2 cells (in red). This figure illustrates that ACTIVA learns to generate a sub-population even when it is trained on
239 cells (out of 7915 training cells). This qualitative evaluation, combined with the results shown in the manuscript, show promising
application of ACTIVA for improving downstream classification of rare populations.

8 | bioR‰iv Heydari et al. | ACTIVA

	Introduction and Background
	Generative Adversarial Networks
	Single Cell GANs
	Variational Autoencoders

	Methods and Approach
	Encoder Network
	Generator Network
	Automated Cell Type Conditioning
	Adversarial Training
	Network Architecture
	Training and Inference Procedure

	Datasets and Data Processing
	Pre-Processing
	Datasets
	Post-Processing
	Results
	ACTIVA Generates Realistic Cells
	ACTIVA Generates Similar Gene Expression Profiles
	ACTIVA Generates Specific-Cell Types on Demand
	ACTIVA Improves Classification of Rare Cells

	Conclusions and Discussion
	GPU Training Times
	Choosing Adversarial Constant m
	Network Architecture
	Encoder Network
	Generator Network
	Automated Cell Type Network (ACTINN)
	Downsampling and Data Augmentation
	Additional Results
	Accuracy of the Classifier on Each Dataset
	Gene Expressions
	Manifold Analysis

