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Abstract— This paper proposes a system for pose estimation on 

monkeys, in diverse and challenging scenarios, and under complex 

social interactions by using OpenPose. In comparison to most 

animals used for research, Monkeys present additional difficulties 

for pose estimation. Multiple degrees of freedom, unique complex 

postures, intricated social interactions, among others. Our 

monkey OpenPose trained model is robust against these 

difficulties. It achieves similar performance as in human pose 

estimation models, and it can run in Realtime. 
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I.  INTRODUCTION  

Scientists use animal models for studies that include human 
deceases, genetic models, medical trials, and behavioral studies. 
Animals are even used by the industry to test products' safety, 
such as foods and cosmetics. Among the different animal models, 
nonhuman primates more closely mirror human physiological 
and behavioral features. 

A popular approach for monkeys' behavior analysis is to 
categorize the monkeys' activities and behaviors manually. 
Nevertheless, this approach requires trained personal familiar 
with monkey physiology. This approach is too costly, and results 
can change from evaluator to evaluator, making evaluation 
imprecise and difficult to reproduce. For these reasons, 
automatic pose estimation is of great importance. Animal pose 
encodes information regarding behavior. Moreover, the posture 
can be measured quantitatively. 

Commercial marker-based pose estimation systems readily 
exist [1]. However, physical markers are not desirable since they 
can intrude and perturb animals' behavior, especially monkeys. 
Monkeys tend to remove the markers; monkey's hair causes 
occlusion and makes markers difficult to attach. Interaction with 
the environment and other monkeys may also detach the markers. 
Moreover, some of these systems rely on expensive equipment, 
and its use is often restricted to laboratory caged setups.   

This work presents a multiple monkey markerless pose 
estimation system that uses OpenPose, originaly developed for 
human pose estimation [2]. Monkey pose estimation can be used 
in various environments, and there is no restriction on the 
number of subjects.  

II. RELATED WORK 

 A markerless approach to monkey pose estimation has been 
realized through the use of multiple cameras with deep sensing 
capabilities, where a skeleton model is fitted into a captured 
monkey 3D image [3]. But this approach requires calibration of 
the cameras, the number of subjects is restricted, and it requires 
human intervention for correction when the system fails. 
Similarly, [4] requires numerous cameras for 3D reconstruction; 
the number of subjects is limited and restricted to a laboratory 
environment.  

It has been shown that a deep learning approach is feasible 
[5][6][7]. Although monkey pose could be estimated accurately, 
these works are limited to a single subject. Thus the analysis of 
social interactions was not possible. In a recent work [7], 
DeepLabCut (DLC) was used for monkey pose estimation, DLC 
is a DeepLearning framework for body feature detection on 
single animals, although a multi-animal option will be available 
in the future [8]. The mulitple subject feature is currently in 
development only available as a beta, so a comparison was not 
possible. By using transfer learning from a human model, 
chimpanzee dense pose estimation is possible [9]. However, at 
least for evaluation manual labeling is necessary. Dense pose 
annotation is very challenging and a 3D artist-created reference 
model is necessary for labeling. The authors even mention the 
omission of dense annotations for body parts due to its 
complexity for annotators. Part affinity fields have been used on 
honeybees and mice pose estimation and tracking [10].  
However, the experiments is done in a highly controlled 
laboratory environment; furthermore, the skeletons and 
behaviors of honeybees and mice are simple in comparison to 
monkeys.  

This work takes advantage of similarities in skeleton structure 
between humans and monkeys. OpenPose originaly used for 
humans is employed. OpenPose uses Part Affinity Fields (PAF); 
unlike feature detection based on location, the PAF encodes the 
limb orientation [2]. 

III. METHOD 

A. Dataset 

The MacaquePose monkey dataset was used. A total of 
13,083 RGB images containing a total of 16,393 monkeys were 
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used to train the model [7]. The monkeys exhibit a variety of 
poses and social interactions. They feed, groom, sleep, fight, 
climb, swim, etc.  Multiple backgrounds, occlusion, noise, and 
other artifacts are present, which makes the dataset challenging. 
From all the images, 93.75% are used for training and 6.25% 
for validation. Table 1 gives more information regarding the 
distribution of the dataset.  

Each monkey has 17 labels for each body feature as 
described in Figure 1. If the body feature is present, it is 
described by its (x,y) coordinates; and an additional bit 
indicates whether the body feature is visible or occluded. The 
neck body feature is not labeled but is calculated in relation to 
the other body features. 

 

 

Figure 1 Sample data anotated 17 body features. 

 

 

Table 1 Training and validation set distribution 

 Train Val Total 

Images 12265 818 13083 

Images % 93.75 % 6.25 %  

Monkeys 15373 1020 16393 

Monkeys % 93.77 % 6.22 %  

 

B. Network Architecture 

We use hyperpose an open-source implementation part of the 
TensorLayer project [11]. TensorLayer is part of Google's 
TensorFlow Framework for machine learning and deep learning.  
In this work, ResNet18 is used as a backbone for the network 
[11]. Although the use of a deeper backbone like ResNet50 
could yield better results, ResNet18 allows the network to be 
lightweight. It reduces the training, execution time and 
computational requirements for it to operate, making it more 
accessible. Following the same line of thinking, the head of the 
network, is a lightweight implementation of OpenPose [12]. The 
network takes body feature related labels and mask for each 
monkey. As an output, the network generates score maps; then, 
it estimates preliminary part affinity fields. After a refinement 
stage the skeleton of the monkeys is generated. 

Once the model is trained, it is exported to the Open Neural 
Network Exchange (ONNX) format that allows it to run in the 

Nvidia C++: TensorRT high-performance deep learning 
inference framework. 

C. Evaluation and Training 

Average Precision (AP) is the metric used to evaluate the 
model. Standard augmentation methods like random rotation, 
shifts, and flips were used during training. A graph of the 
training Loss is also provided. The network takes images with a 
maximum dimension of 640 pixels, either on the height or width. 
The model is trained on a Nvidia GeForce GTX TITAN X 
graphics card for up to 100,000 iterations and a batch size of 8. 
The required time to train the network is approximately 24 hours. 
The same computer set up is use for evaluation and inference. 

IV. RESULTS 

The model was trained up to 100,000 iterations taking 
around 24 hours. As Figure 2 shows, the Loss significantly 
decreased during the first 10,000 iterations.  Afterward, the Loss 
keeps dropping at a slower but steady rate. The graph also shows 
a comparison against the same network trained with the human 
MSCOCO 2017 dataset [13]. The graph shows the monkey 
model training performance is comparable to the human one; 
indeed, the monkey model performs slightly better.  It is 
remarkable to see the monkey model achieving close results to 
the human model since the monkey dataset is approximately ten 
times smaller. The COCO training set contains over 100,000 
person labeled instances. The better results on the monkey 
model could be explained by the MSCOCO dataset being more 
challenging. The MSCOCO dataset, in addition to humans, 
contains numerous objects and animals, while the monkey 
dataset, for the most part, only contains monkeys.  

 

Figure 2 Monkey and Human Loss for training 

Figure 3 shows the results during the training of the PAF and 
score maps after 100,000 iterations.  Figure 3 (c) shows that the 
model can generate the PAF even in challenging situations and 
with multiple subjects. The generated PAF closely reassembles 
the ground truth PAF (b). When comparing against the ground 
truth, it is important to consider that the ground truth does not 
reflect the ease of visibility or occlusion. In the example, it can 
observe that extremities and occluded body features have lower 
confidence for PAF and score maps. It can also be observed that 
facial features and easily visible features have a higher 
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confidence score. These results are in accordance with previous 
works for single monkey subjects [6]. 

 

Figure 3 Results after 100000 iterations a) input image with augmentation 
(b) PAF ground truth (c) PAF result (d) score maps ground truth (e) score maps 
result 

A. Evaluation 

To evaluate the performance of the trained model, AP was 
used as a metric. The monkey trained model is also compared 
against the same network trained on the MSCOCO2017 human 
dataset. The results reported on the original OpenPose are also 
included as a reference [2]. The OriginalOpen pose 
implementation and backbone is different, so a fair comparison 
is not possible.  The original OpenPose backbone is based on the 
VGG-19 while our monkey trained model is based on ResNet18 
and uses a lightweight implementation of OpenPose. 
Additionally, the original OpenPose is evaluated on the 
MSCOCO2016 dataset. 

Table 2 shows the result of Ap50, Ap75, ApM, ApL. Twenty-
nine randomly selected images from the evaluation set were 
selected to evaluate the Monkey model. Similarly, to evaluate 
the human pose trained model, eleven randomly selected images 
from the evaluation set were selected. Compared to the trained 
network on humans, the monkey network achieves better 
performance in the four Ap; this can be attributed to the more 
challenging human dataset. Compared to our monkey model, the 
original OpenPose has better performance. 

Table 2 Evaluation Ap 

Network Dataset Ap50 Ap75 ApM ApL 

Lightweight 
Openpose + 
ResNet18 

Monkey 
Dataset 

76.2 38.0 35.5 43.2 

Lightweight 
Openpose + 
ResNet18 

MSCOCO 
2017 

58.7 10.4 18.2 28.1 

Original 
OpenPose 

MSCOCO 
2016 

83.4 66.4 55.1 68.1 

 

B. Visual assessment 

Images from the evaluation set were also analyzed Figure  
4,5 and 6. These images were not seen during training. Figure 4, 

in addition to the final result, also shows the scoremaps and PAF. 
The output score maps confirm that the network can infer in 
unseen images monkey body features and its relation, 
represented by the generated PAF. 

 

 

Figure 4 Input image (top left) score map prediction (bottom left) PAF 
prediction (bottom right) final output (top right) 

1) Failure cases 

Some of the most comon falilure cases are ilustrated in 
Figure 5, a) although a monkey is detected, some of its body 
parts are not; in most cases, this could be attributed to a low 
confidence score on the missing body features. b) A monkey is 
not detected; this tends to happen more when facial body 
features are not visible. In some of these cases, monkeys are 
tricky to spot even for a human due to bending with the 
environment or small scale. c) In a few cases, some body parts 
of a nonexisting monkey are detected in the background. d) 
False body features of an existing monkey are detected on the 
background; in most instances, the false detected body feature is 
close to the subject, but in a few cases, it could look like a 
random detection. e) A skeleton prediction takes body parts from 
different monkeys, or in some cases, two generated monkey 
skeletons share a single body feature. This errors tends to occur 
when monkeys are closely interacting. 

 

 

Figure 5 Sample failure cases: (a) missing body parts (b) missing monkey 
detection (c) false detection on the background (d) random detections (e) same 
body part detection shared by multiple individuals and association of bodyparts 
form different individuals to the same skeleton. 
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2) Success cases  

Figure 6 shows a sample of successful detections on unseen 
images from the dev set. The sampled images display various 
activities that include eating, playing, jumping, crawling, and 
standing. The backgrounds are rich and varied, ranging from 
natural sceneries with plants and trees to a city with a sea view. 

 

Figure 6 Success detection sample: challenging and varied environments, 
multiple individuals, variety of activities, occlusion, social interactions. 

 

C. Real time performance 

The trained model was exported to the Open Neural Network 
Exchange (ONNX) format, and ran  in the Nvidia  C++: 
TensorRT high-performance deep learning inference framework. 
Our trained model in the ONNX format size is of 31 MB. In our 
testing we were able to run the model in real time using the 
webcam stream. The hyperpose open source project reports 
being able to run at 60 fps using the default OpenPose with the 
ResNet18 as a backbone and a resolution of 432 x 368 images. 
Our trained model uses a lightweight version of OpenPose so it 
should yield a superior performance. 

 

V. CONCLUSION 

In this work, we have trained an OpenPose neural network 
using the MacaquePose monkey dataset. The trained model is 
capable of detecting monkey body features and generating PAF 
on unseen images. The final output is the monkey's posture; 
there are no restrictions on the number of monkey subjects in the 
image. It is robust against colussion and social interaction, and 
it works on challening backgrounds. 

The model was exported to the ONNX format allowing the 
model to run in real-time. Better results could be achieved on 
videos by using information from contiguous frames, or by 
tracking the subjects. Moreover, the model could be improved 
by using a deeper network and transfer learning. 

The proposed model was shown to achieve comparable 
performance to a model trained on a human dataset.  The pose 
estimation achieved could be used to study the monkeys' 
behavior. The multiple subjects' pose estimation capabilities 
open the possibility to study complex monkey social 
interactions.   
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