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2 

Abstract  35 

The ability of Mycobacterium tuberculosis (Mtb) to adopt heterogeneous physiological states, underlies 36 

its success in evading the immune system and tolerating antibiotic killing. Drug tolerant phenotypes are 37 

a major reason why the tuberculosis (TB) mortality rate is so high, with over 1.8 million deaths annually. 38 

To develop new TB therapeutics that better treat the infection (faster and more completely), a systems-39 

level approach is needed to reveal the complexity of network-based adaptations of Mtb. Here, we report 40 

a new predictive model called PRIME (Phenotype of Regulatory influences Integrated with Metabolism 41 

and Environment) to uncover environment-specific vulnerabilities within the regulatory and metabolic 42 

networks of Mtb. Through extensive performance evaluations using genome-wide fitness screens, we 43 

demonstrate that PRIME makes mechanistically accurate predictions of context-specific vulnerabilities 44 

within the integrated regulatory and metabolic networks of Mtb, accurately rank-ordering targets for 45 

potentiating treatment with frontline drugs. 46 
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INTRODUCTION  69 

 Mycobacterium tuberculosis (Mtb) kills more people than any other microbe, and it has thus far 70 

resisted every attempt to bring the pandemic under control. Part of the pathogen’s success is its ability 71 

to diversify itself phenotypically and survive both host and drug bactericidal action1–3. Phenotypic 72 

heterogeneity (both stochastically and environmentally induced) seems to be an intrinsic characteristic 73 

of the pathogen and a major reason why standard chemotherapy of tuberculosis (TB) requires 6 months 74 

of treatment, and 5% are not cured even then4,5. To develop better interventions that account for 75 

pathogen heterogeneity, we need to identify the most important factors (e.g., transcriptional regulators) 76 

that create variation as well as the downstream effectors (e.g., regulatory target genes) that mediate 77 

drug tolerance. 78 

 Metabolic activity undoubtedly contributes to Mtb phenotypic heterogeneity and antibiotic 79 

tolerance. For example, changes in metabolism can affect the amount of drug target present6, the ability 80 

to generate toxic products7, and the efflux of antibiotics8. Mtb alters its growth and metabolism in 81 

response to stressful conditions through regulatory programs primarily encoded at the transcriptional 82 

level. Indeed, modeling host-related stresses in vitro produces large transcriptional changes in Mtb, 83 

particularly in metabolic pathways; consistently ~25% of differentially expressed genes are metabolic 84 

genes from hypoxic (GSE116353)9, acidic pH (GSE165514), or nutrient limited (GSE165673) conditions. 85 

To develop effective antibiotic regimens, we need to understand at a systems- and mechanistic-level 86 

how specific regulatory mechanisms conditionally activate and repress genes to redirect flux through 87 

metabolic networks to generate and support drug tolerant phenotypes. This mechanistic understanding 88 

will uncover new vulnerabilities in Mtb’s regulatory and metabolic networks that can be rationally targeted 89 

in new drug regimens to achieve faster and complete clearance of the pathogen.    90 

 Previously, approaches to model the influence of transcriptional regulation on metabolism have 91 

used boolean logic (Regulatory Flux Balance Analysis - rFBA)10, protein-DNA (P-D) interactions 92 

(Probabilistic Regulation of Metabolism - PROM)11,12, and regression-based regulatory influences 93 

(Integrated Deduced REgulation And Metabolism - IDREAM)13 to predict how transcriptional regulation 94 

of enzyme-coding genes modulates flux through their catalyzed reactions. Briefly, rFBA models the 95 

influence of transcriptional regulation on metabolism using boolean “on or off” states of metabolic genes, 96 

depending on the expression level of the transcription factor (TF) and its implicated role as a putative 97 

activator or repressor of that gene. The extensive manual curation required to develop rFBA and its 98 

inability to model TF activity as a continuous (i.e., not boolean) function greatly limits its application and 99 

accuracy. In contrast, PROM outperformed11 rFBA by using a probabilistic approach to model the 100 

regulation of a metabolic gene by a TF using a compendium of transcriptome profiles to calculate 101 

probabilities. However, PROM is limited in that it relies on a P-D interaction map for the regulatory 102 
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network. P-D interactions are typically generated in a limited set of conditions by using an overexpressed 103 

TF as a bait to enrich and locate its genome-wide binding locations. P-D interactions are fraught with 104 

false positives (due to TF overexpression) and false negatives (due to lack of context for TF regulation 105 

across environmental conditions). Notwithstanding these caveats, PROM was useful in uncovering the 106 

mechanism by which pretomanid potentiates bedaquiline action on Mtb by disrupting a regulatory 107 

network that confers tolerance to the recently approved FDA drug14. A third model, IDREAM addressed 108 

the shortcoming of using P-D interactions in PROM by constraining flux using TF regulatory influences 109 

from a predictive systems-scale environment and gene regulatory influence network (EGRIN) model. 110 

An EGRIN model is inferred in two steps using (a) cMonkey, which identifies the specific context in which 111 

subsets of genes are co-regulated (biclusters) by a conserved regulatory mechanism(s); and (b) 112 

Inferelator, which predicts TFs and environmental factors that causally influence the differential 113 

expression of genes within those biclusters15–17. By integrating confidence scores for EGRIN-inferred 114 

regulatory influences, IDREAM achieved significantly better performance than rFBA and PROM in 115 

predicting synthetic lethal interactions between TFs and metabolic genes in yeast13. However, IDREAM 116 

does not incorporate quantitative environment-specific TF regulatory influences that are modeled by 117 

EGRIN, and is therefore also limited in accurately predicting environment-specific consequences of TF 118 

perturbations. For the reasons stated above, PROM, rFBA, and IDREAM are limited in their ability to 119 

predict environment-specific phenotypic consequences of perturbations to TFs. 120 

 Additionally, there are algorithms (OptORF18, EMILiO19 and BeReTa20) that have the potential to 121 

predict the consequence of regulatory and metabolic network perturbations. They were originally 122 

designed to identify perturbations that maximize flux towards a desired metabolite and some of their 123 

features make them not well-suited for predicting systems-wide conditional outcomes of TF perturbation. 124 

For instance, OptORF18 and EMILiO19 use binary or fixed weights to model TF influences, which does 125 

not capture changes in relative strength of transcriptional regulation of metabolic genes across 126 

environments. By contrast, BeReTa20 does take into account weighted, combinatorial influences of TFs, 127 

but the analysis is restricted to genes encoding reactions of specific pathways of interest to an industrial 128 

application. Thus, none of these algorithms were designed to predict systems level phenotypic 129 

consequences (e.g., fitness and growth rate) of perturbations to the transcriptional network.  130 

 Here, we report the development of Phenotype of Regulatory influences Integrated with 131 

Metabolism and Environment (PRIME), which incorporates environment-dependent combinatorial 132 

regulation of metabolic genes to mechanistically predict how individual TFs contribute to the phenotype 133 

of Mtb in any given environment. Through the use of comprehensive experimental validations, we 134 

demonstrate that PRIME significantly outperforms the previous methods in accurately predicting 135 

regulatory and metabolic genes that are conditionally required for growth on carbon sources that are 136 
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specific for in vitro (glycerol) and in vivo (cholesterol) growth of Mtb. Further, PRIME has uncovered the 137 

interplay of regulatory and metabolic mechanisms that underlies Mtb’s response to drug treatment. The 138 

accuracy of PRIME in predicting quantitative phenotypic effects of TF perturbations is demonstrated by 139 

high correlation between predicted and experimentally validated consequences of knocking out all 140 

metabolism-associated TFs (one-at-a-time) on isoniazid (INH) treatment-specific fitness of Mtb strains. 141 

Through this analysis, we have discovered new vulnerabilities in Mtb that can potentiate INH action, 142 

which are supported by experimental validation.  143 

 144 

RESULTS 145 

CONDITION-SPECIFIC INTEGRATION OF REGULATION AND METABOLISM USING 146 

PRIME  147 

A causal and mechanistic model of the transcriptional regulatory network and its quantitative influence 148 

on metabolic flux is required to characterize how the 21421 TFs encoded in the Mtb genome enable its 149 

physiological adaptations to disparate host relevant contexts including antibiotic treatment. We applied 150 

linear regression with TF activity (TFA) estimation using the Inferelator15,22 to construct an EGRIN from 151 

a compendium of 664 transcriptomes for Mtb that represented transcriptional changes in 3,902 genes 152 

(potentially regulated by 142 TFs) across 77 environmental conditions including drug treatment, pH, 153 

oxygen and carbon source utilization (Table S1) (http://www.colombos.net/). Relative changes in the 154 

expression of every gene across all conditions were modeled as the sum of weighted influences of a 155 

minimal set of TFs. Altogether, 142 TFs were implicated in the regulation of 3,902 genes in the genome, 156 

acting through a combinatorial scheme represented by 4,820 regulatory influences, (see Table S2 for 157 

details). EGRIN recapitulated 2,410 of the 4,546 TF- gene interactions in the Mtb P-D network with both 158 

physical binding (from ChIP-seq experiments) and functional evidence (from transcriptional 159 

profiling)21,23, and added weights (𝛽) to the influence of each TF on regulation of its target genes; here 160 

onwards we refer to this subset of 2,410 TF-gene interactions as the “EGRIN-PD Network” (Table S2). 161 

Thus, the Inferelator analysis added 2,410 novel TF regulatory influences that were not represented in 162 

the originally compiled P-D interaction network, accounting for 4,820 interactions in total, here onwards 163 

considered as the “EGRIN” network. Briefly, out of 4,820 interactions of EGRIN, 2410 interactions have 164 

P-D evidence (EGRIN P-D). 165 

 166 

We investigated the degree to which EGRIN and EGRIN-PD models captured the regulation of 1,011 167 

genes that encode enzymes implicated in catalyzing 1,229 reactions in the iEK101124 model of the Mtb 168 

metabolic network. This analysis demonstrated that whereas EGRIN-PD modeled 1,252 regulatory 169 
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influences of 104 TFs on 605 genes associated with 409 metabolic reactions, EGRIN modeled 2,568 170 

regulatory influences of 129 TFs on 750 genes associated with 725 metabolic reactions. We leveraged 171 

the EGRIN and EGRIN-PD wiring diagrams and weights of regulatory influences inferred by the 172 

Inferelator to predict how change in the activity of a TF in a given environment manifests in altered flux 173 

through a metabolic reaction catalyzed by their regulated gene product. In order to integrate regulation 174 

with metabolism, we had to account for combinatorial regulation of metabolic genes, with each of 349 175 

out of the 750 metabolic genes predicted to be putatively regulated by ≥2 TFs and 111 TFs predicted to 176 

regulate ≥2 metabolic genes (Figure S1 and Table S3), and association of ≥2 gene products to each of 177 

313 reactions in Mtb. 178 

 179 

The quantitative influence of a TF on the regulation of a target gene in a given environment was 180 

calculated by multiplying the EGRIN-inferred regression weight (𝛽) of the TF influence with its absolute 181 

expression level in that environmental condition (i.e., a scaled value of signal intensity for microarray 182 

data or read counts for RNA-seq) based on distribution of values across the transcriptome compendium 183 

(Figure 1A; Methods). For a metabolic gene that is regulated by multiple TFs, we calculated the relative 184 

contribution of each TF to the regulation of that gene in a given environment by dividing its quantitative 185 

influence with the sum of quantitative influences of all TFs that regulate that gene. In this scheme, a TF 186 

will have a large relative consequence on the expression of a metabolic gene in an environment in which 187 

the TF is active and in high abundance, and the influences of other TFs are minimal. But the relative 188 

contribution of the TF will be proportionally lower if other TFs are also actively regulating that gene in 189 

that environment. Thus, this approach accounted for regulation of a metabolic gene by multiple TFs, and 190 

it simultaneously corrected for environment-specific changes in combinatorial regulatory schemes. For 191 

a TF that regulates multiple genes encoding enzymes or enzyme subunits for the same reaction, we 192 

considered the largest regulatory influence of that TF on any of those genes to predict its influence on 193 

flux through that reaction. Thus, together these advancements accounted for complex combinatorial 194 

associations between regulation and metabolism to assign a single relative influence factor (𝛾) to each 195 

TF-reaction association. The consequence of TF regulation (or knockout) on flux through a reaction is 196 

calculated by multiplying the TF-induced relative inhibition of that reaction (1-𝛾) to the maximum possible 197 

flux through that reaction. In this manner, by updating upper bounds of flux through all reactions 198 

catalyzed by regulated gene products of a specific TF, PRIME constrains the metabolic network to a 199 

new solution space, to enable the prediction of “environment-specific” growth consequences of 200 

perturbing a given TF which can be compared to conditional genome-wide fitness data for PRIME 201 

performance assessment (Figure 1B).  202 

 203 
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PERFORMANCE ASSESSMENT OF PRIME 204 

In order to compare performance of PRIME to previously developed methods, we had to first update the 205 

PROM model with the latest version of the Mtb P-D interaction map12,21 and the current version of the 206 

metabolic network model iEK101124 (1,011 genes encoding enzymes for 1,229 reactions) that was used 207 

to construct PRIME. Using the methodology described in the original PROM paper11,12, 2,416 out of 208 

2,555 P-D interactions for 104 TFs were mapped to 605 genes assigned to 632 reactions in the iEK1011 209 

metabolic network model. This represents a significant improvement in the overall coverage of TFs and 210 

metabolic genes in the PROM model (Table 1, Figure 2A). In parallel, we also developed the first 211 

IDREAM model for Mtb by incorporating confidence scores for 2,407 regulatory influences for 142 TFs 212 

within the EGRIN model (FDR <0.25) on a total of 641 genes associated with 639 reactions within 213 

iEK1011 (Table 1, Figure 2B). The slightly higher numbers of TFs and metabolic genes in IDREAM and 214 

PRIME (Figure 2B) are because they use the EGRIN model, which has better coverage of genome-215 

wide TF regulation across diverse environments, relative to the P-D interaction map generated in 216 

standard growth conditions that was used in PROM (Figure 2C). In summary, the updated PROM and 217 

IDREAM models were similar to PRIME in terms of coverage of the total number of TFs and metabolic 218 

genes and suitable for comparing performance across the models. (Table 1).  219 
 220 
We compared the performance of PRIME to PROM and IDREAM by assessing their accuracy (sensitivity 221 

and specificity) in predicting environment-specific growth inhibition upon TF deletion for Mtb cultured in 222 

minimal medium with glycerol or cholesterol as the carbon source. While Mtb is typically grown with 223 

glycerol during in vitro culture, the pathogen is capable of utilizing host-derived lipids, such as 224 

cholesterol, during infection. It is known that distinct metabolic genes and networks are associated with 225 

these two modes of growth. Accuracy of model predictions were evaluated using a leave-one-out cross 226 

validation (LOOCV) strategy25 for comparison of model predictions to experimentally determined 227 

phenotypic consequences of transposon mutagenesis in genome-wide fitness screens (TnSeq) of Mtb 228 

cultured with glycerol or cholesterol26,27. Specifically, for each model we generated a set of receiver-229 

operating characteristic (ROC) curves by plotting the true positive rate (i.e., proportion of model-230 

predicted essential genes that were verified by experiment) and false positive rate (i.e., proportion of 231 

model-predicted essential genes that were experimentally determined to be non-essential) by leaving 232 

out one TF in each analysis. The distribution of area under the ROC curves (ROC-AUC) from the LOOCV 233 

analysis of model predictions of which TFs are essential for Mtb growth on cholesterol was used as a 234 

metric of performance. First, we evaluated predictions from PRIME using either EGRIN-PD or EGRIN, 235 

inferred using different Inferelator parameter settings as the source of regulatory influences, and 236 

concluded that the latter contributed to significantly better performance (Figure S2). Therefore, here 237 
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onwards all results reported for PRIME are based on regulatory influences from the EGRIN network. 238 

The LOOCV analysis demonstrated that the performance of PRIME was significantly better relative to 239 

PROM and IDREAM in both cholesterol and glycerol carbon sources (Figure 3A, 3B and Figure S3). 240 

In addition to providing a rigorous means for performance evaluation, the LOOCV25 analysis also 241 

identified a clear division of TFs in terms of their ROC-AUC values for the PRIME model. Further analysis 242 

revealed that the top performing TFs (20 and 12 TFs for glycerol and cholesterol, respectively) 243 

contributed maximally (up to 65% of overall biomass accumulation) to the overall fitness of Mtb (Table 244 

S4). Out of 119 TFs with TnSeq data, the cholesterol fitness of 65% (77 TF KOs) were accurately 245 

predicted by PRIME, whereas IDREAM and PROM accurately predicted only 45% (53 TFs) and 30% 246 

(35 TFs), respectively (Figure 3C). Similarly, PRIME accurately predicted glycerol fitness for 92 out of 247 

119 TFs (77%), whereas IDREAM accurately predicted 55% (65 TFs) and PROM predicted 36% (43 248 

TFs) (Figure 3D). In general, PRIME, IDREAM and PROM predictions differed significantly (p-value 249 

<2.2e-16, t-test) both in the numbers and the context in which genes were called essential or non-250 

essential.   251 

 252 

Using PRIME, 22 and 7 TFs were accurately predicted (either essential or non-essential) for growth only 253 

with either glycerol or cholesterol, respectively, as determined by experimental fitness screening (Figure 254 

3E). Similarly, 51 and 25 metabolic genes were accurately predicted by PRIME for growth on either 255 

glycerol or cholesterol, respectively (Figure 3F). Among the PRIME predicted essential TFs, Rv2506, 256 

Rv3050c, Rv2760c, and Rv0348 are essential for growth on cholesterol, presumably because they 257 

conditionally regulate genes encoding enzymes or enzyme subunits catalyzing essential metabolic 258 

processes during cholesterol utilization (Figure 3G). For example, Rv2506 represses genes likely to be 259 

involved in branched-chain amino acid catabolism, which leads to the production of acetyl-coA and 260 

propionyl-coA28. Propionyl-coA is also an endpoint of cholesterol degradation and can be toxic to Mtb29. 261 

It is possible that Rv2506 repression of branched-chain amino acid metabolism genes prevents 262 

accumulation of toxic metabolic intermediates during growth on cholesterol. All in all, perturbation of 263 

cholesterol utilization in Mtb could induce metabolite intoxication29, unbalanced central metabolism30 or 264 

lead to carbon starvation31. As such, TFs such as Rv2506, Rv3050c, Rv2760c and Rv0348 represent 265 

potential vulnerabilities in the cholesterol utilization pathways of Mtb that could be targeted by drugs. 266 

Notably, these TFs were also ascertained to be essential by the TnSeq screen performed with 267 

cholesterol as the carbon source26 and are non-essential in glycerol (shown as inactive nodes in Figure 268 

3H). Other TFs (Rv1990c, Rv0023 and Rv0757) were predicted (and validated by TnSeq26) to be 269 

essential for growth with both carbon sources or only essential for growth on glycerol (e.g., Rv0238 and 270 

Rv1423).  271 
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 272 
PRIME RANK IDENTIFIES THE ESSENTIAL TRANSCRIPTIONAL FACTORS AND GENES FOR 273 
SURVIVAL DURING DRUG TREATMENT 274 
We used PRIME to investigate the regulatory and metabolic networks that drive physiological 275 

adjustments (e.g., cell wall modifications, shifts in metabolism and respiration) to enable the pathogen 276 

to survive and persist during drug treatment. To expose novel network vulnerabilities of Mtb in response 277 

to drug treatment, we generated transcriptome profiles of Mtb treated for 24 h with high- and low-doses 278 

of seven drugs (Table S5). The transcriptome profiles were analyzed using the PRIME model to identify 279 

the metabolic networks and their associated regulators that were essential for growth in the absence 280 

and presence of drug treatment. This analysis found clear distinction in TF essentiality between the 281 

untreated and drug-treated PRIME models and revealed that drug doses largely grouped together 282 

(Figure 4A). Interestingly, the TF essentiality profiles of rifampicin (a transcription inhibitor) were dose-283 

dependent; the rifampicin profile at low-dose clustered separately, while the high-dose profile clustered 284 

with linezolid (a protein synthesis inhibitor). The resemblance to linezolid at high-dose suggests that a 285 

secondary effect of strong rifampicin-induced transcription inhibition also impacts translation. 286 

Furthermore, we observed that the TF essentiality profiles of isoniazid (inhibitor of cell wall synthesis) 287 

were quite distinct to the other six drugs. In fact, 58 TFs become conditionally essential in the presence 288 

of isoniazid because of their mechanistic role in regulating 569 metabolic reactions required for 289 

supporting growth during isoniazid treatment. This highlights the multitude of regulatory-metabolic 290 

networks associated with cell wall disruption in Mtb and the extreme vulnerability in cell wall metabolism. 291 

 292 

Focusing on isoniazid (INH), we evaluated the accuracy of these predictions against experimentally-293 

determined fitness values from a genome-wide TnSeq screen performed in the presence of a 294 

subinhibitory concentration of INH32. Notwithstanding the difference in dosage of drug treatment of the 295 

input transcriptome data used in the PRIME model (0.18 ug/mL, 1.8 ug/mL) and in the TnSeq fitness 296 

screen (27 ng/mL), the LOOCV analysis demonstrated high sensitivity and specificity of PRIME 297 

predictions of gene essentiality (max ROC AUC = 0.685), significantly outperforming PROM (max ROC 298 

AUC = 0.625) and IDREAM (ROC AUC = 0.6) (Figure 4B). We also used PRIME to rank order TFs 299 

based on their relative importance in supporting growth in the presence of INH, and compared these 300 

ranks to TnSeq determined importance of TFs. There was striking correlation (Spearman’s rho = 0.695; 301 

p-value = 0.0001) in the rank ordering of TFs based on the predicted (PRIME) and observed (TnSeq) 302 

magnitude of growth inhibition of Mtb in the presence of INH upon knocking out each TF one-at-a-time 303 

(Figure S4). The correlation increased dramatically (Spearman’s rho = 0.746, p-value = 0.0001) when 304 

only TFs implicated by EGRIN as regulators of essential metabolic reactions were considered in this 305 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428876doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428876
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

analysis, demonstrating the remarkable accuracy of PRIME in capturing how the differential regulation 306 

by TFs modulates flux through essential metabolic reactions to manifest at a phenotypic level (Figure 307 

4C). Notably, PRIME accurately predicted that knocking out the top 10 TFs one-at-a-time would result 308 

in at least 65% and up to 95% Mtb growth inhibition during INH treatment, but not in the absence of drug 309 

treatment, implicating these as conditional vulnerabilities for significantly potentiating INH treatment 310 

(Table S6). 311 

 312 

To aid in the interpretation of PRIME predictions, we developed the PRIME pathway analysis (PPA) tool 313 

to uncover in a single-step the specific metabolic reaction(s) regulated by a TF that make it essential for 314 

growth in a given environmental condition. Given a TF, PPA identifies all reactions catalyzed by the 315 

genes it is predicted to regulate, rank orders the target genes based on the relative contribution of their 316 

gene product in driving flux towards biomass accumulation, and outputs a TF-metabolic gene-reaction 317 

map as a putative mechanism by which the TF is likely to be essential in a given environmental context. 318 

Using PPA, we identified the specific metabolic reactions that were mechanistically responsible for the 319 

conditional essentiality of 23 TFs validated by TnSeq data32 to be essential in the presence of INH. For 320 

example, we discovered the mechanisms underlying the essentiality of Rv0827c, Rv1049, Rv1423, 321 

Rv1828 and Rv0472c for growth in the presence of INH (Figure 4D). Altogether, PPA uncovered that 322 

58 of the 142 TFs were conditionally essential for growth on INH because they conditionally regulate 323 

569 key reactions across 55 pathways, including 84 reactions within fatty acid metabolism and mycolic 324 

acid biosynthesis (target of INH). In so doing, PRIME has provided the most comprehensive systems 325 

level perspective into strategies to potentiate INH killing by targeting TFs that mediate Mtb’s metabolic 326 

response to INH treatment.  327 

 328 

DISCUSSION 329 

We have demonstrated that by incorporating how TFs act contextually in combinatorial schemes to 330 

regulate gene expression, PRIME outperformed PROM and IDREAM in accurately predicting how 331 

transcriptional regulation redirects metabolic flux to manifest in environment-specific phenotypes of Mtb. 332 

The shortcoming of PROM can be attributed to its reliance on P-D interactions for regulatory network, 333 

which are plagued with false positive interactions (because overexpression of TFs can force non-334 

functional binding across the genome) and false negative interactions because of lack of appropriate 335 

context (e.g., missing co-factors). Hence, a P-D interaction does not capture whether a TF is regulating 336 

a gene in a given condition, which is better modeled by regulatory influences inferred using regression 337 

analysis of transcript level changes in TFs and all genes across the genome. However, despite 338 

incorporating regulatory influences from the same EGRIN network, IDREAM performance was inferior 339 
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compared to PRIME, and in fact its performance in predicting gene essentiality in cholesterol and INH 340 

was worse than PROM. One explanation could be that relative to the number of P-D interactions used 341 

in PROM, IDREAM used nearly twice as many EGRIN-based regulatory influences that were inferred 342 

from a wide range of environmental contexts, without taking into account combinatorial regulatory 343 

schemes, weights of regulatory influences, or the absolute expression levels of TFs to prune regulatory 344 

edges that were not relevant for a given environmental context. Hence, reliance on a P-D interaction 345 

map, and even just the likelihood that a TF might regulate a gene based on regression analysis are both 346 

insufficient to capture the complex environment-dependent interplay of transcription and metabolism. 347 

Altogether, these comparative analyses have demonstrated that four key advancements in PRIME 348 

addressed the shortcomings of PROM and IDREAM: (i) PRIME took full advantage of EGRIN predictions 349 

to incorporate weights of TF regulatory influence on each gene; (ii) PRIME calibrated the relative 350 

influence of each TF on a given metabolic gene by accounting for all TFs that were also implicated in 351 

the regulation of that gene; (iii) PRIME accounted for regulation of multiple genes that encode enzymes 352 

for the same reaction by considering which gene(s) contributed maximally towards flux through that 353 

reaction in a given environmental context; and, finally (iv) PRIME considered the absolute expression 354 

level of each TF to evaluate the degree to which each regulatory influence was active in a given 355 

environment. 356 

 357 

By demonstrating better accuracy in predicting environment-specific phenotypes of Mtb using EGRIN, 358 

PRIME overrides the need for a physical map of P-D interactions, which is difficult to generate for many 359 

organisms, across all environments of interest, and especially in some contexts, such as within infected 360 

tissue. In fact, the incompleteness of the P-D interaction map was demonstrated by the significant drop 361 

in the performance of PRIME upon excluding regulatory influences that were not supported by physical 362 

TF-gene interactions (i.e., EGRIN P-D). By contrast, EGRIN is inferred directly from a compendium of 363 

transcriptomes, which can be profiled across relevant environmental conditions with minimal 364 

manipulation (e.g., without overexpression of TFs) and even within infected cells using technologies like 365 

Path-seq33. As a consequence, EGRIN discovers a significantly larger number of novel regulatory 366 

mechanisms, including the combinatorial schemes and specific environmental contexts in which they 367 

are conditionally active. This explains why PRIME discovered mechanisms that become conditionally 368 

essential in the presence of INH, but also accurately predicted the relative importance of each TF for 369 

enhancing the potency of INH. Based on this observation, we posit that PRIME will be especially 370 

valuable to prioritize genes that represent novel context-dependent vulnerabilities that could be targeted 371 

to potentiate the action of any antibiotic and achieve faster clearance with a lower dosage. By enabling 372 

the in-silico discovery of vulnerabilities within the Mtb network, PRIME also overrides the need for large 373 
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scale transposon mutagenesis-based experiments (e.g., TnSeq, TraSH, HITS, etc), which are resource-374 

intensive and difficult to perform across all conditions relevant to the lifecycle of Mtb. Instead, PRIME 375 

can be used to rank prioritize the strains and contexts in which to assay for an expected phenotype. This 376 

capability is particularly powerful considering the numerous mechanisms by which Mtb can be 377 

phenotypically different, with different antibiotic sensitivities. Additionally, there is growing evidence that 378 

upon gaining resistance to an antibiotic, the regulatory and metabolic networks within a pathogen are 379 

remodeled in order to reallocate resources for supporting the new phenotype34. Using PRIME, we can 380 

delineate novel vulnerabilities within these remodeled regulatory and metabolic networks to devise 381 

strategies for rationally disrupting the antibiotic resistance phenotype with a second drug.  382 

 383 

PRIME will also be useful in biotechnology applications to further optimize the production of desired end 384 

products by rewiring the regulatory networks of metabolically engineered strains. Advancements in 385 

metabolic engineering have been effective in substantially increasing flux towards the production of a 386 

desired metabolite18–20,35 but there is a limit to which metabolic engineering alone can improve the overall 387 

yield. It has been proposed that further enhancements in yield would require reprogramming of the 388 

regulatory network to control when genes of the engineered pathways are expressed, and to rationally 389 

up and down regulate competing metabolic pathways to maximize flux and resource allocation towards 390 

the desired objective. Hence, by using PRIME, metabolic engineering of high-yielding strain phenotypes 391 

can be identified. Although the capabilities of PRIME are elucidated extensively using Mtb as a model 392 

system in this study, we foresee the use and applications of PRIME in various organisms due to its 393 

scalability. 394 

 395 

METHODS 396 

CONSTRUCTION OF EGRIN GENE REGULATORY NETWORK FOR MYCOBACTERIUM 397 

TUBERCULOSIS 398 

The Mtb EGRIN used in this study was constructed using the Inferelator algorithm15,22 trained on a 399 

transcriptional compendium for Mtb with 3,902 genes across 664 experimental conditions (downloaded 400 

from the COLOMBOS database) and an experimentally supported signed Mtb P-D network (generated 401 

as previously described in 33). The original transcriptional compendium contained a larger number of 402 

genes and conditions but was modified to remove genes and conditions with missing values. Briefly, we 403 

used the Inferelator to identify potential transcriptional regulators for the 3,902 Mtb genes in the 404 

expression compendium, as previously performed for other species22,36. The Inferelator first estimates 405 

the regulatory activities of each transcription factor activity (TFA) using the expression profile of TF 406 
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known targets (encoded in the signed P-D network). Then, the Inferelator uses a Bayesian Best Subset 407 

Regression to estimate the magnitude and sign (activation or repression) of potential interactions 408 

between TFs and genes. As before, we bootstrapped the expression data (20 times) to avoid regression 409 

overfitting. The Inferelator generates two scores for each TF-gene interaction, the corresponding 410 

regression coefficient (weight - β) and a confidence score. The second score indicates the likelihood of 411 

the interaction. The final set of TF-gene interactions was defined with a 0.5 precision cutoff. This means 412 

that 50% of all interactions in the inferred network were already present in the signed P-D network used 413 

for training, while the other half corresponded to putative novel TF-gene interactions.  414 

 415 

DEVELOPMENT OF PRIME 416 

The PRIME algorithm has been developed by integrating weights (β) from EGRIN with metabolic 417 

network (MN) models for phenotype prediction in a context-specific manner (wiring diagram in Fig. 1). 418 

PRIME requires 1) a MN in the format of constraints-based model37,38 in systems biology markup 419 

language (SBML), an XML format as input, that are represented in silico in the form of a stoichiometric 420 

matrix, wherein every column corresponds to a reaction and every row corresponds to a metabolite. 421 

These constraints-based models were used to integrate the regulatory influences by updating the 422 

reaction flux,  2) a regulatory network containing TF and gene interactions (one array of regulators and 423 

one array of corresponding gene targets), 3) magnitude/weights (β) of regulatory influences for each of 424 

the interactions (array of magnitudes) derived from Inferelator and 4) the gene expression data profiled 425 

under a specific condition (gene ids and their expression, provided as ratio to the control - in case of 426 

environment-specific predictions the ratio between initial t0 and final time point tn). The pipeline of 427 

PRIME initially links each metabolic gene in MN to its associated regulators considering the 428 

combinatorial effects, followed by applying the calculated relative influence factor. Specifically, we have 429 

introduced a new way to calculate the relative influence factor (𝛾), a value that quantitatively constrains 430 

the reaction flux constraint space. The equations 1 to 5 consists of the details involved in each 431 

successive step within the algorithm.  432 

 433 

Given a TF 𝑗 influencing a metabolic gene 𝑖 of reaction 𝑤, we define 𝛾!,# as, 434 

𝛾!,# = 1 − $
𝛽!,$𝑋$%

∑$	∈	( 𝛽!,$𝑋$%
( 																																																			(𝐸𝑞. 1)		435 

where 𝐽	is the subset of TFs that influence gene 𝑖 and 𝑋$% is the scaled expression of a TF 𝑗 in a 436 

particular condition 𝑐 of a coherent environmental context 𝐵 as, 437 

𝑋!" =
𝑋!,$ −𝑚𝑖𝑛	𝑋!(𝐵)	

𝑚𝑖𝑛𝑋!(𝐵) 	− 𝑚𝑎𝑥𝑋!(𝐵)	
																																																																									(𝐸𝑞. 2)		438 
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Then, the regulatory influence that exerts the larger effect on reaction 𝑤 across the set of metabolic 439 

genes 𝑖	 ∈ 𝐼 of a given reaction has been identified as, 440 

𝑔# = 𝑚𝑖𝑛	𝛾!,#																																																																																			(𝐸𝑞. 3)		441 
At this point, it is straightforward to incorporate calculated weights as new upper bounds, 442 

𝑏&'()* = 𝑏 ∘ 𝑔 = (𝑏)#(𝑔)#																																																															(𝐸𝑞. 4)		443 
to the flux balance analysis (FBA)38 formalism, assuming steady state metabolic concentrations, and 444 

defining the system mass balance as 𝑆. 𝑣 = 0, to maximize the objective function 𝑍 = 𝑐+𝑣 such that 445 

fluxes are within the new boundary conditions, 446 

𝑎 ≤ 𝑣	 ≤ 	𝑏&'()* 																																																																																		(𝐸𝑞. 5)		447 
The objectives in each prediction are defined during FBA optimization. The phenotype predictions 448 

mentioned in this study are the optimized biomass predicted by FBA. The complete PRIME algorithm 449 

package and details of the required input dataset is available for download from our GitHub Repository 450 

(https://github.com/baliga-lab/PRIME). All model simulations related to FBA were performed on 451 

MATLAB_R2019a platform using the recent version of COBRA39 (The COnstraint-Based Reconstruction 452 

and Analysis) toolbox. In silico gene essentiality predictions were performed using the COBRA toolbox 453 

‘single-gene-deletion’ function in MATLAB.  454 

 455 

INCORPORATING DRUG TREATMENT GENE EXPRESSION DATA ON METABOLIC MODEL 456 

The iEK101124 metabolic network (MN) model was used for all the predictions in this study. For drug-457 

specific models, we applied the gene expression data from both drug-treated and untreated control 458 

experiments using the GIMME40 algorithm on the iEK1011 MN model. This step was carried out to 459 

constrain the MN model to the specific condition being tested. We used GIMME because of the flexibility 460 

in defining objective function during implementation. The GIMME algorithm is implemented in the 461 

MATLAB_R2019a platform, using the “GIMME.m function” in the COBRA Toolbox after processing the 462 

gene expression data through ‘mapExpressionToReactions.m’ function to convert the gene expression 463 

values as inputs to GIMME. 464 

 465 

PROM MODELS 466 

For developing PROM11,12 models, we followed the PROM approach11 to estimate the probability that a 467 

target gene is ‘ON’ or ‘OFF’ in the absence of the TF i.e., in the event of a TF knockout. This was 468 

calculated from a gene expression dataset as, Probability, P (Gene = 1|TF = 0) or P (TF = 1|Gene = 0). 469 

The gene expression threshold that delineated between the ‘ON’ and ‘OFF’ states was set as quantile 470 

(0.33) from the input expression data. These probabilities were then used to constrain the maximal fluxes 471 

of the reactions catalyzed by the gene products in the metabolic model as p × Vmax, where p is the 472 
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probability of the gene being on. The user defined “kappa” value was used as similar to earlier PROM 473 

models11. All PROM predictions and simulations were performed using PROM.m (MATLAB script) on 474 

the MATLAB_R2019a platform. We used iEK1011 metabolic network model in XML format as input in 475 

the PROM. The P-D derived regulatory network was obtained from the study21, similar to the 476 

MTBPROMV2.012.  477 

 478 

IDREAM MODELS 479 

For IDREAM13 models, the GRN derived using EGRIN, was integrated with the PROM pipeline as it had 480 

been done previously for the yeast system13. We ran 200 iterations in EGRIN to calculate the confidence 481 

score for all predictions. For each gene, we estimated a false discovery rate (FDR) for each TF by 482 

counting the fraction of models that identified that factor as a regulator. Thus, if TF1 was predicted to 483 

regulate gene1 in 191 of 200 models, then the TF-gene interaction identified would have an FDR = 484 

0.045. We included only those interactions that passed an FDR cutoff of 0.25. We used EGRIN-derived 485 

GRN to integrate it with iEK1011 metabolic network model of Mtb using the PROM framework. The user 486 

defined “kappa” value was used as similar to earlier PROM models11. IDREAM does not rely on 487 

probabilities, hence the gene expression dataset was not used in IDREAM instead ‘prob_prior’ in the 488 

PROM function was set based on the EGRIN FDR values for each TF-gene interaction. If the TF is an 489 

activator of a gene, we use the FDR value directly, if it is an inhibitor, we use 1-FDR value as ‘prob_prior’. 490 

EGRIN network was derived using Inferelator in R (Inferelator.pkg.R) and PROM predictions and 491 

simulations were performed using PROM.m (MATLAB script) on the MATLAB_R2019a platform as 492 

similar to PROM model development. 493 

 494 

PERFORMANCE ASSESSMENT OF PRIME PREDICTIONS 495 

The predictive power of PRIME as a binary classifier (essential or non-essential) between the model 496 

predicted gene essentiality and experimentally defined gene essentiality (TnSeq) has been performed 497 

using receiver operating characteristic (ROC) curve. A gene was considered “essential” if its deletion 498 

reduced the biomass by >85%. By this analysis, the model classified each gene as “essential” or “non-499 

essential”. We compared the gene essentiality predictions from Mtb grown under glycerol and 500 

cholesterol as carbon source with the available experimental TnSeq data26 and deduced the confusion 501 

matrix to derive true positive rates (TPR) and false positive rates (FPR). We also took advantage of the 502 

follow-up study where Bayesian analysis was used to assign calls as essential and non-essential for the 503 

same TnSeq dataset27. We expanded the analysis of TnSeq data to classify essential and non-essential 504 

with a cutoff value of using cholesterol/glycerol ratio of 0.6 in order to assign calls for all the genes. This 505 

classification led to the elucidation of sensitivity and specificity of the model using ROC curve analysis. 506 
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Briefly, the gene expression data of Mtb profiled under growth on Glycerol (GSE52020) and Cholesterol 507 

(GSE13978) were used to generate condition-specific metabolic networks using GIMME. PRIME was 508 

applied on these models to predict gene and TF essentialities according to the condition tested. These 509 

predictions were then compared to the TnSeq data. A similar sensitivity and specificity analysis was 510 

performed while validating the performance of PRIME for INH-specific predictions using experimentally 511 

derived TnSeq data32. To construct the INH-specific metabolic models, we used INH-treated Mtb 512 

transcriptome sequencing (RNA-seq) data generated in this study (see below). 513 

 514 

PRIME PATHWAY ANALYSIS (PPA) PIPELINE 515 

The PRIME pathway analysis (PPA) pipeline was developed to derive the metabolic association of a 516 

specified TF in a simple process by accessing PRIME model genes and their interactions. The top 517 

ranked TFs and their associated metabolic genes are further linked to their metabolic processes using 518 

the PPA pipeline. PPA is provided as PRIMEanalysis.m (MATLAB script). All analyses related to PPA 519 

were performed in MATLAB_R2019a platform. The illustration of PPA-derived essential gene regulatory-520 

metabolic networks were deduced using BioTapestry tool (http://www.biotapestry.org/).  521 

 522 

DRUG TREATMENT CULTURING CONDITIONS 523 

Experiments were performed using Mycobacterium tuberculosis H37Rv grown with mild agitation at 524 

37°C in standard 7H9-rich media consisting of Middlebrook 7H9 broth supplemented with 10% 525 

Middlebrook ADC, 0.05% Tween-80, and 0.2% glycerol. Frozen 1 mL stocks of Mtb cells were added to 526 

7H9-rich medium and grown until the culture reached an OD600 of ~0.4-0.8. The cells were then diluted 527 

to OD600 of 0.05 and added to 7H9-rich medium containing drugs at the predetermined amounts. 528 

Samples, in biological triplicate, were collected at 24 h after drug treatment by centrifugation at high 529 

speed for 5 min, discarding supernatant and immediately flash freezing the cell pellet in liquid nitrogen. 530 

Cell pellets were stored at -80° C until RNA extraction was performed as previously described41.  531 

 532 

PROCESSING AND ANALYSIS OF RNA-SEQ DATA 533 

Sample collection and RNA-extraction was performed as described above. Total RNA samples were 534 

depleted of ribosomal RNA using the Ribo-Zero Bacteria rRNA Removal Kit (Illumina, San Diego, CA). 535 

Quality and purity of mRNA samples was determined with 2100 Bioanalyzer (Agilent, Santa Clara, CA). 536 

Samples were prepared with TrueSeq Stranded mRNA HT library preparation kit (Illumina, San Diego, 537 

CA). All samples were sequenced on the NextSeq sequencing instrument in a high output 150 v2 flow 538 

cell. Paired-end 75 bp reads were checked for technical artifacts using Illumina default quality filtering 539 

steps. Raw FASTQ read data were processed using the R package DuffyNGS42. Briefly, raw reads were 540 
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passed through a 2-stage alignment pipeline: (i) a pre-alignment stage to filter out unwanted transcripts, 541 

such as rRNA; and (ii) a main genomic alignment stage against the genome of interest. Reads were 542 

aligned to M. tuberculosis H37Rv (ASM19595v2) with Bowtie243, using the command line option “very-543 

sensitive.” BAM files from stage (ii) were converted into read depth wiggle tracks that recorded both 544 

uniquely mapped and multiply mapped reads to each of the forward and reverse strands of the 545 

genome(s) at single-nucleotide resolution. Gene transcript abundance was then measured by summing 546 

total reads landing inside annotated gene boundaries, expressed as both RPKM and raw read counts. 547 

We used the raw read counts as input for DESeq244 to obtain DESeq2 normalized counts. The RNA-548 

seq data of Mtb response to drug exposure generated for this study are publicly available at the Gene 549 

Expression Omnibus under accession number GSE165673. 550 

 551 

 552 
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 679 

Figures and figure legends: 680 

 681 
Figure 1: Schematic for PRIME model development and performance assessment. A. Schema for 682 

integration of gene regulation and metabolism. The gene regulatory network (GRN) models weighted 683 

regulatory influences of TFs on regulated genes (RGenes). A subset of the RGenes are enzyme-coding 684 

metabolic genes (Mgenes), whose functions are also modeled through gene-to-protein-to-reaction 685 

(GPR) mapping in a stoichiometric matrix representation of the metabolic network (MN). PRIME uses 686 

the integrated Gene Regulatory Network of Metabolism (GRNM) and a reaction flux influence estimator 687 

(ReFInE) to calculate the 𝛾 factor, which quantifies how the differential expression of multiple TFs and 688 

their weighted regulatory influences on a regulated metabolic gene (RMGene) manifests in altered flux 689 

(a: minimum flux; b: maximum flux) through the associated metabolic reaction (RMRxn) in a given 690 

environmental condition. B. Illustration of condition-specific gene phenotype predictions and 691 

performance assessment. The example illustrates how PRIME predicts relative growth consequence of 692 
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single gene knockouts in TFs (e.g., TF1, TF2 and TF3) and RMGenes (e.g., G1, G3, G6 and G7) in 693 

different contexts (e.g., Condition 1, 2, and 3). The vertical line in the barplot depicts a user-defined 694 

threshold in growth inhibition, below which a gene is deemed essential. Performance of PRIME is 695 

quantified using a Receiver Operating Characteristic (ROC) curve based on accuracy of PRIME-696 

predicted essential and non-essential genes in a given condition to experimentally determined 697 

phenotype consequences using transposon mutagenesis coupled with sequencing (TnSeq) in the same 698 

condition. 699 

  700 
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 701 
Figure 2: PRIME model advancements. A. Advancements in PRIME over previous methods (PROM 702 

and IDREAM) are indicated as (1) incorporation of regulatory influences from EGRIN (regression-based 703 

interactions are shown as dotted lines), which increases coverage of the regulatory network, (2) 704 

incorporation of the magnitude of regulatory influence of TFs on metabolic genes (β - shown as varying 705 

edge thickness) instead of probability (p) and confidence score (c) significantly improved the predictive 706 

accuracy of environment-specific gene essentiality. B. Number of TFs and genes from PRIME, IDREAM 707 

and PROM. C. Number of TF-gene interactions identified using regression-based EGRIN and Protein-708 

DNA (P-D) interactions from ChIP-seq data. 709 

 710 

 711 

 712 
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 713 
Figure 3: Validation of PRIME predictions of conditional gene essentiality. Sensitivity and 714 

specificity of PRIME, PROM, and IDREAM predicted TF essentiality in A. cholesterol and B. glycerol as 715 

determined by LOOCV analysis for the area under the receiver operating characteristic curve (ROC 716 

AUC). Statistical significance was calculated as p-value with two sample t-test. ****: p-value < 0.0001. 717 

Comparison of all positive predictions (true positives and true negatives) for TF essentiality by PRIME, 718 

PROM, and IDREAM in C. cholesterol and D. glycerol. E. The number of all correct PRIME predictions 719 

(true positives and true negatives) of TF knockouts across the two conditions (glycerol and cholesterol) 720 

that are validated by experimental TnSeq data. F. The number of all correct PRIME predictions for 721 

deletion of all genes in the metabolic network across the two conditions that are validated by 722 
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experimental TnSeq data. BioTapestry visualization showing a subset of the gene regulatory network of 723 

Mtb under growth in G. cholesterol and H. glycerol. TFs are grouped together in the top panel 724 

(represented by bent arrows), which extend to horizontal and vertical lines that connect to their 725 

regulatory gene targets. Highlighted TFs were predicted by the PRIME model to be essential and 726 

validated through TnSeq dataset in relevant conditions.  727 

 728 
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 729 
Figure 4. Drug-specific predictions of PRIME. A. Heatmap of PRIME derived fitness for all TF 730 

knockouts in the presence of 7 primary drugs and control at 24 h. The numbers indicate the 731 
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concentration of drug used in μg/mL. INH: isoniazid, BDQ: bedaquiline, RIF: rifampicin, LZD: linezolid, 732 

MOX: moxifloxacin, CFZ: clofazamine, PA824: pretomanid. B. Sensitivity and specificity of PRIME, 733 

PROM, and IDREAM predicted TF essentiality in the presence of INH as determined by LOOCV analysis 734 

for the area under the receiver operating characteristic curve (ROC AUC). Statistical significance was 735 

calculated as p-value with two-sample t-test. ****: p-value < 0.0001. C. Correlation of TnSeq 736 

experimental fitness ranking of TFs and PRIME derived fitness ranks. D. BioTapestry visualization 737 

showing a subset of the gene regulatory network of Mtb with PRIME predictions during INH treatment. 738 

Some of the highlighted TFs were predicted as essential in the presence of INH (Rv0827c, Rv1049 and 739 

Rv0472c), while others were predicted essential in both the absence and presence of INH (Rv1423, 740 

Rv1828, Rv3246c, and Rv2610c). The lightened TFs were predicted essential in the untreated control 741 

but non-essential in the presence of INH (Rv3681c, Rv1816, and Rv0576). All of these PRIME 742 

predictions were validated by experimental fitness screening in relevant conditions.   743 
 744 
  745 
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Tables: 746 

 747 

Table 1. Summary of PROM, IDREAM, and PRIME model features  748 

Mtb Model Features 

Chandrasekaran, 
2010 Ma, 2015 Present Study 

MTBPROM1.0 MTBPROM2.0 PROM* IDREAM* PRIME  

Metabolic model iNJ661 iSM810 iEK1011 iEK1011 iEK1011 

Number of reactions 1025 938 1229 1229 1229 

Number of metabolic genes in the 
metabolic network 661 

810  
(759 genes in 
iEK1011) 

1011 1011 1011 

Regulatory network Balazsi 2008 Minch 2015 Minch 2015 EGRIN 
(FDR<0.25) 

EGRIN 
(Precision= 
50%) 

Number of transcription factors 30 104 104 142# 142# 

Number of interactions 218 2555 2555 3643# 4820# 

Number of genes in the regulatory 
network (metabolic / total) 178 / 178 647 / 647 605 / 647 641 / 2487 750 / 2905 

*The PROM model was updated in this study by incorporating the latest metabolic network (MN) model for Mtb; 749 
the IDREAM model was constructed in this study to evaluate performance relative to the other methods 750 
#PRIME uses the same EGRIN network as IDREAM, but incorporates the weights of regulation of each metabolic 751 
enzyme to update the constraint on reaction fluxes through the MN. 752 
 753 
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