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Abstract

Background: The association between brain metabolic change and ischemic

stroke has attracted a lot of attention in the research community. 18F-fluorodeoxyglucose

(FDG) positron emission tomography (PET) imaging is widely used to measure

the metabolism. In experiments, ischemic stroke is usually induced through

middle cerebral artery occlusion (MCAO), and quality assessment of this pro-

cedure is of vital importance. However, an assessment method based on FDG

PET images is still lacking. Herein, we propose an image feature-based protocol

to assess the quality of the procedure.

Methods: We performed permanent MCAO to a total of 161 Sprague-

Dawley rats. FDG micro-PET images were acquired both before and after

the MCAO procedure. Triphenyl tetrazolium chloride (TTC) staining was also

conducted to obtain ground truth of the infarct volume. After preprocessing of

the PET images, a combination of 3D scale invariant feature transform (SIFT)

and support vector machine (SVM) was applied to extract features and train a

classifier that can assess the quality of the MCAO procedure.
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Results: 106 rats and 212 images were used as training data to construct

the classification model. The SVM classifier achieved over 98% accuracy in

cross validation. 10 rats with TTC results showing infarction in the ipsilat-

eral brain region served as validation data. Their images were tested by the

classifier and all of them were categorized into the correct group. Finally, the

remaining 45 rats from a separate experiment were treated as independent test

data. The prediction accuracy for these 90 images reached the level of 91%. An

online interface was constructed for users to upload their images and obtain the

assessment results.

Conclusion: This feature-based protocol provides a convenient, accurate

and reliable tool to assess the quality of the MCAO procedure in FDG PET

study.

Keywords: stroke, middle cerebral artery occlusion, brain metabolism, FDG

positron emission tomography

1. Introduction

Stroke is one of the most serious brain diseases and the second leading cause

of death around the world [1]. During an acute stroke, the brain will undergo

dysfunction and certain areas will be damaged. To study the stroke mechanism

and treatment effects, animal subjects have been extensively used. Among5

animal subjects, rats are very popular because of their low cost and similar

physiology to humans. To induce focal cerebral ischemia in rat subjects, middle

cerebral artery occlusion (MCAO) is the most commonly used procedure [2].

After the occlusion, assessments need to be performed to ensure the success

of the MCAO before follow-up experiments can be carried out. Traditionally,10

behavior tests [3], and triphenyl tetrazolium chloride (TTC) staining [4], were

used to assess the MCAO quality. However, the behavior test is subjective, and

the judgments vary among different examiners [5]. Although TTC staining can

show the infarct volume and provide the ground truth of the MCAO quality,

it needs to sacrifice rats. Consequently, follow-up experiments become infea-15

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424532


sible. In recent years, more assessment methods based on imaging modalities

have gained popularity due to their objective and non-invasive nature. Laser

Doppler flowmetry (LDF) [6, 7] can monitor the blood flow in brain areas con-

nected to the occluded vessels in real time. Studies have shown significant

correlation between the LDF change and behavior scores or infarct volume [8].20

However, limitations exist for this technique such as spatial heterogeneity due to

tissue perfusion and motion [9]. Functional magnetic resonance imaging (fMRI)

measures the blood-oxygen-level dependent (BOLD) contrast signal, which is

associated with the brain oxygen metabolism [10]. However, it is quite sensitive

to movements. Consequently, the head motion of rats during the scan session25

may generate undesired blurring effect [11, 12]. Positron emission tomography

(PET) is another popular functional imaging technique that uses radioactive

substances to measure the in vivo information such as physiological activities

and metabolism [13, 14].

There are two common types of radioactive tracers used in PET study of30

stroke: 15O-H2O and 18F-fluorodeoxyglucose (FDG). PET imaging with 15O-

H2O provides an indirect measure of cerebral blood flow (CBF) [15]. Decreased

15O-H2O concentration can be recorded in rats after MCAO, which associates

with reduced rate of perfusion [16]. However, the half-life of the oxygen-15

isotope is only about 2 minutes, which requires onsite production using a cy-35

clotron. Few laboratories can meet this requirement on apparatus and thus the

FDG radiotracer becomes more popular for research experiments. PET imag-

ing with 18F-FDG studies how brain metabolism varies with cerebral ischemia

and infarction [17]. Because the regional glucose level is directly related to brain

metabolism, the FDG concentration can accurately reveal the metabolic change.40

Reduced FDG concentration in the injured areas indicates diminished level of

neuronal activity. Analysis approaches have been proposed to assess the MCAO

quality based on PET images, among which the statistical parametric mapping

(SPM) gains most credit [18]. The SPM uses general linear model (GLM) to

represent data and conduct hypothesis testing (t tests or F tests) to identify45

voxels/regions that show significant change before and after stroke [19]. PET
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studies using 15O-H2O have shown consistent results where significant decrease

of radiotracer concentration (in terms of image intensities) were observed in

affected areas, demonstrating reduced CBF [20]. PET studies using FDG, how-

ever, have a large variability. Some works reported decreased FDG uptake in50

brain regions corresponding to the ischemic core from hours to days [21], which

are reasonable because reduction of CBF directly suppresses the glucose supply.

However, there are works that showed alteration in spatiotemporal uptake of

FDG [17, 22]. Such inconsistent results exist in the peri-ischemic regions, where

either insignificant change or hyper-uptake of FDG were reported. The under-55

lying reasons for the increased FDG uptake in the ipsilateral hemisphere can

be attributed to the activation of glucose transporter (GLUT), inflammation or

neuronal regeneration [17]. Therefore, significant results in FDG PET image

analysis may not be consistently accessible using voxel-wise activation methods.

Performing SPM for FDG PET images also suffers from the problem of60

intensity normalization [23]. Since the dosage of injected radiotracer cannot be

controlled to be identical for each rat, concentration calibration must be carried

out. This requires dividing each voxel by the global mean intensity over the

intracranial volume. However, bias and errors could arise due to various factors

such as variations of scanning time, plasma glucose level and basal metabolic65

rate [24]. Hence, a fast, accurate and reliable approach to assessing the MCAO

quality based on FDG PET scans is desirable.

Here, we adopt a 3D scale invariant feature transform (SIFT) algorithm [25]

to extract features from the FDG microPET images. The original 2D SIFT

[26] is a well-known feature detection approach that can extract local scale- and70

rotation-invariant features from images. There are mainly four steps for the

SIFT procedure and they are briefly described in the Online Data Supplement.

Then, a support vector machine (SVM) classification model is built from the

features of labeled images, which can classify an unknown new image into either

the healthy or MCAO category with high accuracy. Existing approaches for75

FDG PET image analysis require two scans per subject: one baseline and one

taken after MCAO [27]. In practice, preparing the radiotracer and taking PET
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images twice for each rat are expensive and time consuming, especially when a

large number of rats are involved in the experiment. Our protocol overcomes

such a defect by building a model that contains feature information from both80

baseline and MCAO images. Consequently, only one scan after the MCAO

is needed for the assessment. Moreover, since the feature extraction does not

require calibration, this analysis pipeline also avoids potential errors introduced

during the intensity normalization process.

In the following sections, we shall describe how to perform the image feature-85

based assessment, from preprocessing, through feature extraction, to model con-

struction, and demonstrate the significance of the protocol.

2. Methods

2.1. Animals

All the animal experiments in this study were approved by the Animal Re-90

search Committee of School of Medicine, Zhejiang University. Two independent

MCAO surgeries were performed following the same procedure [2], one with 116

rats and the other with 45 rats. The subjects involved in this study were adult

female Sprague-Dawley rats with a weight of 180-280 g. During the experiment,

each rat had free access to food and water, and was anesthetized using 40095

mg/kg chloral hydrate before the scanning. The entire experimental procedure

followed the guidelines for the care and use of Laboratory Animals published

by the National Institute of Health. All the data are available from the website:

http://yulab.ust.hk/MCAO/

2.2. Image data acquisition100

All 3D FDG microPET images were acquired with a microPET R4 system

(CTI Concorde Microsystems, LLC.) located at the Medical PET Center of

Zhejiang University. For each rat in this study, one scan was taken for the resting

state (baseline) before the MCAO procedure and one was taken after the MCAO

procedure. Both scans were acquired after 30 minutes of 18F-FDG injection and105
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each lasted for 15 minutes. The spatial resolution of the scanner was 1.9 mm full

width at half maximum (FWHM) in the transverse plane and 1.88 mm FWHM

in the axial plane. Additionally, 10 rats from the first experimental group were

chosen randomly to have TTC staining. The results provided clear visualization

of the tissue damage in the right brain, and photos were taken as a record for110

validation.

2.3. FDG PET template

To transform PET scans of distinct rats into a standard space, an anatomical

template was necessary. Since there is no widely accepted FDG PET template

for Sprague-Dawley rats, we constructed our own template from an existing115

MRI template [28] using SPM12 (Wellcome Department of Cognitive Neurology,

London, UK). The detailed steps are described in the Online Data Supplement.

The MRI template we used and the PET template we constructed are shown in

Figure 1.

Figure 1: Templates used in image preprocessing. Left: an existing MRI template for Sprague-

Dawley rats; Right: the FDG PET template for Sprague-Dawley rats that we constructed.

2.4. Preprocessing120

The raw data were reconstructed using the maximum a posterior (MAP)

algorithm [29]. Then, scans were preprocessed with the constructed template

in SPM12. The pipeline of the preprocessing is shown in the Online Data

6
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Supplement. Figure 2 shows an example of a raw image and its preprocessed

result.125

Figure 2: An example of a raw scan after reconstruction was shown on the left. Brain size

were not unified, images were not aligned well, and unnecessary components such as eyes

were superfluous. The final result after preprocessing on the right only contained intracranial

volume in a standard template space.

2.5. Image features

After spatial preprocessing, image features were extracted using the 3D SIFT

method, which returned a final descriptor as a vector in 768 length [25]. Since

the images had already been registered, we used a set of fixed key points and

omitted the key point localization step. Furthermore, because SIFT extracts130

local features from an image, we proposed to choose key points from brain areas

that are possibly affected during a stroke, such as the neocortex or striatum

[30]. The delineation of brain regions (one slice is shown in Figure 3) was

based on the Waxholm atlas made by Papp et al [31]. Because the symptoms

and injured areas resulting from a stroke are not totally understood, in order135

to be inclusive, after many trials we determined 25 key points from 13 brain

regions, as shown in Table 1. Then the feature of each image was formed by

concatenating the descriptors of all the 25 key points of it, which became a vector

in 768 × 25 = 19200 dimensions. In Figure 3 and the Online Data Supplement,

we provide results showing the 3D rendered atlas along with the location of the140

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424532


25 key points. The 3D rendering was completed by using an open-source data

visualization application called ParaView [32].

Region name Number of key points

Subthalamic nucleus 1

Alveus of the hippocampus 1

Striatum 3

Ventral hippocampal commissure 1

Thalamus 2

Fimbria of the hippocampus 1

Stria medullaris of the thalamus 1

Interpeduncular nucleus 1

Middle cerebellar peduncle 1

Neocortex 10

Postrhinal cortex 1

Perirhinal area 35 1

Perirhinal area 36 1

Total number: 25

Table 1: The brain regions from which the 25 key points were chosen. Regions with more

voxels and severe damage, such as neocortex and striatum, have multiple key points. The

regions are listed in the same order according to the region index provided in the Waxholm

Space atlas.

2.6. Classifier training

The calculations and statistical analysis were done in MATLAB R2018b

(Natick, Massachusetts: The MathWorks Inc). The image features of all the145

training data were used to learn a linear SVM classification model. This model

can be used to classify any new image into one of the two groups: normal

(baseline) or MCAO (injured). The assessment of MCAO quality is based on

the classification or prediction accuracy. Ten-fold cross validation was used to

examine the performance of the model, and classification on the validation set150
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Figure 3: Left: a coronal slice of the Waxholm atlas showing brain region delineation; Right:

a transverse view of the 3D rendered atlas, with the 25 key points (red dots) chosen from the

ipsilateral hemisphere for feature extraction.

and test set was also conducted to evaluate the performance.

2.7. Data availability statement

All the data and tools included in this paper are available for open access

on the webpage: http://yulab.ust.hk/MCAO/. Furthermore, to facilitate the

application of our method, we constructed an online interface that can automat-155

ically perform the image preprocessing, feature extraction and MCAO assess-

ment. Users only need to do one manual step that roughly align their images

to one example we provided before they upload. This is to ensure the accuracy

of preprocessing results because we assume that different PET scans will have

varying resolution and orientations.160

3. Results

3.1. Key points and features

The brain regions from which we chose key points, along with the number

of key points in each of them, are shown in Table 1. The neocortex was the

largest region and contained voxels in a wide range. Thus, we chose the largest165

number of key points from it. Meanwhile, the striatum was the second largest

region, and therefore we chose 3 key points from it. The decision to use these

brain regions and key points was based on existing stroke studies [30, 33] and

on our repeated experiments with different sets of key points.

9
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The feature of each microPET image was obtained by concatenating the 25170

SIFT descriptors into a single vector. As mentioned previously, we have 106

rats in the training set, 10 rats (with TTC ground truth) in the validation set

and 45 rats (from an independent experiment) in the test set. Every rat was

given two microPET scans, one before the MCAO surgery, which we call the

normal image, and one after the surgery, which we call the MCAO image. Prior175

to training the SVM classification model, we performed principal component

analysis (PCA) to the image features. As an unsupervised learning method,

PCA can significantly reduce the feature dimensionality by projecting the data

onto its principal vectors. This enables us to project the image features from

a 19200-dimensional space to a 2-dimensional plane and visualize them. Figure180

4 shows the PCA results of the two sets of image features, and both of them

indicate a clear discrimination between normal and MCAO images. This label-

free result suggests that the use of SIFT descriptors has promising accuracy to

assess MCAO quality.

Training dataset Testing dataset

Figure 4: The PCA results of the two sets of SIFT features. Features in the original 19200-

dimensional space were projected to a 2-dimension plane. Left: images from the training set;

Right: images from the test set.

3.2. Prediction accuracy185

Although PCA returned significant results, its computation requires grouped

data. Therefore, it cannot be applied to a single test image. For this reason, we

10
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turned to use supervised classification approaches. In order to make our proto-

col as simple as possible, we used basic and well-known classification methods.

We chose the following traditional methods: K-nearest neighbor (KNN), deci-190

sion tree (DT), linear discriminant analysis (LDA) and support vector machine

(SVM) and tested their accuracy with cross validation [34]. The results shown

in Figure 5 suggest that SVM is the optimal method with the highest accuracy.

The classification accuracy with cross validation reached over 98% and the pre-

diction accuracy for the test set was 91%. SVM was therefore adopted for the195

protocol.

Figure 5: Box plot and scatter plot of accuracy for different classification methods. The box

plot represents the 10-fold cross validation accuracy with different classification methods using

the 106 rats from the training set. The orange scatter points were obtained from predicting

the 45 rats in the independent test set using each trained model.

3.3. Validation with biomedical indicator

All the analyses so far treated the rats after MCAO as if their surgery were

completed successfully. Although the MCAO procedures were carried out care-

fully, the results became less convincing if the ground truth of occlusion could200

not be validated through a direct measure. Therefore, we performed TTC stain-

ing on 10 randomly selected rats and the results all showed obvious brain in-

farction in the right half of the brain (one example is shown in Figure 6 and all

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424532


staining photos are included in the Online Data Supplement). We then tested

the 20 images (10 normal + 10 MCAO) with the SVM model trained from the205

106 rats, and obtained 100% accuracy. All the TTC staining photos of the 10

rats are shown on our webpage.

Figure 6: An example of the TTC staining result after 15 hours of occlusion.

4. Discussion

4.1. Comparison with intensity-based analysis

Our study was conducted using a large number of rats with microPET images210

acquired before and after MCAO. The size of our dataset was larger than that in

most of the existing MCAO studies, and therefore we could investigate various

methods and obtain reliable results for the assessment. Our protocol can also

be applied to assess the MCAO quality using only a single image, and does

not require the scan of the normal state before occlusion. This is a significant215

advantage over the current intensity-based assessment approaches such as SPM.

The existing intensity-based methods all require two scans of the subject: one

baseline image and one after MCAO, and significant findings can be made only

when a clear intensity change between the two images is observed in an injured

area [15, 35, 36].220
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Moreover, we found that signal changes among different rats were not con-

sistent after we investigated the intensity histograms of subtracted scans. In the

FDG PET study of the MCAO procedure, the intensities will directly indicate

the uptake of glucose, and assessment of the MCAO is feasible if a significant

intensity decrease is observed. However, the intensity value of a PET scan is225

also related to the radiotracer concentration. Because the concentration can-

not be maintained at the same level for each injection, the intensity needs to

be normalized by the average intensity value among all the intracerebral voxels

for each rat [23]. Such intensity normalization steps produce the standardized

uptake value (SUV), and the SUV change in two significant voxels and regions230

before and after MCAO from our dataset is shown in Figure 7.

Figure 7: Histograms of the FDG uptake (normalized intensity) change between the normal

and MCAO images (MCAO - normal) for all rats in the training set from two regions: the

striatum (left) and the neocortex (right). The top two histograms belong to a single significant

voxel from 2-sample t-test. The bottom two histograms belong to the mean intensities in the

two regions. Orange bins represent the subjects with increased FDG uptake in the ipsilateral

part after MCAO.

Figure 7 shows that the SUV change on two significant regions has non-
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uniform results. About one quarter of the total rats had increased FDG intake

after MCAO even though we performed intensity normalization. As discussed

previously, this phenomenon could have two explanations. One is the heteroge-235

neous distribution of glucose in the peri-ischemic areas [22] and the other is the

error from intensity normalization [24]. For normalization, the mean intensity

in the intracranial part is largely determined by the healthy regions since the

injured area will have diminished FDG uptake. If two rats have significantly

different amounts of FDG injected, the overall intensity in the whole brain will240

vary significantly, and thus the denominator becomes a dominating factor [37].

In this way, the normalized intensity in the injured brain may even increase

after MCAO if less FDG is injected before the scanning session. Using our

feature-based protocol, we could overcome this problem and bring higher accu-

racy (Table 2). The heterogeneous uptake of FDG in the peri-ischemic regions245

can also be well included when we have more subjects in the training dataset.

At the same time, taking only one scan per rat could save time and cost for

researchers.

Methods Region/Point
Number of subjects

Ratio/accuracy
Significant

decrease
Total

Standardized

uptake

value

Striatum 89 106 83.96%

Thalamus 80 106 75.47%

Fimbria of

the hippocampus
90 106 84.91%

Neocortex 84 106 79.25%

Proposed method 25 key points - 106 97.41%

Table 2: Comparison of results between using SUV and our proposed classification method.

SUV change was calculated in 4 regions of interest: striatum, thalamus, fimbria of the hip-

pocampus and neocortex from the training dataset. The number of rats that showed significant

intensity decrease (p< 0.05, one-sided t-test) were counted and divided by the total number.

The ratio was compared with the classification accuracy using our feature-based method.
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4.2. Robustness of the FDG PET template

We provided a ready-to-use FDG PET template of Sprague-Dawley rats for250

raw image preprocessing. This template could be useful to researchers who de-

sire a FDG PET template but lack data to construct one themselves. To ensure

the 20 baseline images for the construction were able to build a representative

and universal template, we studied multiple choices of the baseline images and

verified the template quality. Since we had two independent datasets, we tested255

7 different combinations of images:

(1) 20 baseline images with good initial alignments carefully chosen from the

training set.

(2) 20 baseline images randomly chosen from the training set.

(3) 10 baseline images randomly chosen from the training set and 10 baseline260

images from the test set.

(4) 20 baseline images randomly chosen from the test set.

(5) 20 baseline images with a high intensity level (12.92 17.44) from the

training set.

(6) 20 baseline images with a low intensity level (1.848 2.786) from the265

training set.

(7) 10 baseline images with a high intensity level and 10 with a low intensity

level from the training set.

We examined the quality of the constructed templates based on SVM accu-

racy. The results shown in Table 3 indicate that the choice of baseline images270

had a minor influence on the template quality and preprocessing steps. Even

when we selected the baseline images only from one dataset and performed

preprocessing and analysis on the other dataset, the result showed very good

consistency. Therefore, the final template we fixed was the one from (1) above

using 20 optimal baseline images from the training set.275

4.3. SIFT and feature pattern

The conventional SIFT algorithm locates key points by looking for the space

extrema through the Difference of Gaussian (DoG). We tried to extract the space

15
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Number of baseline images Classification accuracy

Training set Test set Training set Test set

20 in good initial alignment 0 99.14% 97.76%

20 chosen randomly 0 98.86% 92.71%

10 chosen randomly 10 chosen randomly 98.71% 94.03%

0 20 chosen randomly 98.50% 93.30%

20 in high intensity level 0 98.73% 93.37%

20 in low intensity level 0 98.19% 92.90%

10 in high + 10 in low intensity level 0 98.62% 92.98%

Table 3: Seven distinct combinations of baseline images chosen to construct the PET template.

For each experiment, all images were preprocessed using the constructed template followed by

SIFT feature classification, and the accuracy with cross validation was recorded as a measure

of the template quality.

extrema for the 3D images in a four-dimensional neighborhood with the DoG.

Only a few key points were returned from the calculation, while some images had280

no extrema. This was due to the nature of the PET images, where neighboring

voxels were highly correlated because of the continuous FDG concentration in

the brain and the smoothing step in the preprocessing. Thus, for our 3D PET

images, which were registered to the template, we decided to use a fixed set of

key points which are all in the regions that are shown in previous studies to be285

affected by the MCAO procedure. In this way, the extracted descriptors from

different images had the same locations and thus could be compared among

each other.

After concatenating the SIFT descriptors of 25 key points into one feature

vector, we performed dimensionality reduction through PCA and obtained sig-290

nificant results. The two plots in Figure 4 both show a trend that the blue

data points (normal images) tend to be clustered, whereas the orange points

(MCAO images) have a larger variance. This phenomenon suggests that the

MCAO surgery will have different influence on different rats due to individual
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differences or distinct trials [38]. The discrepancy of the MCAO outcome may295

lead to incorrect statistical decisions if we adopt the voxel-based analysis meth-

ods. By using the SVM model, we clearly show that such a discrepancy is still

much smaller than the group-wise difference between normal images and MCAO

images and can therefore be reliably treated as intra-class variation.

4.4. Limitations300

Our study still has room for improvement. For example, there were thou-

sands of voxels in the injured areas, so it was infeasible to check each of them

one by one and find an optimal key point. We expect that researchers who

are expert in knowing exactly where the brain ischemia and infarctions happen

can provide more accurate key point locations. Additionally, the study of us-305

ing other image features apart from SIFT is an interesting topic and an open

problem.

5. Conclusion

This paper presented a protocol to assess the quality of rat MCAO proce-

dure by extracting SIFT features and building an SVM model from the FDG310

microPET imaging data. It has advantages over behavior tests or TTC stain-

ing by providing quantitative and non-invasive measurements. Unlike existing

voxel-based methods (such as the SPM) that suffer from inconsistent results due

to hyper-FDG uptake or potential bias caused by uncontrollable FDG dosage

difference, our protocol can provide consistent and reliable classification results315

without intensity normalization. Moreover, our method does not rely on com-

parison between scans before and after the MCAO, and therefore the baseline

scan is not always required when designing the experiment. This will be bene-

ficial when the proposed experiment involves large number of subjects.
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Vellvé, P. Aguiar, Intensity normalization methods in brain FDG-

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1053/j.semnuclmed.2020.02.011
https://doi.org/10.1053/j.semnuclmed.2020.02.011
https://doi.org/10.1053/j.semnuclmed.2020.02.011
https://doi.org/10.1155/2013/634598
https://doi.org/10.1016/B978-0-12-372560-8.X5000-1
https://doi.org/10.1038/jcbfm.1992.127
https://doi.org/10.1038/jcbfm.1992.127
https://doi.org/10.1038/jcbfm.1992.127
https://doi.org/10.1002/hbm.23839
https://doi.org/10.1016/j.neuroimage.2011.04.045
https://doi.org/10.1016/j.neuroimage.2011.04.045
https://doi.org/10.1016/j.neuroimage.2011.04.045
https://doi.org/10.1161/STROKEAHA.113.000903
https://doi.org/10.1101/2020.12.28.424532


PET quantification, NeuroImage 222 (2020) 117229. doi:10.1016/j.430

neuroimage.2020.117229.

[24] B. Nie, S. Liang, X. Jiang, S. Duan, Q. Huang, T. Zhang, P. Li,

H. Liu, B. Shan, An automatic method for generating an unbiased in-

tensity normalizing factor in positron emission tomography image analy-

sis after stroke, Neuroscience Bulletin 34 (2018) 833–841. doi:10.1007/435

s12264-018-0240-8.

[25] B. Rister, D. Reiter, H. Zhang, D. Volz, Scale-and orientation-invariant

keypoints in higher-dimensional data, in: 2015 IEEE International Con-

ference on Image Processing (ICIP), 2015, pp. 3490–3494. doi:10.1109/

ICIP.2015.7351453.440

[26] D. G. Lowe, Distinctive image features from scale-invariant keypoints, In-

ternational Journal of Computer Vision 60 (2004) 91–110. doi:10.1023/B:

VISI.0000029664.99615.94.

[27] Y.-Y. Li, B. Zhang, K.-W. Yu, C. Li, H.-Y. Xie, W.-Q. Bao, Y.-Y. Kong,

F.-Y. Jiao, Y.-H. Guan, Y.-L. Bai, Effects of constraint-induced movement445

therapy on brain glucose metabolism in a rat model of cerebral ischemia:

a micro PET/CT study, International Journal of Neuroscience 128 (2018)

736–745. doi:10.1080/00207454.2017.1418343.

[28] P. Schweinhardt, P. Fransson, L. Olson, C. Spenger, J. L. Andersson, A

template for spatial normalisation of MR images of the rat brain, Journal of450

Neuroscience Methods 129 (2003) 105–113. doi:10.1016/s0165-0270(03)

00192-4.

[29] K. Vunckx, P. Dupont, K. Goffin, W. Van Paesschen, K. Van Laere,

J. Nuyts, Voxel-based comparison of state-of-the-art reconstruction algo-

rithms for 18F-FDG PET brain imaging using simulated and clinical data,455

NeuroImage 102 (2014) 875–884. doi:10.1016/j.neuroimage.2014.06.

068.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuroimage.2020.117229
https://doi.org/10.1016/j.neuroimage.2020.117229
https://doi.org/10.1016/j.neuroimage.2020.117229
https://doi.org/10.1007/s12264-018-0240-8
https://doi.org/10.1007/s12264-018-0240-8
https://doi.org/10.1007/s12264-018-0240-8
https://doi.org/10.1109/ICIP.2015.7351453
https://doi.org/10.1109/ICIP.2015.7351453
https://doi.org/10.1109/ICIP.2015.7351453
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1080/00207454.2017.1418343
https://doi.org/10.1016/s0165-0270(03)00192-4
https://doi.org/10.1016/s0165-0270(03)00192-4
https://doi.org/10.1016/s0165-0270(03)00192-4
https://doi.org/10.1016/j.neuroimage.2014.06.068
https://doi.org/10.1016/j.neuroimage.2014.06.068
https://doi.org/10.1016/j.neuroimage.2014.06.068
https://doi.org/10.1101/2020.12.28.424532


[30] A. Popp, N. Jaenisch, O. W. Witte, C. Frahm, Identification of ischemic

regions in a rat model of stroke, PloS One 4 (2009) e4764. doi:10.1371/

journal.pone.0004764.460

[31] E. A. Papp, T. B. Leergaard, E. Calabrese, G. A. Johnson, J. G. Bjaalie,

Waxholm Space atlas of the Sprague Dawley rat brain, NeuroImage 97

(2014) 374–386. doi:10.1016/j.neuroimage.2014.04.001.

[32] J. Ahrens, B. Geveci, C. Law, Paraview: An end-user tool for large data

visualization, The Visualization Handbook 717 (2005). doi:10.1016/465

B978-012387582-2/50038-1.

[33] P. Baumgartner, M. El Amki, O. Bracko, A. R. Luft, S. Wegener, Sen-

sorimotor stroke alters hippocampo-thalamic network activity, Scientific

Reports 8 (2018) 1–11. doi:10.1038/s41598-018-34002-9.

[34] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning:470

data mining, inference, and prediction, Springer Science & Business Media,

2009. doi:10.1007/978-0-387-84858-7.

[35] K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, A. C.

Evans, A unified statistical approach for determining significant signals

in images of cerebral activation, Human Brain Mapping 4 (1996) 58–73.475

doi:10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.

[36] C.-y. O. Wong, J. Thie, M. Gaskill, R. Ponto, J. Hill, H.-y. Tian, H. Balon,

D. Wu, D. Fink-Bennett, C. Nagle, A statistical investigation of normal

regional intra-subject heterogeneity of brain metabolism and perfusion by

F-18 FDG and O-15 H2O PET imaging, BMC Nuclear Medicine 6 (2006)480

4. doi:10.1186/1471-2385-6-4.

[37] J. Ashburner, K. J. Friston, W. Penny, Chapter 37 - the general linear

model, in: Human Brain Function (Second Edition), Academic Press, 2004,

pp. 725 – 760. doi:10.1016/B978-012264841-0/50039-1.

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2020.12.28.424532doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pone.0004764
https://doi.org/10.1371/journal.pone.0004764
https://doi.org/10.1371/journal.pone.0004764
https://doi.org/10.1016/j.neuroimage.2014.04.001
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1038/s41598-018-34002-9
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
https://doi.org/10.1186/1471-2385-6-4
https://doi.org/10.1016/B978-012264841-0/50039-1
https://doi.org/10.1101/2020.12.28.424532
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