
A FAST LASSO-BASED METHOD FOR INFERRING PAIRWISE

INTERACTIONS

KIERAN ELMES, ASTRA HEYWOOD, ZHIYI HUANG, AND ALEX GAVRYUSHKIN�

Abstract. Large-scale genotype-phenotype screens provide a wealth of data for identifying
molecular alternations associated with a phenotype. Epistatic effects play an important role
in such association studies. For example, siRNA perturbation screens can be used to identify
pairwise gene-silencing effects. In bacteria, epistasis has practical consequences in determin-
ing antimicrobial resistance as the genetic background of a strain plays an important role in
determining resistance. Existing computational tools which account for epistasis do not scale
to human exome-wide screens and struggle with genetically diverse bacterial species such as
Pseudomonas aeruginosa. Combining earlier work in interaction detection with recent advances
in integer compression, we present a method for epistatic interaction detection on sparse (hu-
man) exome-scale data, and an R implementation in the package Pint. Our method takes
advantage of sparsity in the input data and recent progress in integer compression to perform
lasso-penalised linear regression on all pairwise combinations of the input, estimating up to 200
million potential effects, including epistatic interactions. Hence the human exome is within the
reach of our method, assuming one parameter per gene and one parameter per epistatic effect
for every pair of genes. We demonstrate Pint on both simulated and real data sets, including
antibiotic resistance testing and siRNA perturbation screens.

1. Introduction

Epistatic gene interactions have practical implications for personalised medicine, and syn-
thetic lethal interactions in particular can be used in cancer treatment [3]. Discovering these
interactions is currently challenging [23, 17, 10, 12], however. In particular, there are no meth-
ods able to automatically infer interactions from genotype-phenotype data at the human genome
scale.

For a given number of genes there are exponentially many potential interactions, compli-
cating computational methods. If we restrict our attention to pairwise effects, it is possible
to experimentally knock out particular combinations of genes to determine their combined ef-
fect [9]. This approach does not scale to the approximately 200 million pairwise combinations
possible among human protein coding genes, however. We instead consider inferring pairwise
interactions from large-scale genotype-phenotype data. These include mass knockdown screens,
in which we suppress a large number of genes simultaneously, and attempt to measure the
resulting phenotypic effect.

We have shown in [12] that a lasso-based approach to inferring interactions from an siRNA
perturbation matrix is a feasible method for large-scale interaction detection. In this additive
model, we assume fitness is a linear combination of the effects of each gene’s effect, and the
effect of every combination of these genes. For the sake of scalability, we consider only individual
and pairwise effects, and assume gene suppression is strictly binary. The fitness difference f
(compared to no knockdowns) in an experiment e is then the sum of individual and pairwise
effects

∑p
i gi +

∑p
i

∑n
j>i gi · gj , where gi = 1 if gene i is knocked down, 0 otherwise. With

sufficiently many such mass-knockdowns, we can infer pairwise interactions by finding the pairs
of genes whose effect is not the sum of the effects of each gene individually.

Department of Computer Science, University of Otago, New Zealand

E-mail addresses: �alex@biods.org.
We acknowledge support from the Royal Society Te Apārangi through a Rutherford Discovery Fellowship

(RDF-UOO1702). This work was partially supported by Ministry of Business, Innovation, and Employment of
New Zealand through an Endeavour Smart Ideas grant (UOOX1912) and a Data Science Programmes grant
(UOAX1932).

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 LASSO-BASED INTERACTION INFERENCE

Neither of the previously tested inference methods for this model, glinternet and xyz,
are effective at the genome-scale however. glinternet suffers from prohibitively long running
times,1 and xyz does not accurately predict effects in our larger simulations. Our aim is to fit
a model including all p u 20, 000 human protein-coding genes, with as many as n = 200, 000
siRNAs. Doing so requires the development of new methods and software.

We have developed an R-package that is able to perform lasso regression on all pairwise
interactions on the same one thousand gene screen in twenty seconds, and is able to fit a
genome-scale data set with 19, 000 genes and 67, 000 siRNAs in under two hours using a single
eight-core CPU. This is made possible by taking into account that our input matrix X is both
sparse and strictly binary. Our package, Pint, is available at github.com/biods/pint.

To perform lasso-based regression on this matrix, we begin with an existing fast algorithm,
parallelise it, and adapt it for use on our binary perturbation matrices. We provide a detailed
explanation of this implementation, followed by the scalability analysis, below. We also perform
a simulation study to compare our method’s scalability with known methods, and analyse two
large-scale experimental data sets.

In the first, an siRNA perturbation screen from [31], we search for pairs of genes that have
an epistatic effect when simultaneously silenced. Out of five top interactions identified by our
method, two are known protein interactions and three appear to be novel.

The second data set is composed of genetic variants identified in the intrinsically antibi-
otic resistant bacteria Pseudomonas aeruginosa. P. aeruginosais an opportunistic pathogen
found in a variety of environments and is a leading cause of morbidity and mortality in im-
munocompromised individuals or those with cystic fibrosis [16, 24]. P. aeruginosais known to
acquire adaptive antibiotic resistance in response to long term usage of antibiotics associated
with chronic infections [5, 27, 28]. The genomes included in that data set are from strains that
have been isolated from chronic and acute infections as well as environmental samples. The
minimum inhibitory concentration for the antibiotic Ciprofloxacin has been used as the pheno-
typic marker for this dataset. Ciprofloxacin belongs to the fluoroquinolone class of bacteriocidal
antibiotics that targets DNA replication and is one of the most widely used antibiotics against
P. aeruginosa[34]. Our findings identified 16 pairs of interactions, most of which were found in
genes that are important in biofilm formation and maintenance, a characteristic of intrinsically
antibiotic resistant bacteria.

2. Methods

Our goal is to estimate both the main effects β1, . . . , βp, and the interaction effects β1,2, . . . , βp−1,p

where pairs of genotypes are simultaneously perturbed. As an example, consider pairwise effects
in a siRNA perturbation screen. We can estimate the effect of both silencing individual genes
(β1, . . .) and pairs of genes simultaneously (β1,2, . . .). To do this we add a column for each pair

of genes, converting the siRNA matrix X ∈ {0, 1}n×p into the pairwise matrix X2 ∈ {0, 1}n×p
′
,

where p′ = p(p+1)
2 . This model includes all pairwise interactions and fitting it is equivalent to

finding epistasis as in [12]. The same construction applies to any binary genotype-phenotype
data, and the effect βa,b will always estimate the simultaneous effect of both genes a and b.

We construct the matrix X2 as follows. For every column i from 0 to n we take every further
column j from i+ 1 to n and form a new column by taking the bit-wise and over all elements
of the columns i and j (Fig. 1).

1Finding interactions in an siRNA screen of 1, 000 genes with ten siRNAs per gene takes several days using
ten cores on an Opteron 6276.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://www.github.com/bioDS/Pint
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

LASSO-BASED INTERACTION INFERENCE 3

1
0
0
0
1

1
0
1
0
1

1
1
0
0
1

∧ →

Figure 1. Creation of pairwise siRNA effect columns

This gives us the complete pairwise matrix X2, shown in Fig. 2.

β1x1,1 + . . .+ βpx1,p + β1,2x1,1∧2 + . . .+ β1,px1,1∧p + . . .+ βp−1,px1,p−1∧p + E1 = y1

β1x2,1 + . . .+ βpx1,p + β1,2x2,1∧2 + . . .+ β1,px2,1∧p + . . .+ βp−1,px2,p−1∧p + E2 = y2

β1xn,1 + . . .+ βpxn,p + β1,2xn,1∧2 + . . .+ β1,pxn,1∧p + . . .+ βp−1,pxn,p−1∧p + En = yn

...

Gene 1 Gene p Genes 1 and 2 Genes 1 and p Genes p− 1 and p

Figure 2. Matrix of Pairwise siRNA effects

2.1. Cyclic Linear Regression. Our approach to lasso regression is based on a cyclic coordi-
nate descent algorithm from [15], as described in [40]. This method begins with βj = 0 for all j
and updates the beta values sequentially, with each update attempting to minimise the current
total error. Here this total error is the difference between the effects we have estimated and the
fitness we observe, given the genes that have been knocked down. Where yi is the ith element
of Y, βj is the jth element of β, and xij is the entry in the matrix X2 at column j of row i, the
error is the following.

(1)
n∑
i=1

|yi −
p′∑
j=1

xij · βj |

The error affected by a single beta value (Eq. (5)) can then be minimised by updating βk
with the following:

(2) ∆βk =

{
max(0, βk +

∑n
i=1(xik(yi−ri))

Sk
− λ) for βk +

∑n
i=1(xik(yi−ri))

Sk
> 0

min(0, βk +
∑n

i=1(xik(yi−ri))
Sk

+ λ) for βk +
∑n

i=1(xik(yi−ri))
Sk

< 0

We cyclically update each βk until the solution converges for a particular lambda, reduce the
value of lambda, and repeat. See Appendix A for the full derivation and algorithm. Storing the
matrix in a sparse column format, this implementation scales up to p = 1, 000. It would still
take several days and use terabytes of memory for p = 20, 000. To overcome this, we compress
the matrix, and parallelise the beta updates (Section 2.3 and Appendix D).

2.2. Choosing Lambda. The lasso penalty requires a regularisation parameter lambda. This
parameter determines the extent to which we penalise large beta values, and can range from
allowing all values (λ = 0) to allowing only zero (λ→∞). Choosing the correct value of lambda
is essential if we want to include only the significant effects. This is typically done by choosing
an initial value sufficiently large that all beta values will be zero and gradually reducing lambda,
fitting the model for each value until a stopping point chosen with K-fold cross-validation [14].
Cross-validation requires fitting each lambda value K times, however, significantly increasing
the runtime. We instead provide two options for choosing lambda in our package. First, we can

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 LASSO-BASED INTERACTION INFERENCE

choose lambda such that the number of non-zero effects is small enough for OLS regression. In
our package, this is called Limited-β and a default limit is 2, 000. Alternatively, we implement
a fast method for empirically choosing a reasonable stopping point, the adaptive calibration
lambda selection method from [8]. Both of these methods are significantly faster than cross-
validation, although using adaptive calibration we tend to predict very few non-zero effects.
The best empirical results are generally achieved with the Limited-β approach, and we use this
for the remainder of the paper. A detailed explanation of each and their performance impact
can be found in Appendix C.

2.3. Compression. To reduce memory usage and the time taken to read each column with
larger input data, we compress the columns of X2. Because we read the columns sequentially,
we replace each entry with the offset from the previous entry. This reduces the average entry
to a relatively small number, rather than the mean of the entire row. These small integers can
then be efficiently compressed with any of a range of integer compression techniques (Fig. 3),
a subject that has been heavily developed for Information Retrieval. We compare a number of
such methods, including the Simple-8b algorithm from [35] (which we implement and use in our
package) in Appendix B.


0 0 1 0 . . .
0 1 0 0 . . .
0 0 1 1 . . .
1 0 0 0 . . .
...



3 1 0 2 . . .
... ... 2 ...

X :


3 1 0 2 . . .
4 6 2 33 . . .
21 12 19 45 . . .
...

9523 9954 9895 9971 . . .



3 1 0 2 . . .
1 5 2 31 . . .
17 6 17 12 . . .
...
60 26 25 13 . . .


+1

+17

+3

}

Encode each column with Simple-8b

Figure 3. Compression of the sparse X2 matrix.

2.4. Parallelisation. While it is trivial to parallelise the update of a single β value, doing so
does not improve performance in practice, due to poor cache usage (see Appendix D for details).
We instead parallelise our method by assigning whole columns of the compressed X2 matrix to
threads in sections. Each thread is responsible for updating the β values corresponding to its
columns, and is therefore the only thread reading it’s section of the X2 matrix.

Simultaneously updating columns with entries in the same row leads to over-compensating
for these entries. This can harm performance or in the worst case prevent convergence entirely
(Appendices D.2, D.5 and D.5.1). To avoid this, it suffices to ensure that threads do not
frequently update the same columns at the same time. We achieve this by shuffling the order
each thread updates it’s columns every iteration. While it is in principle still possible to update
enough overlapping threads in parallel to cause problems, Bradley et al. [6] show that this is
rarely a problem in practice.

Updates to the shared β values are atomic, and every thread needs read access to all β values.
This limits our method to use on shared memory systems and results in poor performance on
NUMA systems. In practice we can only effectively use a single CPU socket, and we have
tested this up to eight cores. Fig. 4 summarises the shuffled parallel implementation and it’s
scalability. For the full details of the parallel implementation see Appendix D.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

LASSO-BASED INTERACTION INFERENCE 5

Thread 1 Thread 2

shuffle shuffle

shared

(a)

1 8 16 32
Cores/Threads

1

2

3

4

5

6

7

8

Re
la

tiv
e

Sp
ee

du
p

Cores

(b)

Figure 4. (a) Each thread is assigned a set of columns, which is then shuffled
every iteration.
(b) Relative speedup as the number of cores used increases, running on a dual 8
core/16 thread NUMA system. Cores 1-8 are separate cores on node 1, 8-16 are
SMT threads on the same cores. Cores 17-24 are separate cores on the second
NUMA node, and 15-32 are SMT threads on those cores.

2.5. Limited Interaction Neighbourhoods. When searching for interactions within a large
sequence, it may be acceptable to limit the search to pairs that are relatively close on the
genome. In a study of epistatic interactions in yeast by Puchta et al. [30] the strength of
negative interactions decreases as distance between gene positions on the sequence increases.
The median distance between pairs in the hundred strongest interactions was only eighteen
nucleotides.

Limiting interactions to those within some distance d drastically reduces both the time and
space requirements. Instead of Θ(p2n), the size of the interaction matrix becomes Θ(pdn).
Similarly, an iteration of Algorithm 3 would require only Θ(pdn) operations. For d << p
this is a significant reduction. Limiting the interaction search distance to 100 positions, we
could process a set of 30, 000 genes and 200, 000 siRNAs using approximately 16GB of memory,
assuming a comparable density of interactions to our testing data. Such a search could be
performed directly on a laptop, without requiring access to a large server. The biological
implications of this restriction should be carefully considered before its use, however.

2.6. Data. We prepared two experimental data sets to evaluate our method and test the scal-
ability of our implementation. The first is an siRNA perturbation screen in which siRNAs
targeting kinases are applied to an infected human cell line. We predict off-target effects across
the entire exome, and use this larger set for our analysis.

The second data set contains single nucleotide variants (SNVs) from 259 isolates of Pseu-
domonas aeruginosa, and associated minimum inhibitory concentration (MIC) of Ciprofloxacin.

2.6.1. InfectX siRNA Data. To demonstrate our method on real genome-scale data, we use the
vaccinia group from InfectX [31]. This set contains 204, 288 siRNA perturbations in the presence
of the vaccinia virus. This set is significantly larger than the mock group (siRNA perturbations
with no pathogen present). Off-target effects are prediction using Risearch2 [1]. We include a
gene as an off-target effect whenever there is a match between the siRNA seed region and some

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 LASSO-BASED INTERACTION INFERENCE

component of an mRNA for that gene (taken from [18]). We use an energy cutoff of −20 and
match the entire siRNA, not only the 3′ UTR, as suggested in [1].

We then form a matrix of off-target effects with columns for each gene, and rows for each
siRNA as in [12]. An entry i, j in this matrix is one if and only the predicted effect of siRNA
i on gene j is greater than zero. All other entries are zero. Our fitness vector Y is the result
of B-scoring then Z-scoring the number of cells in the well, to remove systematic within-plate
effects and experimentally introduced cross-plate biases. B-scoring corrects for biases across
the entire plate, and Z-scoring then normalises each well’s score with respect to the rest of it’s
plate.

2.6.2. Antibacterial Resistance. SNVs from 259 isolates of Pseudomonas aeruginosawere se-
quenced using illumina technologies (IPCD isolates on MiSeq and QIMR isolates on HISeq).
SNV’s from raw reads were mapped to the reference genome PAO1 using Bowtie2 (v. 2.3.4) [21]
read aligners. Variant reports were then read into a python script which sorted the reports into
a table. The table was set up so that each isolate was represented as a row and the presence
/ absence of each SNV was along the columns. Only genomes that had associated MIC values
were included. The resulting table contains 259 rows and over 700, 000 columns.

Since our method considers p2 interactions, the scale of this data presents a problem. In-
cluding all > 700, 000 columns, we would need to store over 250 billion interaction columns,
each with up to 259 entries. Even if every column fits into a single 64-bit word, simply storing
the compressed matrix would require on the order of two terabytes of memory. We instead
reduce this to a more manageable scale, by removing all duplicated columns, and then any of
the remaining columns that have less than 30 entries. Note that this is likely to remove point
mutations occurring from acquired resistance, and effects that are always found in the same
isolates cannot be distinguished. While it may be possible to address these limitations we do
not attempt to do so here. There are simply too many interactions (over 200 billion) among
the full set of variants for our current implementation. After these reductions we have a more
tractable 259 × 75, 715 entry matrix, sufficiently small that all approx. 5.7 billion effects and
interactions can be processed using under 250GB of memory.

2.6.3. Data Sources. P. aeruginosagenome sequences were selected from strains whose MIC val-
ues (Ciprofloxacin) were known. 167 genomes were sourced from the publicly available IPCD
International Pseudomonas Consortium Database [19] and 92 genomes were from QIMR Bris-
bane Australia [20]. The IPCD data consisted of 2 x 300 bp MiSeq reads whilst the QIMR data
was 2 x 150 bp reads. The MIC values were obtained as a combination of e-test strips [32] and
plate-based assays [33].

3. Results

In this section, we summarise the results of a simulation study we carried out to compare
our method against existing approaches. We also demonstrate our method on two large-scale
experimental data sets. Note that both sets are too large to attempt using known approaches
such as glinternet for comparison. In both cases the true interactions are unknown, making
the true accuracy of our method in these cases difficult to determine. We nonetheless include
these as reasonable examples of cases in which our method is applicable and validate the results
by comparing them with known protein interactions [36].

3.1. Simulation Performance. Our method aims to have comparable precision and recall to
the best performing approach in our previous work [12] while scaling to much larger data sets.
To evaluate the accuracy of our method, we compare precision and recall of our method with
glinternet, the most accurate of the methods tested [12].

Since we achieved the best results only using glinternet for variable-selection, then fitting
the non-zero beta values with ordinary least squares (OLS) regression, we do the same here.
We use Pint in the same way and restrict to the first 2, 000 non-zero beta values, rather than
using adaptive calibration, which returns too few columns for the OLS regression step.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

LASSO-BASED INTERACTION INFERENCE 7

Table 1. Runtime comparison between our method and glinternet.

X matrix size glinternet time (s) Pint time (s)
n = 100, p = 1, 000 178 2.00
n = 1, 000, p = 10, 000 4807 27.6

Table 2. Infectx proposed interactions

Gene Names Estimated Effect p-value
TTN KMT2D 0.085 4.35e-05
TTN PLEC 0.053 1.95e-2
TTN TTC7B 0.068 2.01e-3
TTN OBSCN 0.137 8.00e-11
TTN CDH23 -0.022 1.00e-1

Testing with the same data as in [12], our method is able to identify significantly more correct
interactions than glinternet (Fig. 5). Precision is largely comparable, with a few outliers in
which we see significantly more false positives with our method (Fig. 5a). The run time is
orders of magnitude faster than glinternet, typically taking 20 to 30 seconds rather than
several hours (Table 1 and Fig. 5c). To test the scalability of our implementation, we also run it
with the same 2, 000 effect limit on a much larger data set. With p ≈ 27, 000, n ≈ 30, 000, using
16 SMT threads on a single eight core CPU, we propose 97 main effects and 236 interactions in
one and a half hours.

0.2

0.4

0.6

0.8

glinternet Limited-β lasso

P
re

ci
si

on

(a)

0.2

0.4

0.6

0.8

glinternet Limited-β lasso

R
ec

al
l

(b)

10

100

1000

10000

glinternet Limited-β lasso

T
im

e
Ta

ke
n

(s
)

(c)

Figure 5. Searching for interactions with glinternet vs. our shuffled com-
pressed lasso, using p = 1, 000, n = 10, 000 data from [12]. (a) Precision. (b)
Recall. (c) Time taken (log scale).

3.2. InfectX siRNA Data. We run our lasso model on the InfectX data (Section 2.6.1) al-
lowing all pairwise interactions, and halting at λ = 0.05 or the first 2, 000 non-zero effects,
whichever comes first. Only the genes and gene-pairs with non-zero predicted effects are then
included in the matrix Z. Last, we fit the phenotype Y to this matrix using least-squares
regression Y ∼ Z, using these unbiased estimates and p-values as our final result.

We find 26 proposed effects (21 main and 5 interactions) in under two hours. Our method pro-
poses interactions between five genes and TTN, with varying estimated strengths (see Table 2).
Two of these interactions, OBSCN and PLEC, are known protein interactions [36].

We find the same set of interactions in repeated runs (bearing in mind that the matrix is
shuffled differently each time). This suggests that these are not random choices, but effects
strongly supported by the data. The Adjusted R2 value is only ≈ 0.088, however, indicating

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

8 LASSO-BASED INTERACTION INFERENCE

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted R2

0

5

10

15

20

25

Co
un

t

InfectX sim. fitness

Figure 6. Adjusted R2 density of simulations in Section 3.1, with additional
lines indicating the values using InfectX data, or InfectX with simulated fitness,
instead.

that while a better than random fit has been found, the chosen effects do not explain the overall
observed fitness particularly well. To investigate this, we consider the difference between fitting
two different phenotypes. Firstly, the predicted effects with the measured cell counts from
InfectX, and secondly a simulated set that reflects our assumptions.

For the simulation we used the same X matrix, but simulated the fitness effects Y as a linear
combination of randomly chosen gene effects and gene-pair interactions. Every gene had a 10%
chance of being assigned an effect, which were sampled from N (0, 2). We gave every pair of
genes a 0.1% chance of an effect, which were also sampled from N (0, 2). For every row i of
X, the fitness value yi is the sum of both main and interaction effects present, with additional
random noise.

yi =

p∑
j=1

Xi,j effect(j) +

p∑
k=j+1

(effect(j, k))

 +N (0, 10)

With this simulated phenotype vector, re-running the interaction search with the same pa-
rameters, we have an R2 of ≈ 0.99.

After adjusting for the number of effects proposed, we find that while the fit is better than
random using the Z-scored InfectX cell-count as phenotypes, it is not nearly as good as in our
simulations. This suggests that at least some of our assumptions are incorrect, namely that
our fitness proxy (log cell count) is additive and can be largely explained with individual and
pairwise silencing effects, and that the off-target predictions are accurate. While all of these
assumptions are somewhat suspect, it should be noted that our siRNA off-target predictions
likely miss a significant number of strong effects, and include genes that are not completely
silenced [1]. With this in mind, it is plausible that even if the cell count responds to gene
silencing according to our assumptions, the predicted effects may not be significantly better
than random until accurate siRNA off-target predictions are available.

3.3. Antibacterial Resistance. We fit our antibacterial resistance data (see Section 2.6.2)
with three different sets of parameters. First, we allow all interactions. Second, we restrict to
interactions within 100 columns of each other. Finally, we restrict to interactions within 10
columns of each other. In all cases, we run until the adaptive calibration stopping condition
is met. In the first case, allowing all interactions, we find that repeated runs do not suggest
any of the same effects. Since the data only contains 259 samples for over 75, 000 effects (and
over 2.5 billion interactions) it is unsurprising that there are several equally good solutions. We
fail to find a reproducible result here because the data simply does not suggest one, and this
run is included only to demonstrate that our implementation works at this scale. The second

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

LASSO-BASED INTERACTION INFERENCE 9

and third cases produce more consistent results, with some common interactions suggested in
both cases. While limiting to interactions within 100 columns rules out the majority of possible
interactions, it also limits the number possible solutions enough that we can find one reliably
with only 259 samples.

Moreover, when we reduce the interaction matrix to only the non-zero predicted effects, and
produce an unbiased fit with least-squares regression, we find that our fit explains the variance
in resistance extremely well. Restricting interactions to effects within 100 entries of each other,
we have a multiple R2 of 0.99, and an adjusted R2 of 0.86. Even limiting to interactions within
ten entries, we have a multiple R2 of 0.78, and an adjusted R2 of 0.63. These suggest that in
this case our model is a particularly good fit.

There were 16 sets of variants found in both limited-distance runs (interactions within 10
or 100 columns only). For each of the 16 SNVs their genes, functions, and interactions were
assessed. Genes were identified based on PAO1 reference co-ordinates using Artemis [7]. The
STRING[36] database was used to assess the validity of the protein-protein interactions.

Five of the SNV pairs occurred in the same gene. There were four pairs that had high
interaction scores > 0.7 and two of pairs were identified twice. Many SNV’s were found in genes
that encoded for proteins involved in biofilm formation and maintenance indicative of long term
chronic infections that are often associated with general antibiotic resistance. Other than pilY1,
no other gene was found to be mutated in the lab-based evolution study [33].

There were two pairwise effects that had significant p-values in both runs. The first of these
pairs occurred in a gene that encoded a copper resistance protein. The second pair was found
in a gene that encodes an RNA binding methyltransferase.

4. Discussion

Genotype-phenotype data sets have recently become available at a never before seen scale.
In principle, it is possible to infer not only the effect of individual genomic variants within such
data, but of pairwise combinations of their effects. While this has been shown to work in theory,
and a number of tools have been developed that work on a smaller scale, there is a shortage
of effective methods for human genome-scale data. In this paper we present a regression based
method for such large-scale inference of pairwise effects.

Our method performs coordinate descent lasso-regression on a matrix containing all pairwise
interactions present in the data. For such an approach to work at scale, we had to make
a number of improvements. First we parallelised the algorithm by dividing the matrix into
shuffled sets for each thread. We then drastically increased the scale of tractable data sets by
compressing columns of the matrix using Simple-8b. Combined with the typically sparse binary
nature of genotype-phenotype screens, our method is able to effectively consider hundreds of
millions of possible interactions.

We compared the accuracy and running time of our work to glinternet, the best of the
methods we used previously [12], and found that our method provides comparable accuracy
and precision while running hundreds of times faster. We also tested our method using two
genome-scale real data sets. One is an exome-wide siRNA perturbation screen (n u 67, 000
siRNAs and p u 19, 000 genes). The other measures antibacterial resistance with respect to
genetic variations in Pseudomonas aeruginosa, and includes over two billion possible pairwise
interactions. In both cases our method finds a number of effects that are either plausible or
previously known.

In some cases we can significantly improve the running time and memory use by only con-
sidering local interactions. If interactions are restricted to those within 1, 000 positions of each
other, we can search our siRNA screen using ≈ 40GB of memory in ≈ 20 minutes.

While our method is effective on this scale, there are some limitations that would make
it difficult to use on significantly larger data sets. Both the time and space requirements are
quadratic in the input sequence, and performance does not scale well with non-uniform memory
access. This essentially limits our approach to data that fits in memory on a single machine.
The pairwise additive model is also something of an oversimplification. It remains unclear to

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

10 LASSO-BASED INTERACTION INFERENCE

what extent genetic effects be treated as additive, and ignoring interactions among of more than
two items could well be leaving out the most important effects. In this case we may end up
spuriously associating phenotype changes with individual and pairwise effects that just happen
to be present, rather than the true, more complicated, interaction.

There are nonetheless a number of opportunities to expand upon this work. If the original X
matrix is sparse, and the pairwise interaction matrix X2 is very sparse, we would expect three-
way interaction columns of an X3 matrix to be even more so. If there are few enough non-zeros
in such a matrix, it may be possible to extend our method beyond pairwise interactions without
any fundamental changes. While there would be p3 columns in a three-way interaction matrix,
if the vast majority contain only zeros we may still be able to store it. The indices of non-zero
three-way interaction columns could themselves be stored in a compressed list of offsets. Any
column whose index is not in this list could then be presumed to be zero and left out of beta
updates. Since the memory and time requirements only grow with the number of non-zero
entries, this could provide a well be enough for sufficiently sparse data.

Alternatively, as we showed in Section 2.5, we can significantly increase the scale of interaction
inference methods by reducing the search space. A more targeted approach than restricting the
genome distance, estimating distance in 3D space using Hi-C [4] for example, would drastically
reduce the time and space requirements, allowing higher order interactions to be considered.

Finally, the interactions proposed in Section 3.2 that have not already been confirmed may
well be real, and are worth further investigation.

Our method is implemented in C, and an R package is provided at github.com/bioDS/pint.

References

[1] Ferhat Alkan et al. “RIsearch2: Suffix Array-Based Large-Scale Prediction of RNA–RNA
Interactions and siRNA off-Targets”. In: Nucleic Acids Research 45.8 (May 5, 2017), e60–
e60. issn: 0305-1048. doi: 10.1093/nar/gkw1325. url: https://academic.oup.com/
nar/article/45/8/e60/2929519 (visited on 11/17/2020).

[2] Vo Ngoc Anh and Alistair Moffat. “Inverted Index Compression Using Word-Aligned
Binary Codes”. In: Information Retrieval 8.1 (Jan. 1, 2005), pp. 151–166. issn: 1573-7659.
doi: 10.1023/B:INRT.0000048490.99518.5c. url: https://doi.org/10.1023/B:
INRT.0000048490.99518.5c (visited on 08/30/2020).

[3] Alan Ashworth, Christopher J. Lord, and Jorge S. Reis-Filho. “Genetic Interactions in
Cancer Progression and Treatment”. In: Cell 145.1 (Apr. 1, 2011), pp. 30–38. issn: 0092-
8674. doi: 10.1016/j.cell.2011.03.020. url: http://www.sciencedirect.com/
science/article/pii/S0092867411002972 (visited on 06/02/2020).

[4] Jon-Matthew Belton et al. “Hi-C: A Comprehensive Technique to Capture the Conforma-
tion of Genomes”. In: Methods (San Diego, Calif.) 58.3 (Nov. 2012), pp. 268–276. issn:
1095-9130. doi: 10.1016/j.ymeth.2012.05.001. pmid: 22652625.

[5] João Botelho, Filipa Grosso, and Lúısa Peixe. “Antibiotic Resistance in Pseudomonas
Aeruginosa – Mechanisms, Epidemiology and Evolution”. In: Drug Resistance Updates 44
(May 1, 2019), p. 100640. issn: 1368-7646. doi: 10.1016/j.drup.2019.07.002. url:
http://www.sciencedirect.com/science/article/pii/S1368764619300238 (visited
on 01/25/2021).

[6] Joseph K. Bradley et al. Parallel Coordinate Descent for L1-Regularized Loss Minimiza-
tion. May 26, 2011. arXiv: 1105.5379 [cs, math]. url: http://arxiv.org/abs/1105.
5379 (visited on 07/14/2019).

[7] T. Carver et al. “Artemis: An Integrated Platform for Visualization and Analysis of
High-Throughput Sequence-Based Experimental Data”. In: Bioinformatics 28.4 (Feb. 15,
2012), pp. 464–469. issn: 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btr703.
url: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/
bioinformatics/btr703 (visited on 01/07/2021).

[8] Michael Chichignoud, Johannes Lederer, and Martin J Wainwright. “A Practical Scheme
and Fast Algorithm to Tune the Lasso With Optimality Guarantees”. In: (), p. 20.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://www.github.com/bioDS/pint
https://doi.org/10.1093/nar/gkw1325
https://academic.oup.com/nar/article/45/8/e60/2929519
https://academic.oup.com/nar/article/45/8/e60/2929519
https://doi.org/10.1023/B:INRT.0000048490.99518.5c
https://doi.org/10.1023/B:INRT.0000048490.99518.5c
https://doi.org/10.1023/B:INRT.0000048490.99518.5c
https://doi.org/10.1016/j.cell.2011.03.020
http://www.sciencedirect.com/science/article/pii/S0092867411002972
http://www.sciencedirect.com/science/article/pii/S0092867411002972
https://doi.org/10.1016/j.ymeth.2012.05.001
22652625
https://doi.org/10.1016/j.drup.2019.07.002
http://www.sciencedirect.com/science/article/pii/S1368764619300238
https://arxiv.org/abs/1105.5379
http://arxiv.org/abs/1105.5379
http://arxiv.org/abs/1105.5379
https://doi.org/10.1093/bioinformatics/btr703
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr703
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr703
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

REFERENCES 11

[9] Michael Costanzo et al. “The Genetic Landscape of a Cell.” In: Science (2010).
[10] Kristina Crona et al. “Inferring genetic interactions from comparative fitness data”. en.

In: Elife 6 (Dec. 2017).
[11] Richard Durstenfeld. “Algorithm 235: Random Permutation”. In: Communications of the

ACM 7.7 (July 1964), p. 420. issn: 0001-0782, 1557-7317. doi: 10.1145/364520.364540.
url: https://dl.acm.org/doi/10.1145/364520.364540 (visited on 10/28/2020).

[12] Kieran Elmes et al. “Learning Epistatic Gene Interactions from Perturbation Screens”.
In: bioRxiv (Aug. 25, 2020), p. 2020.08.24.264713. doi: 10.1101/2020.08.24.264713.
url: https://www.biorxiv.org/content/10.1101/2020.08.24.264713v1 (visited on
08/31/2020).

[13] Ronald A Fisher and Frank Yates. Statistical Tables: For Biological, Agricultural and
Medical Research. Oliver and Boyd, 1938.

[14] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regularization Paths for Gen-
eralized Linear Models via Coordinate Descent”. In: Journal of Statistical Software 33.1
(2010). issn: 1548-7660. doi: 10.18637/jss.v033.i01. pmid: 20808728. url: http:
//www.jstatsoft.org/v33/i01/ (visited on 07/14/2019).

[15] Wenjiang J. Fu. “Penalized Regressions: The Bridge versus the Lasso”. In: Journal of
Computational and Graphical Statistics 7.3 (Sept. 1998), pp. 397–416. issn: 1061-8600,
1537-2715. doi: 10.1080/10618600.1998.10474784. url: http://www.tandfonline.
com/doi/abs/10.1080/10618600.1998.10474784 (visited on 06/19/2020).

[16] Robert Gaynes, Jonathan R. Edwards, and National Nosocomial Infections Surveillance
System. “Overview of Nosocomial Infections Caused by Gram-Negative Bacilli”. In: Clini-
cal Infectious Diseases 41.6 (Sept. 15, 2005), pp. 848–854. issn: 1058-4838. doi: 10.1086/
432803. url: https://doi.org/10.1086/432803 (visited on 01/25/2021).

[17] Alison L Gould et al. “Microbiome interactions shape host fitness”. en. In: Proc. Natl.
Acad. Sci. U. S. A. 115.51 (Dec. 2018), E11951–E11960.

[18] GRCh38.P13 - Genome - Assembly - NCBI. url: https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.39 (visited on 12/01/2020).

[19] IPCD International Pseudomonas Consortium Database. url: https://ipcd.ibis.

ulaval.ca/ (visited on 01/07/2021).
[20] Timothy J. Kidd et al. “Pseudomonas Aeruginosa Exhibits Frequent Recombination, but

Only a Limited Association between Genotype and Ecological Setting”. In: PLoS ONE
7.9 (Sept. 6, 2012). Ed. by Sam Paul Brown, e44199. issn: 1932-6203. doi: 10.1371/
journal.pone.0044199. url: https://dx.plos.org/10.1371/journal.pone.0044199
(visited on 01/07/2021).

[21] Ben Langmead and Steven L. Salzberg. “Fast Gapped-Read Alignment with Bowtie 2”.
In: Nature Methods 9.4 (4 Apr. 2012), pp. 357–359. issn: 1548-7105. doi: 10.1038/nmeth.
1923. url: https://www.nature.com/articles/nmeth.1923 (visited on 01/10/2021).

[22] D. Lemire and L. Boytsov. “Decoding Billions of Integers per Second through Vectoriza-
tion”. In: Software: Practice and Experience 45.1 (2015), pp. 1–29. issn: 1097-024X. doi:
10.1002/spe.2203. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
2203 (visited on 07/13/2020).

[23] Caitlin Lienkaemper et al. “The geometry of partial fitness orders and an efficient method
for detecting genetic interactions”. en. In: J. Math. Biol. 77.4 (May 2018), pp. 951–970.

[24] Jeffrey B Lyczak, Carolyn L Cannon, and Gerald B Pier. “Establishment of Pseudomonas
Aeruginosa Infection: Lessons from a Versatile Opportunist1*Address for Correspondence:
Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA”. In: Microbes
and Infection 2.9 (July 1, 2000), pp. 1051–1060. issn: 1286-4579. doi: 10.1016/S1286-
4579(00)01259-4. url: http://www.sciencedirect.com/science/article/pii/
S1286457900012594 (visited on 01/25/2021).

[25] Antonio Mallia, Micha l Siedlaczek, and Torsten Suel. “An Experimental Study of In-
dex Compression and DAAT Query Processing Methods”. In: Advances in Information
Retrieval. Ed. by Leif Azzopardi et al. Lecture Notes in Computer Science. Springer In-
ternational Publishing, 2019, pp. 353–368. isbn: 978-3-030-15712-8.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1145/364520.364540
https://dl.acm.org/doi/10.1145/364520.364540
https://doi.org/10.1101/2020.08.24.264713
https://www.biorxiv.org/content/10.1101/2020.08.24.264713v1
https://doi.org/10.18637/jss.v033.i01
20808728
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1080/10618600.1998.10474784
http://www.tandfonline.com/doi/abs/10.1080/10618600.1998.10474784
http://www.tandfonline.com/doi/abs/10.1080/10618600.1998.10474784
https://doi.org/10.1086/432803
https://doi.org/10.1086/432803
https://doi.org/10.1086/432803
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://ipcd.ibis.ulaval.ca/
https://ipcd.ibis.ulaval.ca/
https://doi.org/10.1371/journal.pone.0044199
https://doi.org/10.1371/journal.pone.0044199
https://dx.plos.org/10.1371/journal.pone.0044199
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://www.nature.com/articles/nmeth.1923
https://doi.org/10.1002/spe.2203
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2203
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2203
https://doi.org/10.1016/S1286-4579(00)01259-4
https://doi.org/10.1016/S1286-4579(00)01259-4
http://www.sciencedirect.com/science/article/pii/S1286457900012594
http://www.sciencedirect.com/science/article/pii/S1286457900012594
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

12 REFERENCES

[26] Ramachandra Nanjegowda et al. “Scalability Evaluation of Barrier Algorithms for OpenMP”.
In: Evolving OpenMP in an Age of Extreme Parallelism. Ed. by Matthias S. Müller, Bronis
R. de Supinski, and Barbara M. Chapman. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009, pp. 42–52. isbn: 978-3-642-02303-3. doi: 10.1007/978-3-
642-02303-3_4.

[27] Preeti Pachori, Ragini Gothalwal, and Puneet Gandhi. “Emergence of Antibiotic Resis-
tance Pseudomonas Aeruginosa in Intensive Care Unit; a Critical Review”. In: Genes &
Diseases 6.2 (June 1, 2019), pp. 109–119. issn: 2352-3042. doi: 10.1016/j.gendis.2019.
04.001. url: http://www.sciencedirect.com/science/article/pii/S2352304219300170
(visited on 01/25/2021).

[28] Zheng Pang et al. “Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and
Alternative Therapeutic Strategies”. In: Biotechnology Advances 37.1 (Jan. 1, 2019),
pp. 177–192. issn: 0734-9750. doi: 10.1016/j.biotechadv.2018.11.013. url: http:
//www.sciencedirect.com/science/article/pii/S0734975018301976 (visited on
01/25/2021).

[29] powturbo. Powturbo/TurboPFor-Integer-Compression. July 9, 2020. url: https://github.
com/powturbo/TurboPFor-Integer-Compression (visited on 07/09/2020).

[30] Olga Puchta et al. “Network of Epistatic Interactions within a Yeast snoRNA”. In: Sci-
ence 352.6287 (May 13, 2016), pp. 840–844. issn: 0036-8075, 1095-9203. doi: 10.1126/
science.aaf0965. pmid: 27080103. url: https://science.sciencemag.org/content/
352/6287/840 (visited on 08/13/2020).

[31] Pauli Rämö et al. “Simultaneous Analysis of Large-Scale RNAi Screens for Pathogen
Entry”. In: BMC Genomics 15.1 (Dec. 22, 2014), p. 1162. issn: 1471-2164. doi: 10.1186/
1471-2164-15-1162. url: https://doi.org/10.1186/1471-2164-15-1162 (visited on
11/14/2019).

[32] Kay A. Ramsay et al. “Genomic and Phenotypic Comparison of Environmental and
Patient-Derived Isolates of Pseudomonas Aeruginosa Suggest That Antimicrobial Resis-
tance Is Rare within the Environment”. In: Journal of Medical Microbiology 68.11 (Nov. 1,
2019), pp. 1591–1595. issn: 0022-2615, 1473-5644. doi: 10.1099/jmm.0.001085. url:
https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.

001085 (visited on 01/07/2021).
[33] Attika Rehman, Wayne M. Patrick, and Iain L. Lamont. “Mechanisms of Ciprofloxacin

Resistance in Pseudomonas Aeruginosa: New Approaches to an Old Problem”. In: Journal
of Medical Microbiology, 68.1 (2019), pp. 1–10. issn: 0022-2615, doi: 10.1099/jmm.0.
000873. url: https://www.microbiologyresearch.org/content/journal/jmm/10.
1099/jmm.0.000873 (visited on 01/07/2021).

[34] Tracey Remmington, Nikki Jahnke, and Christian Harkensee. “Oral Anti-Pseudomonal
Antibiotics for Cystic Fibrosis”. In: Cochrane Database of Systematic Reviews (July 14,
2016). Ed. by Cochrane Cystic Fibrosis and Genetic Disorders Group. issn: 14651858. doi:
10.1002/14651858.CD005405.pub4. url: http://doi.wiley.com/10.1002/14651858.
CD005405.pub4 (visited on 01/25/2021).

[35] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. “Fast Integer Compression Us-
ing SIMD Instructions”. In: Proceedings of the Sixth International Workshop on Data Man-
agement on New Hardware - DaMoN ’10. The Sixth International Workshop. Indianapolis,
Indiana: ACM Press, 2010, pp. 34–40. isbn: 978-1-4503-0189-3. doi: 10.1145/1869389.
1869394. url: http://portal.acm.org/citation.cfm?doid=1869389.1869394 (visited
on 07/13/2020).

[36] STRING: Functional Protein Association Networks. url: https://string-db.org/cgi/
about.pl (visited on 07/22/2020).

[37] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288. issn: 2517-
6161. doi: 10.1111/j.2517-6161.1996.tb02080.x. url: https://rss.onlinelibrary.
wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x (visited on 08/29/2020).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1007/978-3-642-02303-3_4
https://doi.org/10.1007/978-3-642-02303-3_4
https://doi.org/10.1016/j.gendis.2019.04.001
https://doi.org/10.1016/j.gendis.2019.04.001
http://www.sciencedirect.com/science/article/pii/S2352304219300170
https://doi.org/10.1016/j.biotechadv.2018.11.013
http://www.sciencedirect.com/science/article/pii/S0734975018301976
http://www.sciencedirect.com/science/article/pii/S0734975018301976
https://github.com/powturbo/TurboPFor-Integer-Compression
https://github.com/powturbo/TurboPFor-Integer-Compression
https://doi.org/10.1126/science.aaf0965
https://doi.org/10.1126/science.aaf0965
27080103
https://science.sciencemag.org/content/352/6287/840
https://science.sciencemag.org/content/352/6287/840
https://doi.org/10.1186/1471-2164-15-1162
https://doi.org/10.1186/1471-2164-15-1162
https://doi.org/10.1186/1471-2164-15-1162
https://doi.org/10.1099/jmm.0.001085
https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001085
https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001085
https://doi.org/10.1099/jmm.0.000873
https://doi.org/10.1099/jmm.0.000873
https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000873
https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000873
https://doi.org/10.1002/14651858.CD005405.pub4
http://doi.wiley.com/10.1002/14651858.CD005405.pub4
http://doi.wiley.com/10.1002/14651858.CD005405.pub4
https://doi.org/10.1145/1869389.1869394
https://doi.org/10.1145/1869389.1869394
http://portal.acm.org/citation.cfm?doid=1869389.1869394
https://string-db.org/cgi/about.pl
https://string-db.org/cgi/about.pl
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

REFERENCES 13

[38] Andrew Trotman and Jimmy Lin. “In Vacuo and In Situ Evaluation of SIMD Codecs”.
In: Proceedings of the 21st Australasian Document Computing Symposium. ADCS ’16.
Caulfield, VIC, Australia: Association for Computing Machinery, Dec. 5, 2016, pp. 1–8.
isbn: 978-1-4503-4865-2. doi: 10.1145/3015022.3015023. url: https://doi.org/10.
1145/3015022.3015023 (visited on 07/08/2020).

[39] Sara Van de Geer. “The Deterministic Lasso”. In: 2007.
[40] Tong Tong Wu and Kenneth Lange. “Coordinate Descent Algorithms for Lasso Penalized

Regression”. In: The Annals of Applied Statistics 2.1 (Mar. 2008), pp. 224–244. issn: 1932-
6157. doi: 10.1214/07-AOAS147. arXiv: 0803.3876. url: http://arxiv.org/abs/0803.
3876 (visited on 07/14/2019).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1214/07-AOAS147
https://arxiv.org/abs/0803.3876
http://arxiv.org/abs/0803.3876
http://arxiv.org/abs/0803.3876
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

14 REFERENCES

Appendix A. Cyclic Linear Regression

As noted in Section 2.1, where yi is the ith element of Y, βj is the jth element of β, and xij
is the entry in the matrix X2 at column j of row i, the error is the following.

(3)
n∑
i=1

|yi −
p′∑
j=1

xij · βj |

Note that we assume that the fitness vector Y is already centred around 0, and omit the
offset u present in [40]. In the context of pairwise genetic interactions we would rather have a
smaller number of definitely relevant effects, than a large number of marginally relevant ones.
To this end, we add the lasso penalty to the error in Eq. (1). This penalises large beta values
according to a parameter λ, and results in a smaller set of, typically larger, non-zero beta values
[37]. With this added penalty we minimise the value:

(4)
n∑
i=1

|yi −
p′∑
j=1

xij · βj |+ λ

p′∑
j=1

|βj |

We do this by minimising the component of this error that each βj is able to account for.
For a particular βk, the component of this error that is affected by changing βk is:

(5) f(βk) =

n∑
i=1

|xik · (yi −
p′∑
j=1

xij · βj)|+ λ|βk|

This error comes from the non-zero entries in column k of X. Since in our case all entries
are either 1 or 0, this is simply the sum of errors of rows where column k has an entry, with a
penalty imposed for large beta values.

To minimise this component f(βk) alone, we define ri and Sk:

ri =

p′∑
j=1

xij · βj

Sk =

n∑
i=1

xik

The error affected by a single beta value (Eq. (5)) can then be minimised by updating βk
with Eq. (2), repeated below:

(6) ∆βk =

{
max(0, βk +

∑n
i=1(xik(yi−ri))

Sk
− λ) for βk +

∑n
i=1(xik(yi−ri))

Sk
> 0

min(0, βk +
∑n

i=1(xik(yi−ri))
Sk

+ λ) for βk +
∑n

i=1(xik(yi−ri))
Sk

< 0

This is equivalent to the solution from [40], as we will now show. Their solution is defined
separately for positive and negative βk:

βk− = min{0, βk −
δ
δβk

g(θ)− λ∑n
i=1 x

2
ik

}

βk+ = max{0, βk −
δ
δβk

g(θ) + λ∑n
i=1 x

2
ik

}

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 15

Where
δ

δβk
g(θ) = −

n∑
i=1

qixik,

and qi = yi − u−
p′∑
j=1

xijβj

Note that we assume the intercept term u = 0, because Y is centred around 0, and u can
therefore be omitted. We shall first focus on proving the equivalence of our construction for
βk−. Since xik ∈ {0, 1}, it follows xik = x2

ik, and therefore
∑n

i=1 x
2
ik = Sk. This gives us

βk− = min{0, βk −
δ
δβk

g(θ)− λ
Sk

}

Also substituting δ
δβk

g(θ), we have:

βk− = min{0, βk −
−
∑n

i=1 xik(yi − ri)− λ
Sk

}

= min{0, βk +

∑n
i=1 xik(yi − ri) + λ

Sk
}

= min{0,
Skβk +

∑n
i=1(yi − ri) + λ

Sk
}

This is equivalent to Eq. (2) for βk < 0. The positive solution is equivalent, substituting
min for max and subtracting λ. Iteratively minimising beta values until the solution converges,
we have Algorithm 1. We consider the algorithm to have converged when

eprev
eafter

< t for some

threshold t, where eprev is the error before the iteration and eafter the error after the iteration.
We arbitrarily chose t = 1.0001 as the default in our implementation.

while not converged do
foreach βk do

∆βk ←
∑n

i=1(xik(yi−ri))
Sk

;

if |βk + ∆βk| > λ then
βk ← βk + ∆βk;

if βk > 0 then
βk ← βk − λ;

end

else
if βk < 0 then

βk ← βk + λ;

end

end

end

end

end
Algorithm 1: Sequential Cyclic Algorithm

A naive implementation would read every entry of the X2 matrix, and every value in the

vector Y, every iteration, for every beta update. With X2 ∈ {0, 1}n×p
′
, β ∈ Rp′ and Y ∈ Rn,

this is Θ(np4) operations per iteration. Since xij and yi are constant, ri =
∑p

j=1 xijβj only
changes when βj changes. Updating this value every iteration, rather than re-calculating it, we
only need to perform n operations per β update. This brings the number of operations for an
iteration down to np2. To update βj , we now read a single column, Xj , and the values of ri
and Yi for each non-zero entry xij . By including Y in R such that ri = yi −

∑p
j=1 xijβj for all

i, we no longer need to read Y.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

16 APPENDIX

We can further reduce the work that needs to be done by storing a sparse representation of
X2. While X is a sparse matrix, X2 is an extremely sparse matrix. In a typical simulated data
set from [12] we go from, on average, 112 out of 1, 000 entries per column in the X matrix to 16
out of 1, 000 in X2. We therefore store X2 in the following format. Each column is a list of the
positions of its non-zero entries (Fig. 7). Since these are one by definition, we don’t store their
value. We store the matrix column-wise to ensure the column Xj can be read quickly when
updating βj . Each column is therefore stored as a separate array of integers.

0 0 1 0
0 1 0 0
0 0 1 1
1 0 0 0



3 1 0 2

2

X :

Figure 7. Simple sparse matrix representation

Appendix B. Compression

We can considerably reduce the size of this matrix in Fig. 7 by compression the columns.
Since we have a sequence of increasing integers we can store only the offset from the previous
entry, keeping the entries small. The resulting sequence of (mostly) small numbers can then be
efficiently stored using integer compression methods. We describe the compression method we
use in Appendix B.1 and compare it to other methods in Appendix B.2.

B.1. Simple-8b. Simple-8b is a non-SIMD compression scheme, with performance comparable
to other state of the art methods [35, 25, 38]. While SIMD-based compression schemes can often
offer significantly improved compression and decompression speed [22] [35], their implementation
is architecture dependant. Simple-8b only requires a CPU be able to efficiently handle 64-
bit arithmetic, and does not significantly underperform compared to state-of-the-art SIMD
techniques in our testing (Appendix B.2).

Simple-8b is a 64-bit variation of the Simple-9 encoding scheme [2], and stores a sequence
of integers in a single 64 bit word. The number of integers stored depends on the size of
the largest one, and is indicated by a four bit ‘selector’. The remaining 60 bits are divided
into integers of size 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30 or 60, with between 240 (only possible if
all values are zero) and one integer stored. As seen in Fig. 8, this considerably reduces the
size of X2 in our test data (two sets from [12], one with p = 100, n = 1, 000, another with
p = 1, 000, n = 10, 000). In the larger p = 1, 000 set, total memory use is reduced by over 85%
compared to storing integers directly. It is worth noting that this compression works well even
for non-sparse sections of the matrix, since the offsets are extremely small. In an extreme case,
we can store up to 240 sequential 1’s in a single 64-bit word. While the earlier offset-based
format (Fig. 7) relies on the sparsity of the matrix for its efficiency, compression works well
regardless.

B.2. Comparing Methods. While Simple-8b allows our implementation to be used on any 64-
bit CPU, we could also take advantage of SIMD-based methods where the such CPU instructions
are available. To determine whether this is a worthwhile improvement, we compare our Simple-
8b implementation to a number of state of the art alternatives.

Recent work suggests TurboPFor [29] has a particularly high compression ratio [38]. We
therefore compare the best performing methods from TurboPFor against our implementation
of Simple-8b (Fig. 9). The tests are performed using 32 threads across two eight-core (16 SMT
threads) Intel(R) Xeon(R) Gold 6244 CPUs in a NUMA system. To compare these methods, we
perform 50 regression iterations on a test data set of p = 1, 000 genes and n = 10, 000 siRNAs.
We examine the total time taken for the process, as well as the total memory used and time for
the regression function alone (excluding calculating and compressing the interaction matrix).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 17

Unco
mpre

sse
d,

p=
10

0

Com
pre

sse
d,

p=
10

0
0

1

2

3

4

5

6

7

8

To
ta

l M
em

or
y

Us
ed

 (M
B)

Unco
mpre

sse
d,

p=
1,0

00

Com
pre

sse
d,

p=
1,0

00
0

200

400

600

800

1000

1200

1400

To
ta

l M
em

or
y

Us
ed

 (M
B)

Figure 8. Compression effect on memory use. Note that this is the total peak
memory use of the program, not solely the memory used by the matrix X2. In
both cases n = 10 · p.

Sim
ple-8b

bitndpack256v32

bitndpack32

p4ndenc256v32

p4ndenc32

v8ndenc256v32

Method

0

50

100

150

M
em

or
y

(M
B)

(a)

Sim
ple-8b

bitndpack256v32

bitndpack32

p4ndenc256v32

p4ndenc32

v8ndenc256v32

Method

0

50

100

150

Ti
m

e
(S

ec
on

ds
) time

lasso
total

(b)

Figure 9. Comparison of Compression Methods. (a) Total memory used, com-
pressing the sparse X2 matrix with each method. (b) Total time taken and time
taken (including compressing X2) and time taken for lasso regression alone, using
each method.

We see that both the time to produce the compressed matrix (seen in Fig. 9 as the difference
between total time and lasso-only time), and the running time are comparable for all TurboPFor
methods.2 While every TurboPFor method we tested improved the compression ratio compared
to Simple-8b (Fig. 9a), we consistently found that the running time was longer (Fig. 9b).
It is possible that this is a result of the way the columns are being read in each method.
Using TurboPFor, we compress and decompress entire columns at a time. With our Simple-8b
implementation, we process each 64-bit word separately. This allows us to use the column as
it is being decompressed. Avoiding re-reading the column after decompression also allows the
entries to be evicted from the cache earlier.

While it is also possible to process compressed words as they are read using the tested
TurboPFor methods, there does not appear to be a significant difference in compression.

2The compression time is not comparable for all methods. Our Simple-8b implementation compresses columns
in parallel, whereas TurboPFor does not. Regression is done in parallel using all cases, using the method described
in Appendix D.5.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

18 APPENDIX

Appendix C. Choosing Lambda

The regression parameter lambda determines how large a change to β needs to be before it will
actually be made. During Lasso-regression we begin with an extremely large value of lambda,
and gradually decrease this until we think smaller effects are only going to over-fit the data. For
a better estimate of effect strengths, we only use lasso regression to choose the non-zero beta
values, and then perform Ordinary Least Squares (OLS) regression on the non-zero entries. The
βi estimates from OLS regression are the effect strength estimates and the p-values are used to
determine whether an effect is significant. It suffices then to continue decreasing lambda until
an arbitrary small lambda value, relying on OLS regression to filter for significant results. As
lambda decreases the number of non-zero effects increases, however, eventually becoming too
many for OLS regression. Since small effects are less likely to be correct [12], we prefer to stop
at a larger lambda.

We provide two options for choosing the final lambda in our package. First, we choose
lambda such that the number of non-zero effects is small enough for OLS regression. Second,
we implement a fast method for empirically choosing a reasonable stopping point.

In either case we begin with lambda sufficiently large that all beta values will be zero. Lambda
is then gradually decreased, setting the new value at each step to λnew = 0.9 ·λprev. We decrease
lambda until we reach or pass the minimum value (0.05 by default). After fitting with each
lambda, we optionally check one (or both) of the two stopping conditions. First, we can check
whether we have reached the maximum number of non-zero beta values. Alternatively, we
perform the adaptive calibration test [8], stopping if the conditions are met.

We use the adaptive calibration lambda selection method from [8] instead of the standard
K-fold cross-validation because cross-validation requires fitting each lambda value K times, and
this increase to the run time is unacceptable for large data. Adaptive calibration only requires
a single relatively small calculation for each lambda. It aims to choose the minimum value of
lambda that is sufficient to control fluctuations. Assuming X2 satisfies the design condition
from [39], the value chosen is within a constant factor of this ideal value, and precision and
recall are comparable to cross-validation [8].

In Fig. 10 we compare precision, recall, and running time when using the adaptive calibration
stopping condition to running as many iterations as we can, on a simulated data set from [12].
In one case we decrease lambda until the adaptive calibration condition is met. In the other
we limit the number of non-zero effects to 2, 000. In both cases, we then perform the OLS
regression step and filter out results with a p-value ≥ 0.05.

0.2

0.4

0.6

0.8

1.0

Lasso w/ Adcal Limited-β lasso

P
re

ci
si

on

0.0

0.2

0.4

0.6

Lasso w/ Adcal Limited-β lasso

R
ec

al
l

5

10

30

Lasso w/ Adcal Limited-β lasso

T
im

e
Ta

ke
n

(s
)

Figure 10. Adaptive calibration effect on large sets. ‘Limited-β Lasso’ runs
until 2, 000 beta values are non-zero, continuing until the cutoff otherwise. ‘Lasso
w/ Adcal’ halts once adaptive calibration conditions are met, continuing until
the cutoff otherwise.

We see significantly higher recall when running until a very small cutoff, allowing only 2, 000
effects in total to allow OLS regression. Adaptive calibration on the other hand stops very early.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 19

While the predictions at this point are almost entirely correct, the majority of the effects that
would be found with lower lambda values are missed. Since the loss of precision at lower lambda
values is mitigated effectively by OLS p-value filtering, we suggest this approach in general.

Both the adaptive calibration option and limiting non-zero betas can prevent the algorithm
from finding small effects. This is in many cases beneficial, as it is the small values of lambda,
and therefore the small effects, that are computationally expensive. Moreover, our previous
benchmarks [12] show that small effects are also the least likely to be correctly identified. With
that in mind, we do not consider ignoring these effects to be a problem.

Appendix D. Parallelisation Details

In this section we provide an overview of the challenges in parallelising Lasso-regression,
and our attempts to overcome them. Appendices D.1 to D.3 describe in detail the way effect
strengths (beta values) are updated, and the barriers to doing so in parallel. Appendix D.4
covers the methods we investigated, but do not use in our final implementation. The shuffled
method we finally used is described in detail in Appendix D.5.

D.1. Beta updates. We refer to an update of a βj corresponding to column Xj as a column
update. Within a column update, there are no barriers to running in parallel (i.e. parallelising
over rows). We can iterate through the elements of the column in parallel using openMP, and
calculate the sums with a reduction. The contents of a single column are stored sequentially
in memory, which limits the effectiveness of such an approach. The contents of the columns
are only read, and not written, in this process, so there is no overhead in maintaining cache
coherency. Once a single value has been read on one core, an entire cache-line will be available
from its local cache, however. Since these have been read from memory already, there is no
advantage to reading them into another core’s cache for parallel processing. We could attempt
to offset the work of each core, so that each will be working on a separate cache line within
the same column of the matrix. Such an approach, however, assumes that the column contains
at least k = cache line size

entry size · (num cores) entries, which is unlikely. There is also considerable

overhead in thread barriers [26], and the work done must be enough to justify this. To solve
these problems, and avoid having threads idle when their component of the work is finished,
we would need to have several times k entries. In our test set of n = 10, 000 siRNAs, the mean
number of non-zero entries in a column is only 150, or seven compressed 64-bit words. The L1
data cache of our test CPU (A Xeon Gold 6244) has a 64 byte cache line size, enough for eight
entries. Even with hundreds of thousands of siRNAs, each column could only be expected to be
a few cache lines. Running the iterations over columns in parallel, rather than rows, is therefore
the focus of our parallelisation attempts.

D.2. Overlap Error. We cannot simply perform several column updates in parallel. Each
column update both reads and writes ri values for every non-zero entry in the column. If two
columns are updated in parallel, and they both have non-zero entries in a common row, there is
a time-of-check to time-of-use problem. An update can occur in an ri after that value has been
read by another thread. While the cached ri themselves will never be incorrect, as the updates
are atomic and always the result of real changes to a beta value, both columns will be updated
based on the old value. Both columns are partially responsible for the difference between the

current fit,
∑p′

i=1 xijβj , and observed fitness, yi, of this common row. Each of these updates will
attempt to minimise this as much as possible, without taking the other update into account.
This can result in overcorrecting for the error in the common row, potentially increasing the
overall error. To compensate for the increased error, the next update may make an even larger
change to β (Fig. 11a). In the worst case, if two or more updates repeatedly overcorrect for
each other, this can prevent convergence entirely (Fig. 11b).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

20 APPENDIX

∆β

Iterations

(a) 0 50 100 150
Iteration

103

1010

1017

1024

1031

1038

1045

1052

M
ea

n
Sq

ua
re

d
Er

ro
r

(b)

Figure 11. Effect of repeated overcorrection. (a) Repeated overcorrections lead
to increasingly large changes to error. (b) Effect of repeated overcorrection on
fit. This example is the result of fitting a 50 × 20 random binary X2 matrix,
with random Y values between −1 and 1.

D.3. Deriving Overcorrection Error. Simultaneous updates may result in overcorrection,
but we can analytically determine exactly how much. Using the definitions from Appendix A,
ignoring the lasso penalty for the moment, we update a single βk by ∆βk as follows.

∆βk =

∑n
i=1(xik(yi − ri))

Sk
Let us define ∆̂βk to be the value that ∆βk would take if, for every j < k, the update to βj ,

had already been performed. If we perform all updates strictly sequentially, then ∆βk = ∆̂βk.

Similarly, we define
∧k
ri to be the value of ri after all updates prior to k have been performed.

∧k
ri =

p′∑
j=1

(xijβj) +
k−1∑
j=1

(xij∆̂βj)

Since the only difference between ∆̂βk and ∆βk is the change in ri caused by previous beta
updates, it follows:

∆̂βk =

∑n
i=1(xik(yi −

∧k
ri)

Sk

=

∑n
i=1(xik(yi −

∑p′

j=1(xijβj)−
∑k−1

j=1(xij∆̂βj)))

Sk

=

∑n
i=1 xik(yi − ri)

Sk
−

∑n
i=1 xik

∑k−1
j=1 xij∆̂βj

Sk

= ∆βk −
∑n

i=1 xik
∑k−1

j=1 xij∆̂βj

Sk

= ∆βk −
∑k−1

j=1 ∆̂βj
∑n

i=1 xijxik

Sk

Note that
∑n

i=1 xijxik is constant with respect to changes in β and R. We can compute these
values once after the input has been read, and re-use them in every iteration. If we define the
overlap between columns j and k of X2 to be γjk =

∑n
i=1 xijxik, we have the following.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 21

∆̂βk = ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk

Remark 1. ∆̂βk 6= ∆βk if and only if γjk 6= 0 for some j < k.

For λ 6= 0 we define the soft threshold function fλ(x).

fλ(x) =

{
min(0, x+ λ) for x < 0

max(0, x− λ) for x > 0

We find that the value of ∆̂βk for λ 6= 0 is the following, and use this definition in our package.

∆̂βkλ = fλ(βk + ∆̂βk)− βk

= fλ(βk + ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk
)− βk

We now consider a concrete example of Remark 1. Let each residual ri be fixed (for the
moment), and update first β1, then β2, the intended sequential update effect is then:

∆β1 =

∑
i|xi,1=1 yi − ri∑n

i=1 xi,1

∆β2 =

∑
i|xi,2=1 yi − ri + γ12∆β1∑n

i=1 xi,2

When both updates are instead performed at the same time we get:

∆β1 =

∑
i|xi,1=1 yi − ri∑n

i=1 xi,1

∆β2 =

∑
i|xi,2=1 yi − ri∑n

i=1 xi,2

Updating in parallel, the effect of β2 is estimated based on the original R, rather than those
that account for the changes made to β1. We can easily calculate the expected overcorrection
in this case, γ1,2∆β1. Note that we are atomically updating the residuals ri that are affected
by both updates. If we fail to do this, overcorrection becomes difficult to predict.

For example, β1 and β2 correspond to the columns in Fig. 12a, and suppose these columns of
X2 are chosen for simultaneous updates. We can calculate the changes ∆β1 and ∆β2 in parallel
and update the residuals safely, because there are no shared values being updated by both
threads. In Fig. 12b, we find that both the update to β1 and the update to β2 affect residual
r3. While atomic updates to the actual value of r3 will guarantee that we finish with the value
r3 + ∆β1 + ∆β2, we have not taken the changed value of r3 into account when calculating ∆β2.
The correct update would have been r3 + ∆β1 + ∆β2 − ∆β1

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

22 APPENDIX


0
0
1
0
1



1
0
0
0
0



β1 β2

r1

r2

r3

r4

r5

∆β1 = f(r, r)

r3 = r3 + ∆β1

r5 = r5 + ∆β1

∆β2 = f(r)

r1 = r1 + ∆β2

(a) Non-overlapping updates


0
0
1
0
1



1
0
1
0
0



β1 β2

r1

r2

r3

r4

r5

∆β1 = f(r, r)

r3 = r3 + ∆β1

r5 = r5 + ∆β1

∆β2 = f(r, r)

r1 = r1 + ∆β2

r3 = r3 + ∆β2

(b) Overlapping updates

Figure 12

Given that we can safely perform updates for columns that have no overlap, and we can
explicitly compensate for the error of sets of columns, we investigate three approaches for paral-
lelisation: compensating for the error of pre-determined sets (Appendix D.4.1), simultaneously
updating non-overlapping sets (Appendix D.4.5), and randomly updating shuffled columns (Ap-
pendix D.5).

D.4. Alternative Parallelisation Methods. Two alternative approaches to parallelisation
were considered, but not used in the final implementation. In this section we provide a detailed
explanation of the barriers to parallelised lasso regression and the methods we attempted, but
did not use.

D.4.1. Explicit error compensation. To update βa and βb at the same time, we need to subtract
the overcorrection from one of them (arbitrarily chosen) afterwards. The final value is then the
same as if we had updated the values sequentially. Subtracting the overcorrection from ∆βa we
update βa as follows:

βa = βa + fλ(βb + ∆βk −
γab∆̂βb
Sk

)− βa

Similarly, we can update any subset of the beta values {β1, . . . , βp′} simultaneously, as long
as we account for overcorrection in each update. For every βk in the subset {β1, . . . , βl}, we
make the following correction:

βk = βk + fλ(βk + ∆βk −
∑k−1

j=1 γjk∆̂βj

Sk
)− βk

This method has been implemented in the error_comp branch of our repository3, and is
marginally faster than sequential updating with the right parameters. It does not scale well
enough that we can recommend its use, however.

To understand the scalability of this approach, we begin by noting that the time taken
to correct C simultaneous beta updates is on the order of C2. This is because each update

0 ≤ i ≤ C requires reading the i − 1 previous corrected values, resulting in (i−1)(i−2)
2 reads. If

we were to attempt to update the entire interaction matrix in parallel, followed by correcting
errors, there would be on the order of p′2 corrections. Since a sequential iteration requires only
p′µ steps, where µ is the mean number of non-zero entries per column, we would spend more
time on corrections than updates. Even if corrections were run in parallel, this would be slower
than sequential updates.

We do not, however, have to update the entire matrix at once. If we restrict ourselves to
updating small sets, where ‘small’ is some function of the number of threads we are able to
effectively use, the problem becomes tractable. Performing C parallel updates, where C is some

constant multiple of the number of available threads, we have in total p
′

C sets to update, resulting

3https://github.com/bioDS/Pint/tree/error_comp

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://github.com/bioDS/Pint/tree/error_comp
https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 23

in p′µ
C + p′C update operations on the main thread.4 For C2

C−1 < µ this is an improvement, even

with single-threaded correction.5

Remark 2. Ahmdahl’s Law implies a best-case improvement of:

p′µ

p′(µC + C)

D.4.2. Parallel correction does not scale. To improve upon Remark 2, we have to correct beta
updates in parallel. This requires calculating ∆̂βk without using any previously corrected values,
∆̂βj for j < k. Substituting ∆̂βj , a corrected update ∆̂βk then becomes the following:

∆̂βk = ∆βk −
∑k−1

j=1 γjk∆βj −
∑j−1

j′=1 γj′j∆βj ′−Γ

Sj

Sk
Where Γ is a nested sum containing a further (k − 4)! additions. Even for very small sets,

computing this is not feasible. We must therefore fix overcorrection sequentially, and accept
the limit in Remark 2.

D.4.3. OpenMP barrier overhead requires large C. To achieve the improvement in Remark 2,
we would need a set of eight columns, updated on eight CPUs, to finish eight times faster. This
is in practice not the case. We demonstrate this by running a single iteration on the same test
set with varying parallel update set sizes C. Using sets of size m times the number of available
cores we gradually increase m and measure the time taken to perform all p′ column updates,
without compensating for overcorrection. As we can see in Fig. 13, we require blocks of 64 to
128 times as many columns as there are cores to achieve speed-ups close to the theoretical limit,
and at least eight times as many for any significant improvement.

21 23 25 27 29

Multiplier (m)

1

2

3

4

5

6

7

8

Re
la

tiv
e

Sp
ee

du
p

single thread
eight threads
theoretical limit

Figure 13. Set size multiplier effect on parallelisation speed-up. Sets contain
(number of cores) × C columns.

We find that for small block sizes, the majority of the time all threads are handling an
openMP barrier at the end of a parallelised loop.6 There are two likely causes. First, when
running a small number of column updates in parallel, some of these will often finish before
others. If there are no further columns in the set, the thread will then have to wait for the set
to finish updating. Secondly, updating columns with entries in nearby rows will mean accessing
nearby memory locations to update the residuals. Since these are both being read and written

4Assuming that the column updates are done in parallel, and the overcorrection adjustments are done on the
main thread.

5Note that C2

C−1
≈ C for sufficiently large C

6Note that it is not the case that one thread is still updating while the others are waiting.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

24 APPENDIX

to, maintaining cache coherency across CPU cores is likely to affect performance. The barrier
at the end of each parallel section may also take a significant amount of CPU time, as it requires
some communication between threads.

Memory access is also less efficient with multiple threads. When a single thread performs a
sequence of column updates, these columns are stored in memory sequentially, and each column
may be as little as a single word. The core will read in an entire cache-line at once, and this
may contain part of the following column, if not the following several. In this case, additional
updates for these columns may be performed without any extra memory reads. If, on the other
hand, we have eight columns shared between eight threads, they will each still need to read in
these values. In our case the eight cores have a shared L3 cache, individual L1 and L2 caches,
and 64 byte cache lines. Since one Simple-8b word is 64 bits, we have eight such words in a
single cache line. In the worst case, this is eight separate columns. Supposing this is the case,
a single read from memory will bring all eight columns into the shared L3 cache. It will then
take eight separate reads into various L1 caches, for eight separate cores to perform updates for
these columns, whereas a single core would require only one read from L3. With larger data
sets, and hence larger columns, this becomes less of a problem. The fact remains though, that
cache use is significantly better when each core updates several sequential columns.

All of these issues are mitigated by increasing the size of sets, and updating several sequential
columns on each thread. Fig. 13 suggests sets should be at least sixteen times the number of
available threads in size. This increases the time required to compensate for overcorrection.

21 23 25 27 29

Multiplier (m)

0

2

4

6

8

Ti
m

e
Ta

ke
n

(s
)

single thread, total time
eight threads, total time
eight threads, correction-only time

Figure 14. Total time taken (in seconds) for various block size multipliers.
Time spent in parallel section is highlighted. Single-threaded time is included
for comparison.

D.4.4. There is no effective value of C. The results in Appendix D.4.2 require us to perform
error correction sequentially, i.e. on a single core. As we saw in Remark 2, for sufficiently small
sets this is not a serious limitation. However Appendix D.4.3 also suggests that we may need
large sets.

We first note that we can’t significantly reduce the time taken in the error correction step.
Updating R and calculating corrections take approximately half the time each. While updating
R can be parallelised, there is so little work here that the thread barriers again result in worse
performance. In the overlap matrix, containing the overlap between columns in the set (γij
for columns i, j), around 50% of the entries are non-zero. Removing these or using a sparse
compressed matrix to store overlap is therefore unlikely to be a significant improvement.

Fig. 14 shows the amount of time spent in error correction increases quadratically with the
block size. At a multiplier of 256 this overtakes the entire update time on a single core, and we

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 25

see that the multi-threaded implementation becomes slower than the single-threaded. The best
multi-threaded result we see is at a multiplier of thirty-two, where the parallel version achieves
a 44% improvement in iterations per second. Even with improvements to the error correction
routine, it is unlikely that this approach to parallelisation can achieve more than double the
performance of the sequential version. We therefore arrive at the conclusion:

Remark 3. Parallel updates of sets, followed by error correction on those sets, is not a feasible
approach for parallelisation.

D.4.5. Limiting overlap. While we cannot compensate for overcorrection after the fact, Fig. 13
nonetheless suggests that there is some hope for performing a block of updates in parallel.
Rather than allowing these blocks to be arbitrary, we now consider restricting updates to blocks
of non-overlapping columns of X2. Again, we first divide the matrix into sets of columns for
which we can perform updates simultaneously, then update these sets one at a time. Here, these
sets will be collections of columns that either do not overlap, or overlap very little.

D.4.6. Sets of no overlap. Since the columns of X are relatively sparse, and the columns of X2

particularly so, it is plausible that we could find sets of a few non-overlapping columns purely
by chance. In our test set of 1, 000 columns and 10, 000 rows the mean number of non-zero
entries in a column is 0.58%. In this case, we would expect the fraction of entries in common
between two randomly chosen columns to be (0.58%)2, or 0.34 entries per column. If we choose
two random columns we can reasonably expect them not to overlap. Extending this we find
sets of non-overlapping columns using the following method.

We start by randomly shuffling the columns. We then compare every second column with its
neighbour, recording a set of two non-overlapping columns where possible (Fig. 15b). Smaller
sets are then repeatedly merged to form larger sets, where no overlap exists between columns
(Algorithm 2). The algorithm described in Algorithm 1 is then run, updating beta in parallel
for each set of non overlapping columns.


0 0 1 0
0 1 0 0
0 0 1 1
1 0 0 0


β1 β2 β3 β4

r1

r2

r3

r4


3.45
1.23
−2.1
−10


(a)


0 0 1 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
1 0 0 0 0 0



C
an

m
er
ge

C
an

m
er
ge

C
an
no
t
m
er
ge

(b)

Figure 15. (a) Completely non-overlapping updates affect different residual
values and can be done safely in parallel. (b) Attempting to merge neighbouring
columns.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

26 APPENDIX

Input: X ∈ {0, 1}n×p
Result: Sets of non-overlapping columns
Initialise all columns as one element sets
Merge neighbouring sets where no overlap exists
Place sets in appropriate bin (bin 1: sets of size 1, bin 2: sets of size 2, . . .)
for small bin in bins do

for large bin in bins s.t. large bin > small bin do
n ← min(sizeof(small bin), sizeof(large bin));

for offset in 0, . . . , 50 do
Attempt to merge the first n elements of small bin with the first n elements of

large bin, starting at offset.
end

end
Attempt to merge the first half of small bin with the second half.

end
Algorithm 2: Mergesets Algorithm

D.4.7. Performance of Overlap Method. We compare run time on one and four cores, using
simulated sets of 1000 siRNAs and 100 genes (i.e. pairwise interactions on a 1000×100 matrix)
in Fig. 16. Once sets of non-overlapping columns have been found, updating non-overlapping
sets in parallel improves run time compared to the single-threaded version (Fig. 16b).

4

5

6

7

8

M
ea

n
Se

t S
ize

(a)

1 Core 4 Cores

10

20

30

40

50

60

70

80

Ti
m

e
ta

ke
n

(m
s)

(b)

1 Core 64 Cores
20

40

60

80

100

120

140

160

Ti
m

e
ta

ke
n

(m
s)

(c)

Figure 16. (a) Mean non-overlapping set sizes. (b) Run time after finding
mergesets on four vs one core. (c) Run time after finding mergesets on 64 vs one
core. Note that the 64 core system has considerably slower memory than the
four core system.

As the size of input data increases, however, finding sets with absolutely no overlap becomes
more difficult. Since, as explained in Appendix D.4.1, efficiently using more threads requires
larger set sizes than those in Fig. 16a, we aim to improve on these. Running more compar-
isons with our current implementation is not feasible, finding sets already takes as long as the
regression step. Instead, we relax the criteria from no overlap to very little overlap.

D.4.8. Partial Overlap. We can find much larger sets of simultaneously updateable columns if
we allow a small amount of overlap between these columns. While this does allow some error
to be introduced in the calculation of beta updates, we expect that by limiting the overlap this
error will remain small, and not result in the drastic overcorrection seen in Fig. 11.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 27

0 50 100
% overlap allowed

101

102

103
M

ea
n

se
t s

ize

(a)

0 50 100
% overlap allowed

4

5

6

Ti
m

e
ta

ke
n

(b)

25 50 75 100
% overlap allowed

1.60

1.62

1.64

1.66

Fi
na

l E
rro

r

(c)

Figure 17. (a) Mean set size, (b) run time, and (c) final mean squared error
on 64 cores as allowed overlap increases from 1% to 100%.

In small test sets (n = 1000, p = 100), increasing the available overlap significantly increases
the found set size (Fig. 17a), also improving the run time. Interestingly, increasing the allowed
overlap to 100% does not harm the run time (Fig. 17b) or the mean squared error of the final fit
(Fig. 17c). We would expect both of these to suffer when the columns significantly overlap, as
either further iterations are required to correct for the introduced error, or overcorrection error
is allowed to remain. It appears that even allowing 100% overlap, there is a negligible amount
of overcorrection occurring.

D.5. Random Overlap. Despite the possibility of over-correction, simply updating columns
in parallel often works in practice. In fact, as long as we do not update the same columns at the
same time every iteration, over-correction does not occur. To avoid this we shuffle the columns
every iteration (see Appendix D.4 for a discussion of alternative methods). This was shown to
work by Bradley et al. [6] for their lasso implementation, with up to p

ρ + 1 parallel updates,

where ρ is the spectral radius of XTX, so long as the columns being updated simultaneously were

chosen at random. In our case, using the matrix of pairwise interactions, this allows p(p+1)
ρ + 1

parallel updates, where ρ is the magnitude of the largest eigenvalue of XT
2 X2. In our smallest

test case (n = 1, 000, p = 100), this would allow 222 simultaneous updates. This number
increases with larger input data. Combining this with the lambda sequence from Section 2.2,
we have our final lasso algorithm, Algorithm 3 (see Appendix A for the full details of the non-
parallel algorithm). In this example we have two threads, each working on three columns. Both
threads shuffle their columns, then iteratively calculate changes and update each columns β
value. Note that this calculation requires reading all β values, including those being updated
by the other thread.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

28 APPENDIX

Input: X ∈ {0, 1}n×p, Y ∈ Rn, error cutoff
Result: beta values
for lambda in lambda sequence do

while old error
new error > error cutoff do

shuffle columns
for column in columns do

βcolumn ← βcolumn + ∆βk
end

error ←
∑n

i=1 yi −
∑p′

j=1 xijβj
end
if adaptive calibration conditions met
OR maximum non-zero betas found then

Stop after current lambda
end

else
λ← λ× 0.9

end

end

(a)

Thread 1 Thread 2

shuffle shuffle

shared

(b)

Algorithm 3. Shuffled Lasso Algorithm (a). Parallel implementation (b).

D.5.1. Shuffling Method. For lasso regression on k cores, our aim in shuffling the columns is
to ensure that columns are not updated at the same time in many iterations. To improve
performance when p is extremely large, we shuffle the columns in several simultaneous batches,
one for each thread.

We therefore implemented a parallel variation of the Fisher and Yates [13] algorithm, as
described in [11]. We begin by dividing the n columns into n

k chunks, where k is the number
of available threads. When iterating through columns in Algorithm 3, these are exactly the
chunks that each thread will process. Moving a column from one chunk into another effectively
moves it from one thread’s workload into another’s. This is unnecessary and potentially harms
cache performance, so we only shuffle within a chunk. As long as the total number of columns
is significantly larger than the number of available threads,7 which column in a chunk a thread
is working on is a random sample from a large list, and the combinations are unlikely to often
repeat themselves. This is sufficiently random to avoid the overcorrection effect observed in
Fig. 11.

D.5.2. Final parallel vs sequential performance. Running this shuffled version (Algorithm 3) on
a 16-core NUMA system (two 8-core CPUs with 2-way SMT), we see a reasonable speedup
using up to eight cores, with continuing improvements up to 15 threads on the same cores
(Fig. 19). Surprisingly, we see a slight drop in performance adding the 16th thread, which is
the final available thread on the first NUMA node. This could be because the columns don’t
divide as evenly among 16 threads as they do among 15, or simply that there is some noise in
the time taken on a busy system. Above 16 threads we don’t see any further improvement, the
performance actually worsens. Given that this is the first core of the second CPU, this appears
to be the result of slower memory access on the second node, and the overhead of synchronising
beta updates across nodes.8

7And we can assume this true in genome-scale data, with anywhere from thousands to billions of columns
8Note that steps have been taken to avoid sharing cache lines between CPUs, and each component of the

compressed matrix is only accessed by the thread that allocated it.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDIX 29

1 8 16 32
Cores/Threads

1

2

3

4

5

6

7

8

Re
la

tiv
e

Sp
ee

du
p

Cores

Figure 19. Relative speedup as the number of cores used increases, running on
a dual 8 core/16 thread NUMA system. Cores 1-8 are separate cores on node 1,
8-16 are SMT threads on the same cores. Cores 17-24 are separate cores on the
second NUMA node, and 15-32 are SMT threads on those cores.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428698doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428698
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	2. Methods
	2.1. Cyclic Linear Regression
	2.2. Choosing Lambda
	2.3. Compression
	2.4. Parallelisation
	2.5. Limited Interaction Neighbourhoods
	2.6. Data

	3. Results
	3.1. Simulation Performance
	3.2. InfectX siRNA Data
	3.3. Antibacterial Resistance

	4. Discussion
	References
	Appendix A. Cyclic Linear Regression
	Appendix B. Compression
	B.1. Simple-8b
	B.2. Comparing Methods

	Appendix C. Choosing Lambda
	Appendix D. Parallelisation Details
	D.1. Beta updates
	D.2. Overlap Error
	D.3. Deriving Overcorrection Error
	D.4. Alternative Parallelisation Methods
	D.5. Random Overlap

