Subject Section

Expected 10-anonymity of HyperLogLog sketches for federated queries of clinical data repositories

Ziye Tao¹, Griffin M. Weber² and Yun William Yu¹, 3, ∗

¹Department of Mathematics, University of Toronto, Toronto, MSS 1A1, Canada,
²Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, USA, and
³Computer and Mathematical Sciences, University of Toronto at Scarborough, Scarborough, M1C 1A4, Canada

To whom correspondence should be addressed.
Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The rapid growth in of electronic medical records provide immense potential to researchers, but are often silo-ed at separate hospitals. As a result, federated networks have arisen, which allow simultaneously querying medical databases at a group of connected institutions. The most basic such query is the aggregate count—e.g. How many patients have diabetes? However, depending on the protocol used to estimate that total, there is always a trade-off in the accuracy of the estimate against the risk of leaking confidential data. Prior work has shown that it is possible to empirically control that trade-off by using the HyperLogLog (HLL) probabilistic sketch.

Results: In this article, we prove complementary theoretical bounds on the k-anonymity privacy risk of using HLL sketches, as well as exhibit code to efficiently compute those bounds.

Availability: https://github.com/tzyRachel/K-anonymity-Expectation

Contact: ywyu@math.toronto.edu

Supplementary information: N/A

1 Introduction

Clinical data containing patients’ personal medical records are important resources for biomedical research. Fully centralizing that data may permit the widest array of potential analyses, this is often not feasible due to privacy and confidentiality requirements (Heatherly et al. [2013] Benitez and Malin [2019] dismiss [2009]). During times of pressing need, such as during a global pandemic, these privacy requirements may be justifiably relaxed (Haanen et al. [2020]—such as using trusted 3rd party vendors such as Datavant [Kato and Geer, 2019])—but even then, it is important to keep in mind the various privacy-utility trade-offs (Benitez et al. [2021] [2020]).

A more privacy friendly alternative is to use a federated network instead, which gives hospitals control over their local databases; then, a distributed query tool enables researchers to send queries to the network, such as “how many patients across the network have diabetes” (Weber, 2015). Ibarra et al. [2020]. A number of these hospital networks have emerged, including the Shared Health Research Information Network (SHRINE) for Harvard affiliated hospitals (Weber et al. [2009]; the Federated Aggregate Cohort Estimator (FACE) developed through a collaboration of five universities and institutions (Wyatt et al. [2018]), the open-source PopMedNet (Xuereb et al. [2016]), and the Patient Centered Outcomes Research Institute (PCORI) launched PCORnet as a network of networks (Fleurence et al. [2011]).

However, patients often receive medical care from multiple hospitals, so medical records at different hospitals may be duplicated or incomplete. Depending on the aggregation method used to combine results from the network, this can produce errors. For example, consider using a simple summation of aggregate counts: if a patient with hypertension receives medical care from both Hospital A and Hospital B, then it is possible that the sum will double count that patient, which results in the overestimation of the number of patients with hypertension (Weber, 2013).

Of course, this problem can be mostly alleviated by sending a hashed identifier of patients matching each hospital’s queries to a trusted third party, but that again raises privacy concerns (Declinist [2009]). There is some natural trade-off between the privacy guaranteed to individual patients and the accuracy of the aggregate query, and hashed identifiers and simple summation fall at opposite ends of the spectrum. Several of the authors of this paper recently proposed using the HyperLogLog (HLL) probabilistic sketch (Durand and Flajolet 2003; Flajolet and Martin 2007; Flajolet and Martin 1985; Flajolet and Martin 2008) to access intermediate trade-offs of privacy vs. accuracy (Yu and Weber, 2020). Probabilistic counting was introduced to the computer literature decades ago, and has found use in analyzing large streaming data in a variety of settings, ranging from internet routers (Cain et al. [1996]) to text corpora comparisons (Broido [1997]) to genomic sequences (Ondov et al. [2016] Baker and Langmead [2019]; Solomon and Kingsford [2018]. Instead of sharing a single aggregate count, or sharing the full list of matching patient IDs (Weber, 2013), each hospital instead shares a smaller ‘summary sketch’ built from taking the logarithm
of a coordinated random sample of m matching patient hashed IDs [Yu and Weber (2020)]. Because only m patient IDs are used, and those are obfuscated through taking a logarithm, these HyperLogLog sketches are significantly more private than sending a full list of matching IDs. Due to the way the estimators work, HyperLogLog sketches have an error of about $1.04/\sqrt{m}$, which can be much less than expected from simple summation.

But when any data is shared by a hospital to a 3rd party, no matter the method, there is risk of accidental leakage. For example, consider the case where a hospital finds that there is only one patient satisfying the criterion for a query. If this hospital returns the aggregate count as one, then this unique patient’s personal information is linked and can potentially be re-identified through a linkage attack [Yu and Weber (2020)]. To properly compare the privacy of various methods of data aggregation, we turn to the concept of k-anonymity. The basic idea behind k-anonymity is that if a method or dataset is k-anonymous, then each patient is similar to at least $k-1$ other patients with respect to potentially identifying variables, so that it is hard to determine the identity of a single patient in the data set [Elmagarmid and Srikant (2003); Pressey (2001)]. Although other mathematical formalisms like differential privacy [Dwork (2008)] are much stronger, they are harder to work with, as they require injecting deliberate noise, and are not currently widely in use by clinical databases.

In this paper, we will assume that hospitals in a federated network implement the HyperLogLog (HLL) algorithm for queries. We will then prove bounds on the expected k-anonymity of the shared sketches, as well as provide fast algorithms for computing that expected k-anonymity. This study is an extension of previous work [Yu and Weber (2020)], which operated under the same settings and assumptions, but only provided empirical results and no proofs on the levels of privacy achieved. Here, we provide rigorous theoretical justification for those empirical claims.

2 Methods

2.1 Setting and summary

In this paper, we adopt the HyperLogLog (HLL) sketch federated clinical network setting given in prior work [Yu and Weber (2020)]. For completeness, we duplicate the salient points below. Assume that every patient has a single invariant ID that is used across hospitals. Prototypically, one might consider using social security numbers in the USA for that purpose. Even without a single unique identifier, it is possible to generate an ID based off a combination of other possibly non-unique IDs, such as first and last name, zip code, address, birthdate, etc. Unfortunately, there may be errors in these records due to character recognition errors (e.g., S and ς), phonetic errors (e.g. ph and f), and typographic errors including insertion, transposition and substitutions. Luckily, there is a lot of existing literature on this problem, and methods such as BIN-DET and BIN-PROB [Karthik et al. (2010)] have been proposed to deal with the issue. Thus, in this paper, we will treat this problem as out-of-scope and assume for simplicity that every patient has a unique stable ID known to all institutions.

Further assume that there is a federated network of hospitals (or other institutions) responding to clinical queries, along with a central party that manages and relays messages. When hospitals receive a query, they generate a list of the IDs of patients who match the query. Each hospital will use a publicly known hash function to first pseudorandomly partition the patients into m buckets and then assign a uniform pseudorandom number between 0 and 1 to each patient. The hospital then stores the order of magnitude of the smallest number within each bucket, and sends these m smallest bucket values to the central party. By applying the HLL estimator, the central party is then able to compute the aggregate count for the query with a relative error of around $1.04/\sqrt{m}$ [Flajolet et al. (2007)].

Here, we focus on an information-theoretic approach to determine the expected exposure to accidentally disclosing private information if the central party is compromised. As the HLL sketch aggregates information within each of the m buckets, our goal is to compute the expected number of buckets which are not k-anonymized. In line with common practice, we set $k = 10$ for most of our results, though the algorithms and proofs hold for other k. Below, we provide two approximation formulas for the expected value and in the Results section construct a table for the user to determine which approximation should be chosen based on the number of distinct patients and other relevant parameters.

2.2 k-anonymity and HyperLogLog

2.2.1 High-level overview

The HyperLogLog (HLL) [Flajolet et al. (2007)] probabilistic sketching algorithm is widely used to estimate the cardinality (number of different elements) of a set. Assume we have a database of electronic medical records; we can estimate the number of distinct patients by applying the HLL algorithm. The basic idea behind HLL is that the minimum value of a collection of random numbers between 0 and 1 is inversely proportional to the size of the collection. Therefore, we can estimate the cardinality of a set by first applying a hash function which maps all the elements uniformly onto $[0,1]$ and considering the minimum value. For the purposes of this paper, we will operate in the random oracle model, where we assume that the hash function actually maps to a random number, in practice, a standard hash function like SHA-256 would probably be employed. In order to increase the accuracy of estimation, we randomly divide the set into m partitions and then estimate the cardinality of the original set by combining a harmonic mean of m partitions. Furthermore, the HLL algorithm only needs to store the position of the first 1 bit in the 64-bit hash value, rather than the full patient ID hash, providing partial privacy protection. As the expected error in the final estimate is around $1.04/\sqrt{m}$, increasing m can reduce the error of HLL query but increases the risk of privacy leaks.

In our setting, when a hospital is sent a query, there are two relevant sets to consider: (1) the background population (often, the set of all patients at the hospital), and (2) the set of patients matching the query. The reason for considering the background population is that they can 'hide' patients who match the query by providing plausible deniability. The hospital will return a HLL sketch, which contains m values—the maximum position of the first 1 bit within each bucket. We define a HLL bucket with value z to be k'-anonymous if at least $k-1$ patients in the background population have hash value z; we will call these corresponding hash values in the background population hash collisions [Yu and Weber (2020)]. This means that if an attacker gets access to the sketch and can narrow down the set of potential patients to the background population, they cannot determine with certainty which of the k patients with that hash value was in the set of patients matching the query. Our goal is to determine the expected number of buckets that are not at least 10-anonymous (Figure 1).

2.2.2 Formal description

Let’s recast the textual description above a bit more rigorously as the following mathematical problem:

Let A be a set and $B \subseteq A$ is a non-empty subset of A. A represents the background population and B represents patients satisfying the query. We define $r = \frac{|m|}{|A|}$ as the ratio of number of patients satisfying the query to background population (also sometimes known as concept prevalence). Let $\sigma : A \to \{0, 1\}$ be a one-way hash function. In theory, we assume that we have a shared oracle available to both parties. In practice, a cryptographic hash function such as SHA-1, SHA-224, or SHA-256...
Fig 1: Illustration of HyperLogLog k-anonymity. A hospital has an identified set \(B \) contained within the background population \(A \). Binary hashes are taken of all patient identifiers. Those hashes are then used to partition the patients into buckets. Within each bucket of \(B \), the smallest value is chosen as the representative. Then the k-anonymity of that bucket is the number of patients in the corresponding bucket of the background population that share the same position of the leading 1 bit.

\(\text{HyperLogLog k-anonymity} \)

Johnson, 2020 is generally used. \(\sigma \) uniformly maps each element in \(A \) to a random real number in the interval \([0,1]\).

Let \(\sigma : A \rightarrow \mathbb{Z}_{2^m} \) be defined by \(\sigma(x) = \lceil \log_2 \sigma(x) \rceil \). This function returns the number of bits before the first 1 bit in \(x \in [0,1] \) under a base-2 expansion.

Let \(p : A \rightarrow \{1, \ldots, m\} \) be a map that randomly partitions patients into buckets. In practice, this map can also be derived from a cryptographic hash function. From the partition function \(p \), we define \(A_i = \{ x \in A \mid p(x) = i \} \) and \(B_i = B \cap A_i \), which respectively represent the ith bucket in whole database and sample.

Let \(h_i(B) = \max \{\sigma(x) \mid x \in B_i\} \) be the maximum number of zeros before the first one among all hash values represented in base-2 in the ith bucket of \(B \) which \(B_i \).

We want to compute the \(E[|e_1| = 1, \ldots, m \text{ and } 0 < |e_i| \leq k-1]) \), the expected number of non-k-anonymous buckets.

2.3 Probability of -k-anonymity without partition function

As described above, we need to consider the collisions against all \(m \) buckets. Here, however, we first show a simple analysis with no partition function (i.e. the case where \(m = 1 \)) and compute the probability of each possible result of collisions so that in the latter cases we can use this result to compute the expected value of ‘non-k-anonymous’ buckets.

Since there is only one bucket, there are only two sets A and B which represent the set of all patients and the set of patients matching the query respectively.

We denote \(h(B) = \max \{\sigma(x) \mid x \in B\} \), the maximum number of zeros before the first one among all hash values represented in base-2 in \(B \), and \(e = \{ x \in A \mid h(x) = h(B) \} \), the set of collisions. We want to compute the probability that the number of collisions is less or equal to \(k \), which is \(P(|e| \leq k \mid A, B) \).

Each element in \(\sigma(A) \) can be thought of as an i.i.d. random variable with distribution \(U(0,1) \). Therefore, \(\sigma(x) = n \) if and only if \(\frac{1}{2^n} \leq \sigma(x) \leq \frac{1}{2^{n-1}} \). Then we get \(P(\sigma(x) = n) = \frac{1}{2^{n-1}} \). Thus, \(P(h(B) = n) = (1 - \frac{1}{2^m}) \cdot \frac{1}{2^n} (1 - \frac{1}{2^m}) \).

Lemma 2.1. Given sets \(B \subset A \), the probability of exactly \(n \in \mathbb{Z}_+ \) collisions is:

\[
P(|e| = n \mid A, B) = \sum_{i=1}^{\infty} \min\{\binom{|B|}{n}, i\} \cdot f(i, k, |A_i|, |B_i|)g(i, n-k, |A_i|, |B_i|)
\]

where \(f(i, k, |A_i|, |B_i|) = \left(\binom{i}{k} \right) \left(\frac{1}{2^m} \right)^k \left(1 - \frac{1}{2^m} \right)^{|B_i|-k} \) and \(g(i, n-k, |A_i|, |B_i|) = \binom{|A_i|}{n-k} \left(\frac{1}{2^m} \right)^{n-k} \left(1 - \frac{1}{2^m} \right)^{|B_i|-k} \).

Proof. Since the sets A and B are fixed, we use \(P(|e| = n) \) to represent \(P(|e| = n \mid A, B) \) for notational simplicity here.

By the law of total probability, we know that \(P(|e| = n) = \sum_{i=1}^{\infty} \min\{\binom{|B|}{n}, i\} \cdot P(e \cap B = k \text{ and } h(B) = i) \) \(P(e \cap (A - B) = n - k \text{ and } h(B) = i) \).

First we consider the case where we have \(k \) collisions in \(e \cap B \):

\[
f(i, k, |A_i|, |B_i|) = P(e \cap B = k \text{ and } h(B) = i)
\]

\[
= \left(\frac{|B_i|}{i} \right) P(\sigma(x_1) = \cdots = \sigma(x_i) = i > \sigma(x_{i+1}), \cdots, \sigma(x_{|B_i|}))
\]

Next we consider the case where we have \(k \) collisions in \(e \cap (A - B) \):

\[
g(i, k, |A_i|, |B_i|) = P(e \cap (A - B) = k \text{ and } h(B) = i)
\]

Thus, \(P(|e| = n \mid A, B) = \sum_{i=1}^{\infty} \min\{\binom{|B|}{n}, i\} \cdot f(i, k, |A_i|, |B_i|)g(i, n-k, |A_i|, |B_i|) \) and \(P(0 < |e| \leq n) = \sum_{m=1}^{n} P(|e| = m) \).

2.4 Expected number of buckets with less than \(k \) collisions

Recall that \(A \) is the background population and \(B \) is the set of patients satisfying the query criteria. We denote the buckets of \(A \) and \(B \) under our partition function by \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_m \), where \(B_i = B \cap A_i \) for \(i = 1, \ldots, m \) and \(e_i \) is the set of collisions in the ith bucket. Thus, the expected value of the number of buckets with no more than \(k \) collisions is

\[E[|e_i| \mid |e_i| \leq k, i = 1, \ldots, m] \].

Note that \(\{A_1, \ldots, A_m\} \sim \text{Multinomial}(\{A_1, \ldots, A_m\}) \) with \(p_1 = \cdots = p_m = \frac{1}{m} \). Therefore, we know for a single bucket, say \(A_i \), its cardinality follows a binomial distribution that is

\[|A_i| \sim \text{Binomial}(|\frac{1}{m}|) \]

With a given \(A_i, |B_i| \sim \text{Hypergeometric}(|\frac{1}{m}|, |A_i|, |B_i|) \). Thus,

\[
P(|B_i| = b_i \mid |A_i| = a_i) = \frac{\binom{a_i}{b_i} \binom{|A_i| - a_i}{|B_i| - b_i}}{\binom{|A_i|}{|B_i|}}
\]

where \(b_i \in \{0, 1, \ldots, \min(a_i, |B_i|)\} \) and \(E(|B_i| \mid |A_i|) = \frac{|B_i| |A_i|}{|A_i|} = r |A_i| = \mu_0 \text{ and } \text{Var}(|B_i| \mid |A_i|) = r |A_i| (1 - r) |A_i| = \sigma^2_0 \).

Theorem 2.2. The expected number of buckets which have at least 1 collision but no more than \(k \) collisions is:

output — 2023/1/30 — 7:37 — page 3 — #3
3 Algorithms

3.1 Time Complexity of evaluating expectation

Again, recall that A is the background population, B is the set of patients satisfying the query criteria, and e is the set of collisions. In section 2.3, we gave an explicit formula for computing $P(e)\leq k \mid |A|,|B|)$. However, the time complexity of carrying out that computation is troublesome.

\[
P(0 < |e| \leq k \mid |A|,|B|) = \sum_{k=1}^{n} P(|e| = n \mid |A|,|B|)
\]

Proof.

\[
\mathbb{E}(k) = \sum_{e=0}^{k} p_n \sum_{A=1}^{\min(n,|B|)} P_{n,a,b} P_{a,b,k}
\]

where $P_{n} = P(|A| = a)$, $P_{n,b} = P(|B| = b \mid |A| = a)$ and $P_{a,b,k} = P(0 < |e| \leq k \mid |A| = a, |B| = b) = 0$.

In contrast to the simple case in section 2.3, here B_1 is not necessarily a proper subset of A because A_1 can be the empty set and thus B_1 is also an empty set in this case. The collision number is zero if and only if A_1 is an empty set. Therefore, we will expand the formula in lemma 2.

In the range of $|A_1| \mid |B_1|$ which is $(0.1, \ldots, \min(|B_1|,|A_1|))$,

\[
P(0 < |e| \leq k \mid |A_1|) = \sum_{|A_1|} P(0 < |e| \leq k \mid |A_1|,|B_1|) P(|B_1| \mid |A_1|)
\]

In the contrast example case in section 2.3 here B_1 is necessarily a proper subset of A_1 because A_1 cannot be the empty set and thus B_1 is also an empty set in this case. The collision number is zero if and only if A_1 is an empty set.

Consider the case of zero collisions—because when the bucket is empty, there is not a patient ID for which we need to guarantee k-anonymity—we should set the range of $|A_1| \mid |B_1|$ as $\{1, 2, \ldots, \min(|B_1|,|A_1|)\}$ respectively.

\[
P(|x| = k \mid |A_1|,|B_1|) = \begin{cases} \frac{1}{|B_1|^k} & \text{if } k = 0 \\ 0 & \text{otherwise} \end{cases}
\]

Therefore, we will get:

\[
\mathbb{E}(k) = \sum_{e=0}^{k} p_n \sum_{A=1}^{\min(n,|B|)} P_{n,a,b} P_{a,b,k}
\]

where $P_{n} = P(|A| = a)$, $P_{a,b,k} = P(0 < |e| \leq k \mid |A| = a, |B| = b)$.

3.2 Approximation A1: Concentration inequalities

When $|A|$ is large, it is impossible to sum over whole range of $|A_1|$. Therefore, we will use concentration inequalities to restrict $|A_1|$ and $|B_1|$ to a smaller range. Because there is only an exponentially small probability that A_1 and B_1 will fall outside these restricted windows, this will have minimal effect on the final answer while reducing the computation time from quadratic to linear in the size of A.

Recall that $|A_1| \sim \text{Binomial}(|A|, \frac{1}{|B|})$ and $E(|A_1|) = \frac{|A|}{|B|} = \mu_1$, $\text{Var}(|A_1|) = \frac{|A|^2}{|B|^2}$ which is greater than μ_2 and restrict $|B_1|$ in the interval $(\mu_1 - \sqrt{\mu_2}, \mu_1 + \sqrt{\mu_2})$ in order to compute the error bound more easily below in Section 3.2.2. After concentration, we can make sure that $P(|A_1| = \mu_1) \geq 9.6 \times 10^{-4}$ and $P(|B_1| = \mu_2) \geq 5 \times 10^{-4}$ which is shown below in detail in Section 3.2.2. As an aside, while these two intervals of $|A_1|$ and $|B_1|$ have been chosen for the error bound and time complexity analytically, in the
computing code we can directly use built-in functions to compute the relevant expectation values for |A1| and |B1|.

By the concentration inequalities on |A1| and |B1|, the desired expectation will be approximated by:

$$E_k(k) = m \sum_{|A_1| \leq L_0} P_{|A_1|} \sum_{|B_1| \leq L_0} P_{|B_1|} |P_{A_1}|$$

where $P_{|A_1|}$ and $P_{|B_1|}$ denote the probability of drawing $|A_1|$ and $|B_1|$ elements from the random set of size L_0. The computation time after concentration is:

$$\sum_{|A_1| \leq L_0} (E_k - L_0) = \sum_{|A_1| \leq L_0} 10r_a^2$$

which is linear in $\frac{L_0}{m}$. After concentration, the expected value $E_k(k)$ is smaller than the actual $E_k(k)$, but we can bound the error.

3.2.1 Error bounds

Recall that $|A_1| \sim \text{Binomial}(|A|, \frac{1}{2})$ and $\mu_2 := E(|A_1|) = \frac{|A|}{2}(1 - \frac{1}{2})$. We concentrate $|A_1|$ in the interval (L_0, U_0) and (L_0, U_0) such that $P(L_0 \leq |A_1| \leq U_0) \geq 1 - \alpha$ and $P(L_0 \leq |A_1| \leq U_0) \geq 1 - \alpha$. This will not affect the time complexity and can ensure that the absolute error between the estimated expected value and the actual expected value is less than 1% by choosing a proper α.

It is obvious that the smaller α is, the smaller the error will be, but the intervals (L_0, U_0) and (L_0, U_0) will be bigger which means a longer computing time. Therefore, there is a trade-off between accuracy and speed (see Figure 4 for real computing time). Fortunately, in all cases we explore, the L_0 and U_0 given above can ensure that $\alpha < 5 \times 10^{-5}$.

Note that for $X \sim \text{Binomial}(|A_1|, r)$, we can get $E(r) = r|A_1|$ and $\text{Var}(X) = r(1 - r)|A_1|$. The expected value is equal to $E(|B_1|) = |A_1|$ and the variance is equal to σ^2 which is bigger than the variance of $|B_1|$ for this given $|A_1|$. This explains that the hypergeometric distribution is more concentrated about the mean than the binomial distribution.

Therefore, we will use this binomial distribution to bound the tail of our hypergeometric distribution:

$$P(L_0 \geq |B_1|) = \frac{|B_1|}{L_0} \leq U_0 \leq P(L_0 \geq X \text{or } X \leq U_0) = P \left(|X - E(X)| \geq 5\sqrt{\text{Var}(X)} \right) \leq 9.6 \times 10^{-4}$$

$$E(k) - E_1(k) = m \sum_{|A_1| \leq L_0} P_{|A_1|} \sum_{|B_1|} P_{|B_1|} P_{|A_1|}$$

$$\leq m \sum_{|A_1| \leq L_0} P_{|A_1|} \sum_{|B_1| \leq L_0} P_{|B_1|} P_{|A_1|}$$

$$\leq m \sum_{|A_1| \leq L_0} P_{|A_1|} + \sum_{|A_1| \leq L_0} P_{|A_1|} \sum_{|B_1| \leq L_0} P_{|B_1|} P_{|A_1|}$$

$$\leq m + \alpha m \times 10^{-3}$$

where $P_{|A_1|} = P(|B_1|) = P(|A_1|, |A_1| = P(|A_1|)$ and $P_{|A_1|} = P(|A_1|, |A_1| = P(|A_1|)$.

But in the computing code, we can use the built-in function to find the interval (L_0, U_0) and (L_0, U_0) such that $P(L_0 \leq |A_1| \leq U_0) \geq 1 - \alpha$ and $P(L_0 \leq |B_1| \leq U_0) \geq 1 - \alpha$. This will not affect the time complexity and can ensure that the absolute error between the estimated expected value and the actual expected value is less than $\frac{1}{m}$ by choosing a proper α.

If we choose $r = 6$ then, we get:

$$P(|A_1| - \mu_a \geq \frac{\overline{E}(|A_1|) - \mu_a}{\overline{\sigma}})$$

for any positive even integer r.

Then we consider the |B1| for a given |A1|. For a given |A1|, we know $|B1| \sim \text{Hypergeometric}(|A1|, |A1|, |B1|)$ and $\mu_2 := E(|B1|) = |A1| - \frac{1}{2}(|A1| - |A1|)^2$. We concentrate $|B1|$ in the interval (L_0, U_0) such that $P(L_0 \leq |B_1| \leq U_0) \geq 1 - \alpha$ and $P(L_0 \leq |B1| \leq U_0) \geq 1 - \alpha$. This will not affect the time complexity and can ensure that the absolute error between the estimated expected value and the actual expected value is less than 1% by choosing a proper α. It is obvious that the smaller α is, the smaller the error will be, but the intervals (L_0, U_0) and (L_0, U_0) will be bigger which means a longer computing time. Therefore, there is a trade-off between accuracy and speed (see Figure 4 for real computing time). Fortunately, in all cases we explore, the L_0 and U_0 given above can ensure that $\alpha < 5 \times 10^{-5}$.

$$E(k) - E_1(k) = m \sum_{|A_1| \leq L_0} P_{|A_1|} \sum_{|B_1|} P_{|B_1|} P_{|A_1|}$$

$$\leq m \sum_{|A1| \leq L_0} P_{|A1|} + \sum_{|A1| \leq L_0} P_{|A1|} \sum_{|B1| \leq L0} P_{|B1|} P_{|A1|}$$

$$\leq 2\alpha m \times 10^{-3}$$

3.2.2 Approximation A2: mean-field approximation

Although the time complexity after concentration is linear in \(\frac{|A|}{m}\), for large \(|A|\) and \(m\) small, this speedup is often not enough. We can further approximate \(P(|x| \leq k | |A_1|, |B_1|)\) by \(P(|x| \leq k | |A_1|, r|A_1|)\) and get the following approximation of the expectation:

\[
E_2(k) = m \sum_{|A_1| \in E_m} \sum_{|B_1| \in E_m} P(|A_1| | |B_1| \leq k) \times P(|x| \leq k | |A_1|, r|A_1|)
\]

This is a 'mean-field' approximation based on Approximation A1. The basic idea behind this approximation is to use the probability at the mean value which is \(P(0 < |x| < k | |A_1|, r|A_1|)\) to represent all the probabilities \(P(0 < |x| < k | |A_1|, |B_1|)\) when \(|B_1| \in (L_B, U_B)|\). The range of \(|A_1|\) is small enough compared with the theoretical range \((0, \min(|A_1|, |B_1|))\).

The range of \(|A_1|\) is still \((L_B, U_B) = (\mu_A - 5\sigma_A, \mu_A + 5\sigma_A)\). Therefore, the computation time of \(E_2\) is:

\[
(U_A - L_A) = 10\sigma_A = 10 \sqrt{\frac{|A|}{m}} \left(1 - \frac{1}{m}\right)
\]

and the time complexity is \(\mathcal{O}\left(k^2 \sqrt{\frac{|A|}{m}}\right)\). The real computing time will be discussed in the Results section. Unfortunately, we do not have a strong provable guarantee with this approximation, but it seems empirically to work well in practice.

4 Results

In order to assess the accuracy-speed trade-offs of our two approximations, we ran simulations measuring the empirical k-anonymity of patients in several different regimes using HyperLogLog sketches. Then, we compared those empirical values against the approximations described in this paper. In the large cardinality regimes, it is computationally infeasible to run full simulations, so we only compare the run-times of the two approximation methods. In Figure 2 we provide full tables of these results. In Table 2 we provide a high-level summary giving a practitioner guidance on which method is appropriate under those particular parameter choices. All computations were run in single-thread mode on an AMD Ryzen Threadripper 3970X 32-core CPU machine running Ubuntu 18.04.5 LTS (bionic) with 256 GiB of RAM. Code is available on Github: https://github.com/erelk/K-anonymity-Expectation

Recall that \(A\) represents the number of all patients, \(B\) represents the number of patients who meet some query criteria, and \(m\) is the number of buckets in the HLL process. We introduce \(r = \frac{|A|}{|B|}\) to represent the ratio of \(|A|\) and \(|B|\), because as we will see, this ratio controls to a large extent the number of collisions. Intuitively, \(r\) represents the number of background population persons who could be used to provide plausible deniability to each patient in the query set.

Our simulations sweep over the different combinations of the parameters \(A, r\) and \(m\) to construct a table to fit Approximations A1 and A2. In all simulations, we restrict \(|A|\) in the interval \([10^4, 10^7]\) and \(m\) in the interval \([100, 50000]\). Since the simulations are run under the condition of ‘10-anonymity’, we make sure that \(|A| > 20\) which is the mean value of the single bucket size. Also, \(r\) is restricted in the interval \([0.001, 0.1]\) and we choose 6 different values of \(r\) which are:

0.1, 0.08, 0.05, 0.01, 0.005, 0.001 to run the simulations and compare the simulation results with computing results.

As we discussed in the Methods section, we can estimate the desired expected value by both Approximations A1 and A2. The final choice of Approximation A1 or Approximation A2 seems to be dependent primarily on \(\frac{|A|}{m}\). In most cases, when \(\frac{|A|}{m} \geq 1500\), Approximation A2 is good enough and the computing time is no longer than 3 minutes. When \(\frac{|A|}{m} < 1500\), Approximation A2 will be not accurate enough and we have to choose Approximation A1. The computing time of Approximation A1 is proportional to \(\sqrt{|A|}\) which is sometimes a concern. When \(\frac{|A|}{m} \leq 1500\), the computing time is usually no longer than 8 minutes. But there are several special cases, such as when \(r = 0.1\) and \(r = 0.08\), that the computing time at \(A = 10^7\), \(m = 6666\) is approximately 10 minutes which might be acceptable but is really not ideal. Furthermore, in extreme cases, the approximate expected k-anonymity return by Approximations 1 and 2 differ by about 10.

To make things easier for the end-practitioner, we provide a summary ‘choice’ table (Table 3) guiding them on which approximation is suggested, based on different numbers of patients, numbers of buckets and ratios of number of patients matching query to all patients.

Figure 2 show the errors between the approximation results (based on the choice table 3) and simulation results (Figure 2) when number of distinct patients is \(10^7\) and number of buckets are 100 and 1000 respectively. The absolute values of all the errors are no more than 4.

5 Discussion

We first note that all of the approximations we have provided finish on the order of minutes. As they are analytical approximations, there is also no need to run them multiple times. Although we have not shown

<table>
<thead>
<tr>
<th>(r = 1)</th>
<th>(r = 2)</th>
<th>(r = 3)</th>
<th>(r = 4)</th>
<th>(r = 5)</th>
<th>(r = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>30000</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
</tr>
</tbody>
</table>
HyperLogLog k-anonymity

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
</table>

(a) $r = 0.1$
(b) $r = 0.08$
(c) $r = 0.05$
(d) $r = 0.01$
(e) $r = 0.005$
(f) $r = 0.001$

Fig. 2: Simulation result and expected number of non 10-anonymous buckets from Approximations A1 and A2 under different combinations of m (number of buckets) when r (prevalence rate). Subfigures grouped by prevalence rate. The tables show the simulation results and computing results by the two approximations. Yellow means that we compute this case by approximation A1 and green means we compute this case by approximation A2. Full data tables are also available on Github in machine-readable format.

explicit simulation run-times in the tables above, the larger simulations take upwards of hours; furthermore, we did not perform simulations for the largest parameter ranges because we expected those to take significantly longer. Thus, our approximations significantly speed up the process of determining the expected privacy loss from distributing HyperLogLog sketches.

We also are able to form some general conclusions about the expected privacy of HyperLogLog sketches. As mentioned above the prevalence ratio $r = |B| / |A|$, where A and B are respectively the background population and query population can be interpreted as the ratio of patients matching a query (e.g. ‘How many patients have been diagnosed with diabetes?’). Based on HLL, m is the number of buckets and A_i and B_i are the ith bucket in A and B. Figure 4 plots the number of buckets and prevalence rate against the estimated expected number of non ‘k-anonymized’ buckets and the number of buckets versus the percentage of the non ‘k-anonymous’ buckets. The two top plots are simply the number of non k-anonymous buckets against the number of buckets and varying the other parameters, but this turns out not to be the right set of variables to control.

Instead, as evidenced by the lower left plot (Fig 4), a roughly constant fraction of the buckets are not k-anonymized when r is constant. This is unsurprising because as mentioned earlier, r is intuitively the number of background population members that could be used to hide each patient. Of course, random chance also plays a large role. More precisely, this constant is close to $100P(0 < |e| < 10 | |A| m, r |A| m)$ where $P(0 < |e| < 10 | |A| m, r |A| m)$ is the probability of that the number of collisions is greater than 0 and less than 10 when the bucket size is at the mean value.
It is not quite equal for two reasons. The first reason is the obvious one, that we are using the approximations that form the subject of this manuscript. The second reason is that the single bucket size $|A_i|$ follows a Binomial distribution with mean $\frac{|A|}{m}$ and $p = \frac{1}{10}$. When $|A|$ and $\frac{|A|}{m}$ are big enough, we can get $P(0 < |e_1| \leq 10 | |A_1|, |B_1|) \approx P(0 < |e_1| \leq 10 | \frac{|A|}{m}, r{\frac{|A|}{m}})$ by concentrating $|A_1|, |B_1|$ in an interval centered at the means, which is similar to what we did in Approximation A2, but simpler. However, when $\frac{|A|}{m}$ is not that big, for example, $|A| = 100, m = 5$, then $P(0 < |e_1| \leq 10 | \frac{|A|}{m}, r{\frac{|A|}{m}})$ and $P(0 < |e_1| \leq 10 | |A_1|, r|B_1|)$ will differ a lot for different value of $|A_1|$ and $|B_1|$.

Now that it is clear that r is the value of primary importance, we see in the lower right plot of Fig 4 that the bigger the prevalence rate (r) is, the more buckets are non-‘k-anonymized’. This is because that bigger r means more overlap between set A and B and so is each pair of buckets A_i and B_i. Thus, the maximum number of zeros before the first one among all hash values represented in base-2 in B_i is more likely equal to that in A_i. Thus, a hospital IRB or clinical query system seeking to understand the 10-anonymity of a particular query can use a first-order approximation based only on r, without even needing to run our code. Indeed, they need only consult our lower-right plot in Fig 4 and scale to the size of their background population to determine that first-order approximation. This can be done without any code. When a more precise result is needed, however, our two Approximations can provide that answer in only a few minutes. Of course, if even that is insufficient, the practitioner may choose to directly measure the k-anonymity of a particular HLL sketch, this is not in the scope of this paper, but was empirically done in prior work (Yu and Weber, 2020).

6 Conclusion

In this article, we have developed a method to quickly compute the expected number of non-‘k-anonymous’ buckets in the HLL sketch. Because of the number of patients (denoted as $|A|$ in our model) is too big to compute the precise expected value, we introduced two approximations based on concentration inequalities. In general, approximation A1 is suitable for the case when the expected value of single bucket size which is $\frac{|A|}{m}$ is ‘small’, for example, total number of patients($|A|$) is 10^7 and number of buckets (m) is 100 or total number of patients($|A|$) is 10^5 and number of buckets (m) is 10^5. Approximation A2 is suitable for the case when $\frac{|A|}{m}$ is ‘big’, for example, total number of patients($|A|$) is 10^7 and number of buckets (m) is 100 (see choice table in Result section).

By an appropriate choice of approximation method, we can control the computing time to under 300 seconds in almost all the cases. In other words, when an individual hospital is asked a query to return the aggregate counts based on sharing HLL sketches, we can compute the expected number of buckets which match fewer than 10 patients in the background population. If this number is too high, that is a signal to the clinical query system that the particular query is unsafe to release using HLL sketches. It is then up to the clinical query system to decide whether to fall back on another aggregation method, or if they should simply not respond to the query.

Our results further give some guidance into the parameter ranges in which HLL sketches are likely to be safe to release. HLL sketches are especially useful for rare diseases, where the prevalence ratio in the population is low. Note that this is in marked contrast to sending raw
counts, where rare diseases are precisely the least k-anonymous. Thus, HLL sketches fill a complementary role.

Ultimately, our work is primarily useful in contexts where federated clinical query systems are used in biomedical research. The past year has seen increasing amounts of data centralization to combat the Covid-19 pandemic. The cost to privacy has been accepted because of the urgent clear and present need. However, in the future post-pandemic era as the pendulum swings the other direction, privacy may again take center stage. We hope that our work will be useful in analyzing the privacy consequences of distributed query systems and help inform policy-makers and institutional IRBs about the privacy-utility trade-offs at hand.

7 Funding
We acknowledge startup funding from the University of Toronto Department of Computer and Mathematical Sciences for supporting this work.

References

