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Abstract

In life sciences, there are increasing interest in 3D culture models to better reproduce the
3D environment encountered in-vivo. Imaging of such 3D culture models is instrumental
for drug discovery, but face several issues before its use becomes widespread. Extensive
microscopic investigation of these 3D cell models faces the challenge of light penetration
in depth in opaque biological tissues. To overcome this limit, diverse clearing techniques
have emerged over the past decades. However, it is not straightforward to choose the
best clearing protocols, and assess quantitatively their clearing efficiency. Focusing on
spheroids, we propose a combination of fast and cost-effective clearing procedure for
such medium-sized samples. A generic method with local contrast metrics and deep
convolutional neural network-based segmentation of nuclei is proposed to quantify the
efficiency of clearing. We challenged this method by testing the possibility to transfer
segmentation knowledge from a clearing protocol to another. The later results support
the pertinence of training deep learning algorithms on cleared samples to further use the
segmentation pipeline on non-cleared ones. This second step of the protocol gives access
to digital clearing possibilities applicable to live and high-throughput optical imaging.

Introduction 1

Spheroids are three-dimensional (3D), heterogeneous aggregates of proliferating, 2

quiescent and necrotic in vitro cell culture systems [1]. They have gained increasing 3

interest in drug screening because of their ability to closely mimic the main features of 4

physiological cell to cell and cell to matrix contacts as in in vivo human solid 5

tumors [2, 3]. Because of the standardization of their production, spheroids became a 6

model of choice in the context of the 3R (replace, reduce, refine) notably for 7
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high-throughput drug screening [4, 5]. Yet, the experimental readouts are often 8

quantitative, between each size-controlled spheroid, but fail at providing insights in 9

regards with single-cell information within the spheroid itself, due to its lack of 10

amenability for in-depth microscopy. One main challenge is the visualization of 11

spheroids via fluorescence imaging due to the light scattering inducing limited depth 12

penetration in such opaque structure and therefore low data analysis performance at a 13

single-cell level [6, 7]. One solution to enhance visualization of fluorescently-labelled 14

spheroids is to use optical clearing techniques, which improve in-depth imaging and 15

allow high quality image acquisition and high-throughput image analysis. The rough 16

principle of optical clearing is to uniformise the optical index within the 3D structure, 17

so as to minimise diffraction. One of the option is to remove the lipids that contribute 18

to light scattering effects, or, to replace water by a solution closer to the lipid refractive 19

index [8–13]. So far, assessment of the quality of clearing in 3D spheroids has been 20

performed with local quality metrics such as signal to noise ratio (SNR) and contrast to 21

noise ratio (CNR) [14–16]. However, it is not straight-forward to relate local metrics 22

with final quantitative measures of interest. We not only propose to revisit the 23

assessment of clearing quality in such a perspective, but we also provide an assessment 24

based on segmentation metrics. 25

Final quantitative measures for high-throughput image analysis of spheroids mostly 26

rely on whole-spheroid fluorescent measures, size analysis and matrix invasion as an 27

indicator of drug anti metastatic effects [17–22]. These metrics provide useful 28

macroscopic quantitative information but do not provide enough biological details at 29

single cell level for assessing therapy responses nor quantitative analysis such as cell 30

counting and aggregation studies, and also no characteristics over time such as growth 31

ratio and proliferation ratio. To overcome these limitations, individual cell nuclei 32

segmentation methods have been developed for 2D and 3D spheroid images [23–30]. 33

State-of-the-art methods for cell nuclei segmentation in microscopy are currently the 34

deep learning-based methods. Also, a specific interest of the deep learning-based 35

approach, by contrast with a standard image processing pipeline composed of denoising 36

step [31] followed by a segmentation step [32,33], is to offer an end-to-end learning 37

process where all the pipeline is optimized at the same time. Several architectures were 38

developed to segment nuclei by integrating two or more channels in the output of deep 39

learning architecture or by applying post processing methods to the predicted 40

segmentation maps to enhance segmentation quality [34–40]. Deep learning methods 41

were applied to segment entire spheroids of different sizes, shapes, and illumination 42

conditions [41] and also to segment nuclei of 3D spheroid images [42]. In these closely 43

related work, only one clearing method was investigated. By contrast in this article we 44

propose, with a deep learning perspective, a protocol to compare clearing methods for 45

the segmentation of nuclei in spheroids under 3D fluorescence microscopy. 46

A scheme of the operating pipeline of the article is provided in Figure 1. We 47

compare clearing protocols RapiClear and Glycerol (Figure 1.A) to non cleared samples 48

(Control). The two clearing methods investigated have been chosen for their simplicity 49

and non-toxicity. Both Rapiclear [43] and Glycerol [15] have already been reported as 50

fast and cost-effective yet efficient clearing procedures, for medium-sized samples such 51

as organoids and spheroids of few hundreds of micrometers. First, we assess the clearing 52

quality of spheroid images acquired with confocal fluorescence microscopy with the 53

conventional local metrics such as signal to noise ratio (SNR) and contrast to noise ratio 54

(CNR) (Figure 1.B). Then, we use deep learning segmentation methods to assess the 55

quality of the clearing (Figure 1.C,D). Finally, we investigate the possibility of digital 56

clearing of non-cleared data with cleared data models via transfer learning and the 57

transferability of knowledge from a clearing protocol to another (Figure 1.E). In this 58

manuscript, we show that using a simple deep learning strategy, it is possible to get 59
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reliable segmented images even for images with low intensity and low signal-to-noise 60

ratio. Also, we demonstrate the segmentation knowledge transferability from cleared 61

samples to native tissues for fast digital-clearing of living specimens on the fly. 62

Fig 1. Protocol pipeline: (A) Spheroid samples are cultured in micro-well arrays.
Control are the non cleared samples and others are clarified with two distinct clearing
methods Rapiclear and Glycerol. (B) Then, spheroid images acquired with a confocal
microscope are analyzed for quality assessment along z-depth. (C) A dataset of images
for each clarification method is annotated using shallow learning and corrected by an
expert. (D) Finally, deep learning models are trained with the annotated data sets and
the three segmentation models trained on Rapiclear, Control and Glycerol are tested for
(E) data transferability on various clarification methods.

Results and Discussion 63

Comparison of clearing methods with local metrics 64

We assessed the efficiency of RapiClear and Glycerol clearing protocols on image quality 65

by comparing their datasets with non cleared datasets (Control) using image local 66

quality metrics evaluation. This was quantitatively evaluated in depth on the 3D 67

spheroid stacks (z-depth) based on the computation of various local metrics using 68

patches cropped from the center of the spheroid signal in each slice (see SI Figures 1.A). 69

The used metrics were the signal to noise ratio (SNR) (Equation 1) and the contrast to 70

noise ratio (CNR) calculated by two ways: from Bhattacharyya coefficient (BC) 71

(Equation 2) and from Fisher ratio (FR) (Equation 3). Figure 2 shows the xz planes at 72

the center of spheroids and the xy planes at selected depth (from 70% to 100% of 73

maximum diameter, corresponding to the range of depth where the three conditions can 74

be compared) also the mean and the standard deviation (std) of the normalized average 75

intensity (average I/Imax) evolution and of the computed local metrics from three 76

spheroids for each Control, RapiClear and Glycerol conditions. Visual qualitative 77

inspection of the xz and xy planes of spheroids are provided in Fig 2.A,B. Quantitative 78

evaluation of image quality (Fig 2.C) shows the degradation of image with depth z. 79
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Concerning intensities, an important drop is recorded for all clearing methods. This 80

drop is more pronounced in the non cleared (control) spheroids. The intensity 81

evolutions with depth are similar for Rapiclear and Glycerol. SNR and FR metrics 82

appear almost constant for the three investigated clearing conditions while BC shows 83

global degradation along depth z. For the three metrics SNR, FR and BC, Glycerol 84

shows significantly better values by comparison with Rapiclear and Control. However, it 85

is uneasy to produce a secured prediction of the effect of clearing along z with local 86

metrics. This is why it was important also to confront what would be found with 87

conventional local metrics with a machine learning perspective. 88

Fig 2. Image quality analysis function of the depth (z) defined as the percentage of the
maximum diameter for the datasets produced with Control, RapiClear and Glycerol
clarification methods. Slices with 100% of diameter are considered as the center of the
3D spheroids. (A) Illustration of the xz slices. Colored dashed lines correspond to the
location (in µm) of the slices xy with 70% and 100% of maximum diameter. (B)
Visualization of test images (xy slices) normalized in depths (z) and used to evaluate
segmentation performance for each clarification method. (C) The mean and standard
deviation (std) of the average intensity, SNR, CNRBC by Battacharayya and CNRFR
by Fisher ratio computed for 3 spheroids for each clarification method and plotted as a
function of the percentage of maximum diameter.
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Spheroid 2D images segmentation 89

We used deep learning segmentation methods to characterize the quality of spheroid 90

clearing protocols. Several segmentation methods such as Unet, Dist and Stardist, 91

associated with post-processing steps based on dynamic morphology reconstruction and 92

watershed algorithm (DM) were applied to the test images of Figure 2.B produced from 93

the tested clearing conditions. We used the F1-score to quantify the quality of 94

segmentation as a pixel wise metric and the aggregated Jaccard Index (AJI) as an 95

object wise metric. We tested the segmentation efficiency for two cases: (i) when test 96

images and pre-trained segmentation models are from the same clearing method and (ii) 97

in a cross way taking test images from a clearing condition and using pre-trained model 98

from another. Table 1 shows the mean values and the standard deviations (std) of the 99

F1-score and AJI computed for test images located at 70, 80, 90, 95 and 100% of 100

maximum diameter along z. 101

Interestingly, in accordance with the observation recorded by the local quality 102

metrics, Glycerol clearing protocol provides the best segmentation performance in all 103

tested configurations (Table 1.C-3). In addition, it is remarkable that Glycerol 104

segmentation model is also powerful to segment data sets from Control or from 105

Rapiclear clearing when segmentation method is properly chosen (Table 1.A-3,B-3). It 106

is also striking to note that segmentation results of Control and RapiClear test images 107

gives higher F1-score and AJI values with segmentation models trained on Glycerol 108

than with models trained on their data. As shown in Fig. 3.A, these average results are 109

almost stationary along z for all clearing methods tested (also see qualitative illustration 110

of the final segmentation in Figure 3.B and SI Figures 2 and 3.A). This demonstrates 111

that the local evolution in intensity or SNR shown in Figure 2 do not necessarily 112

correlate with the segmentation performances. 113

Segmentation models transferability to other data sets 114

Finally, we tested the transferability from cleared datasets to another datasets by 115

segmenting test images from another clearing methods, another structure and also 116

another imaging system using pre-trained segmentation models of Control, Rapiclear 117

and Glycerol. For this study, we used colorectal carcinoma HCT-116 cell lines test 118

images cleared with TDE and acquired with a laser scan confocal system (Nikon). Also, 119

we selected two datasets from the literature such as Breast carcinoma T47D cells 120

cleared with ScaleS method and acquired with a spinnig disk confocal system (Opera 121

Phenix) [23] and colorectal carcinoma HCT-116 cell line cleared with CUBIC method 122

and acquired with a light-sheet fluorescence (LSF) microscope [44]. Table 1.D,E,F 123

shows the mean and standard deviation of computed F1-score and AJI segmentation 124

metrics for each test images produced from TDE, ScaleS and CUBIC clearing methods 125

and segmented with the Control, RapiClear and Glycerol pre-trained models. The 126

segmentation results are high for both TDE and ScaleS (see Table 1 and Figure 4.A). 127

Similarly to what was found for Rapiclear and Control, Glycerol appears, for both TDE 128

and ScaleS also, as the best method to train on to benefit from transfer learning. This 129

experiment clearly proves the feasibility of information transferability by digital clearing 130

from clearing method to another acquired with the same imaging system but with 131

different structure and data scale. Contrariwise, CUBIC dataset acquired with 132

light-sheet fluorescence (LSF) microscopy and presenting very different contrast and 133

artefacts shows low performance. This experiment points the limit of data 134

transferability by digital clearing (see Figure 4.B and SI Figures 3.B and 4 for 135

qualitative illustration of final segmentation maps). Figure 5.A illustrates the 136

qualitative interest of digital clearing available at the output of neural networks when 137

the best segmentation neural network (Dist segmentation) is trained on the best 138
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Test data Segmentation models
F1-score ± std AJI ± std

Unet Dist Stardist Unet Unet+DM Dist Dist + DM Stardist

Control

Control 0.85 0.85 0.84 0.07 0.51 0.26 0.52 0.59

(1) ±0.01 ±0.01 ±0.01 ±0.06 ±0.03 ±0.05 ±0.03 ±0.03

RapiClear 0.84 0.85 0.72 0.14 0.52 0.16 0.52 0.42

(A) (2) ±0.02 ±0.01 ±0.04 ±0.03 ±0.05 ±0.03 ±0.03 ±0.07

Glycerol 0.86 0.86 0.84 0.01 0.57 0.06 0.55 0.55

(3) ±0.02 ±0.01 ±0.02 ±0.01 ±0.05 ±0.04 ±0.02 ±0.06

RapiClear

Control 0.82 0.83 0.81 0.03 0.41 0.07 0.47 0.52

(1) ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.03 ±0.05 ±0.03

RapiClear 0.83 0.84 0.76 0.11 0.46 0.08 0.48 0.43

(B) (2) ±0.01 ±0.01 ±0.03 ±0.09 ±0.04 ±0.04 ±0.02 ±0.06

Glycerol 0.83 0.83 0.80 0.01 0.46 0.03 0.47 0.49

(3) ±0.03 ±0.02 ±0.03 ±0.01 ±0.02 ±0.01 ±0.03 ±0.03

Glycerol

Control 0.89 0.89 0.89 0.29 0.63 0.46 0.64 0.68

(1) ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.06 ±0.03 ±0.02

RapiClear 0.88 0.87 0.78 0.40 0.63 0.46 0.62 0.51

(C) (2) ±0.01 ±0.01 ±0.02 ±0.07 ±0.03 ±0.04 ±0.02 ±0.03

Glycerol 0.91 0.91 0.90 0.34 0.70 0.47 0.71 0.70

(3) ±0.01 ±0.01 ±0.01 ±0.07 ±0.02 ±0.05 ±0.02 ±0.02

TDE

Control 0.88 0.88 0.84 0.02 0.44 0.06 0.56 0.59

(1) ±0.01 ±0.02 ±0.02 ±0.01 ±0.07 ±0.05 ±0.05 ±0.04

RapiClear 0.89 0.89 0.78 0.08 0.60 0.09 0.60 0.52

(D) (2) ±0.01 ±0.02 ±0.02 ±0.04 ±0.01 ±0.04 ±0.02 ±0.06

Glycerol 0.90 0.89 0.84 0.02 0.39 0.02 0.54 0.58

(3) ±0.02 ±0.03 ±0.02 ±0.02 ±0.05 ±0.02 ±0.02 ±0.04

ScaleS

Control 0.85 0.86 0.83 0.29 0.54 0.39 0.59 0.62

(1) ±0.03 ±0.03 ±0.03 ±0.13 ±0.03 ±0.1 ±0.05 ±0.05

RapiClear 0.83 0.85 0.77 0.22 0.58 0.26 0.58 0.50

(E) (2) ±0.06 ±0.05 ±0.06 ±0.1 ±0.03 ±0.13 ±0.06 ±0.06

Glycerol 0.87 0.85 0.85 0.12 0.57 0.14 0.56 0.63

(3) ±0.03 ±0.03 ±0.03 ±0.07 ±0.04 ±0.11 ±0.05 ±0.03

CUBIC

Control 0.68 0.69 0.24 0.003 0.33 0.004 0.16 0.07

(1) ±0.002 ±0.03 ±0.04 ±0.001 ±0.04 ±0.001 ±0.04 ±0.02

RapiClear 0.66 0.63 0.42 0.003 0.23 0.003 0.19 0.11

(F) (2) ±0.01 ±0.02 ±0.02 ±0.001 ±0.03 ±0.001 ±0.02 ±0.001

Glycerol 0.58 0.58 0.26 0.002 0.23 0.002 0.16 0.06

(3) ±0.01 ±0.01 ±0.04 ±0.001 ±0.04 ±0.001 ±0.01 ±0.01

Table 1. Mean and standard deviation of the computed segmentation metric
(F1-score, AJI) for five test images produced from Control, RapiClear and Glycerol.
Tests are realized in cross way between the segmentation models (A,B and C). And also
for five test images produced from TDE, ScaleS and CUBIC to test data transferability
from a clearing protocol to another clearing protocol (D, E and F). Various
segmentation methods are used. The bold values are best segmentation model for each
clearing method datasets. Except for Cubic clearing method where all methods provide
low performance, Glycerol appears as the best method on which one should train the
deep learning models in order to benefit from digital clearing.

clearing method (Glycerol) and applied to uncleared data or cleared with Rapiclear. It 139

is obvious with Fig. 5.A that the intensity attenuation recorded with local metrics along 140

z can be compensated with the deep neural network thanks to digital clearing. As 141

shown in Fig. 5.B in comparison with ground truth, a significant improvement of the 142

counting of cells along z is brought by training on images obtained with the best 143

clearing method while applying the model directly on control or on a less efficient 144

clearing method. This opens also the possibility of an efficient post-segmentation 3D 145

reconstruction of full spheroids (see SI Figure 5 and SI videos). 146
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Fig 3. Segmentation results as a function of depths (z). (A) Quantitative
segmentation results (F1-score, AJI) for the five test images taken at depth ranging
from 70, 80, 90, 95 and 100% defined as the percentage of maximum diameter.
Segmentation methods are trained and tested on the same clearing method. (B)
Qualitative illustration of the final segmentation of the slices at 90% of maximum
diameter produced from Control, RapiClear and Glycerol clearing methods.

Conclusion 147

In this report, we have investigated the interest of a deep learning perspective for the 148

comparison of clearing methods in fluorescence microscopy. This was illustrated for a 149

task of nuclei segmentation in spheroids under 3D fluorescent microscopy. The best 150

clearing method identified with conventional local metric follows the performance of 151

state-of-the-art deep learning based segmentation methods. However, because the 152

training datasets include images from various depth, no real influence of depth was 153

observed on segmentation performance contrarily to what was found with local metric. 154

This demonstrates that local metric can be used to select an optimal clearing method 155

but that final performances can be made invariant to the remaining noise thanks to 156

adequate machine learning strategies. 157

We specially tested the interest of transfer learning in this context. We investigated 158

the interest to train on one clearing condition and to test on another. The best 159
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Fig 4. Data transferability assessment: segmentation results as a function of depths (z)
defined as the percentage of maximum diameter. (A) Quantitative segmentation results
(F1-score, AJI) for the five test images produced from TDE, ScaleS and CUBIC clearing
methods and segmented using the RapiClear, Glycerol and Control segmentation
models respectively. (B) Qualitative illustration of the final segmentation results for
the slices at 90% of maximum diameter.

segmentation method was also found to be the one which gave the best transfer results. 160

This is specially interesting when the test images are produced in uncleared conditions. 161

Training a model on the best cleared conditions enable to perform segmentation of 162

nuclei in non cleared conditions with enhanced performances. This opens the way to 163

digital clearing of the samples. Annotated cleared images of high quality produced with 164

time consuming protocols could enable anyone to denoise images acquired with much 165

simpler protocols. For this reason we release our annotated data set publicly as pointed 166

in section S1 Dataset. 167

These results could be extended in various directions. The inference of the proposed 168

segmentation approach is very fast (around 2 minutes for a stack of 41 slices of 40 Mbs 169

with a processor Intel Core i7-6700HQ CPU @ 2.60 GHz ). It can be easily used for on 170

the fly segmentation during acquisition for fixed samples, as well as for live imaging (for 171
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Fig 5. Digital clearing effect analysis. (A) Slices of non cleared spheroid (control) and
same spheroid cleared with RapiClear are illustrated function of z-depth (µm). The
predicted distance maps at the output of Unet architecture for Dist segmentation
method computed for the slices with control model (green solid line) and RapiClear
model (red solid line) and also with digital clearing via glycerol model (green and red
dashed lines). (B) Number of detected nuclei computed after Dist segmentation
function of the depth z in µm for the same non cleared and cleared spheroid before and
after digital clearing. Ground truth in black solid line corresponds to a manual counting
by an expert.

experiments where samples are acquired over extended time-period [tens of hours], but 172

with rather long time intervals [higher then 10 min]). By bringing such single cell 173

metrics directly available to the user, it opens up promising applications to screen 174

therapeutics drugs within 3D environment closer to in-vivo. Colorectal cancer spheroids 175

were used here as an example. The method is also readily available for organöıds that 176

have emerged as very powerful in vitro models to mimic various normal and 177

pathological situations [45,46]. The method can also be easily extended to the 178

segmentation of other biological structures of interest, such as the overall cell shapes, as 179

long as the manually segmented datasets is implemented.Other clarification methods 180

specially optimized for thick samples [15,47–49] could then be also tested with the same 181

global approach presented in this article. The most promising result lay in the 182

possibility of digital clearing. In this study we performed it, for a first demonstration, 183

by training directly on the best clearing method. Variants could be considered like style 184

transfer [50,51] or domain adaptation to further improve the digital clearing of the 185

samples. Also, we demonstrated the possibility of digital clearing by transfer learning 186

even when the two microscopes used are not strictly identical. This calls for a 187

systematic quantitative study to assess the robustness of this finding with microscopes 188

of various resolutions and aberrations. 189
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Materials and Methods 190

We present the details of all the steps described in the graphical abstract of Figure 1. 191

Sample preparation and image acquisition 192

Cell lines and cell culture 193

Colorectal carcinoma cell line HCT-116 were used in this study. Cells were cultured in 194

DMEM-GlutaMAX, supplemented with 10% of Heat-Inactivated Fetal Bovine Serum 195

(FBS; Sigma, St. Louis, Missouri, US), 100 units / 100 µg of penicillin / streptomycin 196

and passaged every 3-4 days. 197

Agarose-based micro-systems 198

The micro-systems consist of arrays of 130 micro-wells of 200 µm in diameter and 199

height. They are used to create 130 reproducible spheroids per condition. This 200

micro-system was produced by moulding agarose (Standard Agarose, 2% w/v) on 201

PDMS molds created by photolithography process. A patent has been deposited for this 202

process (FR 1870349). 203

Spheroid formation 204

Cells were seeded in each 24 wells-plate containing microsystems at a density of 1, 2.105 205

cells/mL, 1 mL per well. They were placed under orbital agitation (160 rpm) for 2 206

hours in the incubator (37◦ C, 5% CO2) to increase cell sedimentation inside each 207

micro-well. After 2 hours, the wells were rinsed with warm culture medium (3×) to get 208

rid of cells that were out of the micro-wells. The 24 well-plate containing the 209

microsystems were then kept in the incubator. Multicellular Tumor Spheroids (MCTs) 210

are formed within 1 day and are used at Day 5 in this study. 211

Immunostaining 212

At day 5, cells were washed 3 times with warmed PBS for 5 min, followed by 213

paraformaldehyde fixation ( 3.7% in PBS) for 20 minutes. All wells were then washed 214

with PBS/3% BSA (3×5 min), permeabilized with 0.5% Triton for 20 min, and rinsed 215

again with PBS/ 3% BSA (3x 5 min). To stain nucleus, NucGreen Dead 488 216

ReadyProbes Reagent were used (Invitrogen R37109, 2 drops/mL , i.e. 2 drops per 217

wells, 4 hours at room temperature). The samples were washed with PBS (1×10 min) 218

and kept protected from light in PBS at 4◦C until image acquisition. Such non-cleared 219

samples were either imaged directly (Control), or further processed with different 220

clearing methods, described below. 221

Clarification 222

Different clarification techniques were used. For RapiClear-clarified samples, the 223

microwells were incubated in RapiClear 1.52 solution (sunjinlab) overnight, then 224

transferred in 0.5 mm Ispacer (sunjinlab, 2 spacers) and immerged in 35 µL of fresh 225

RapiClear solution. Sealing was achieved using an additional sticky Ispacer and a 226

coverslip. For Glycerol-clarified samples, the microwells were incubated in a 80% 227

glycerol solution in PBS (v/v) overnight, then transferred in 0.5 mm Ispacer (sunjinlab, 228

2 spacers) and immerged in 35 µL of fresh 80% glycerol solution. The chemical 229

compound 2,2’-thiodiethanol (TDE) was also tested in this study, following the 230

procedure described in [52]. Briefly, the microwells were first incubated in a 20% TDE 231

January 31, 2021 10/20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.31.428996doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.428996


solution in PBS (v/v) for 1 hour, then transferred in a 47% TDE solution in PBS (v/v) 232

for 2 hours. The microwells were finally transferred in 0.5 mm Ispacer (sunjinlab, 2 233

spacers) and immerged in 35 µL of fresh 47% TDE/PBS solution. For ScaleS and 234

CUBIC clarification methods, we used existing dataset of the literature described 235

in [23,44]. 236

Image acquisition 237

A pile of z-stacks images of 1024× 1024 pixels in xy was acquired using a classical 238

confocal set-up. RapiClear images were acquired with Leica SP5 in resonant mode, a 239

20x dry objective lens (NA=0.7) is used with a pixel scale of 0.2 µm in xy and z-step 240

1 µm. Control, Glycerol and TDE images are acquired with Nikon A1Rplus using a 20x 241

water immersion objective lens (NA=0.7) with a pixel scale of 0.243 µm in xy and 242

z-step 2 µm. A 488 nm line of an Argon Laser was used to detect NucGreen. Note that, 243

all 2D spheroid images were normalized to have zero mean and variance equal one to 244

compensate for intensity variation before models training process. 245

Dataset annotation 246

Ground truth annotation was performed in semi-automatic way using the interactive 247

learning and segmentation toolkit (Ilastik) [53] based on shallow learning followed by 248

expert correction (Figure 1.c). 2D frames from the beginning, middle and the end of 3D 249

image stacks belonging to each clearing condition were selected for exhaustive 250

representation of instances and clearing effects on image depths. Pixel wise 251

classification mode was used then to generate primary segmentation maps. The filters 252

used in the segmentation step were intensity, edge and textural filters with various 253

kernel sizes ranging from 0.7 pixel to 10 pixels in order to represent the smallest and 254

largest details of the transition between the nuclei and the background (36 filters). 255

Then, we applied the batch processing to segment all 2D data set images. Finally, a 256

manual correction step produced by an expert was applied to the segmentation maps. 257

The overall amount of annotated 2D images was 57 for each clearing conditions. 258

Datasets were then split into 47 for training, 5 for validation and 5 for testing. The 259

total number of cell nuclei was around 10000 for each condition dataset. 260

3D spheroid images of various thicknesses were normalized in z-depth by considering 261

the slice with the largest diameter as the center of spheroid. Diameter of each spheroid 262

slice was computed from the binarized maximum intensity projection of the 3D volume 263

on y-axis. The percentage of diameter was derived then for each slice according to the 264

maximum diameter value. Based on this normalization method, and for a fair 265

comparison between the protocols, we considered slices of depths ranging from 70% to 266

100% of maximum diameter (Figure 2A). It is to be noticed that this limited range of 267

depth causes no loss of information since spheroid are isotropic samples. The missing 268

part of the spheroids are similar to the first half. 269

Image quality assessment based local metrics 270

We first assess locally the quality of spheroid images according to z-depth by using 271

statistical metrics are the signal to noise ratio (SNR) and the contrast to noise ratio 272

(CNR) calculated by two ways: Bhattacharyya coefficient (BC) and Fisher ratio (FR) 273

defined as 274

SNR =
µsignal
σnoise

(1)

CNRBC = 1−
255∑
X=1

√
pd(X).qd(X) (2)
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CNRFR =
(µsignal − µnoise)2

Vsignal + Vnoise
(3)

where, µsignal, pd(X) and Vsignal are the mean intensity of the signal, the 275

probability of a signal intensity value X and the variance of the signal respectively. Also, 276

µnoise, qd(X), Vnoise, and σnoise are the mean intensity of the noise, the probability of a 277

noise intensity value X, the variance and the standard deviation of the noise respectively 278

(see SI Figure 1). We computed also the normalized average intensity (average I/Imax) 279

in each image slice to illustrate the change in intensity along the depths. All these 280

factors were computed for three spheroids from each clearing condition. 281

Deep learning segmentation methods 282

To assess the quality of clearing, we tested a set of state-of-the-art segmentation 283

methods based on deep learning that were used for 2D spheroid images segmentation 284

(Figure 1.D). They are briefly presented in this subsection. 285

U-Net 286

We used the reference segmentation network UNet [54] to predict 2 output classes (Cell 287

nuclei and background). We simplified the architecture by reducing the number of 288

feature channels. We use 5 blocks for contracting and expansive paths, each consisting 289

of 2 convolutional layers with 4.2n (n = 2, 3, 4, 5, 6) filters of size 3× 3 and ReLU 290

activation function. For the output probability map (ŷ), we use a single-channel 291

convolutional layer with sigmoid activation function (see SI Figure 6.A). The total 292

number of trainable parameters was 2, 158, 417 optimized by using the Adam 293

optimizer [55] and the training hyper-parameters are: batch size = 1, epochs = 33 and 294

the learning rate lr = 1e−3. The final segmentation map was computed by thresholding 295

the probability map by a threshold value α that was optimized on validation data set 296

for each condition. The optimization process is described later in the same section. 297

Post processing based Dynamic Morphology (DM) 298

The same U-Net architecture described previously was applied to predict the probability 299

map (ŷ) followed by a post processing step based on dynamic morphology [56] and 300

watershed algorithm [57]. This combination was used in histopathology images 301

segmentation to separate touching nuclei [58] that are considered as one object after 302

thresholding the probability map. Briefly, the post processing step was based mainly on 303

the hypothesis that the posterior probability at the border of the touching nuclei was 304

systematically lower than in the putative center of the nucleus, and that the nuclei 305

centers correspond to local maximum intensity in the image. The significant drop of the 306

signal between nuclei center and the border was defined by morphological dynamics as 307

the following: Let LM be a local maximum of the U-Net probability map output ŷ. 308

LM represents a cell nuclei if along all paths P connecting LM with some higher 309

maximum LM ′, the decrease in ŷ is at least λ 310

min
P=(LM,...,LM ′)
ŷ(LM ′)>ŷ(LM)

{max
x∈P

[ŷ(LM)− ŷ(x)]} > λ (4)

where x is a pixel at (i, j) coordinates and λ is a free parameter optimized for each 311

clearing method (see SI Figure 6.B). The final segmentation map was then obtained by 312

applying watershed transformation to the inverted probability map seeded from the 313

maxima that fulfill this criterion. 314
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Dist 315

The problem in high nuclei density 2D spheroid images is that the touching and 316

overlapping nuclei are segmented as one object. Several works were proposed to solve 317

this problem by predicting both the object and their contours [59, 60]. Others proposed 318

to focus the attention of the model on the core of the nuclei by predicting an eroded 319

version of the annotation as centers correspond to the ultimate erosion of the ground 320

truth [61,62]. In our work and unlike pixel-wise binary classification used previously, we 321

follow the proposed work in [37] and we turned 2D spheroid images classification to a 322

regression problem by predicting the distance maps (d̂) that focus on the center of 323

nuclei (see SI Figure 6.A). Therefore, for each pixel x = (i, j) of the annotated spheroid 324

binary image (y), with y(x) > 0, we assign a distance transform (Dc) representing the 325

distance to the closest background pixel xb = [ib, jb]. Here, we used the Chebyshev 326

distance defined as, 327

Dc = max(|ib − i|, jb − j|) . (5)

The Dist model is based on the same U-Net architecture described before. The same 328

training hyper-parameters were used to predict distance maps. Only sigmoid output 329

function was replaced with ReLU function at the output channel since the predicted 330

values are higher than 1. The final binary segmentation map was then obtained by 331

thresholding the distance output maps d̂. The threshold value denoted β was also 332

optimized for RapiClear, Control and Glycerol clearing methods. Finally, the post 333

processing step described before was also applied to the predicted maps to enhance the 334

final segmentation after optimizing the parameter λ for each clearing method. 335

Stardist: Star-convex polygons 336

Star-convex polygons (Stardist) is one of the robust widely used algorithms for cells 337

detection and segmentation in 2D microscopy images [36]. It consists in predicting a 338

star-convex polygon for each cell nuclei pixel x = [i, j] by regressing the distances 339

{rki,j}
η
k=1 of the pixel to the boundary of the nuclei to which belong, along a set of 340

optimized number of radial directions η with equidistant angles. Also, separately, the 341

algorithm predicts probability map (pi,j) for each pixel x as the normalized Euclidean 342

distance to the nearest background pixel xb = [ib, jb] (see SI Figure 6.A). Given such 343

polygon candidates with their associated nuclei probabilities, a non-maximum 344

suppression (NMS) was performed to reach the final set of polygons, each representing a 345

cell nuclei. Stardist was mainly based on Unet architecture with 3 blocks for contracting 346

and expansive paths, each consisting of 2 convolutional layers with 32.2n (n = 0, 1, 2) 347

filters of size 3× 3, and an additional layer of 128 3× 3 filters added after the final Unet 348

feature layer to avoid that the subsequent two output layers have to fight over features. 349

The activation functions between layers are ReLU and the total number of trainable 350

parameters was approximately 1.4 million parameters. The output layers of the 351

architecture consist of a single-channel convolutional layer with sigmoid activation for 352

the nuclei probability output and the polygon distance output layer has as many 353

channels as there are radial directions η and do not use an additional activation 354

function. We used Stardist in our study to segment cell nuclei inside 2D spheroid 355

images. For the three conditions datasets, the training stage was performed with the 356

following primary hyper parameters: batch size = 1, epochs = 400 and the learning rate 357

lr = 0.3e−3. After that, the best training model that minimized the loss functions 358

(Equations 6, 7) was selected for each condition. So, based on this criterion the hyper 359

parameters for the selected models of RapiClear, Control and Glycerol datasets were 360

(epochs = 317, lr = 0.75e−4), (epochs = 282, lr = 1.5e−4) and (epochs = 380, 361

lr = 0.75e−4) respectively. As in the previously described segmentation methods, the 362
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parameters: number of rays η, threshold α of the nuclei probability map and threshold 363

of the non-maximum suppression τ , were optimized for each data set. 364

Training loss functions and segmentation evaluation metrics 365

Loss function 366

The purpose of loss function in a deep learning training stage model is to quantify the 367

difference between predictions and ground truths for steering the training of the network. 368

In our work, we used two commonly used loss functions the binary cross entropy (BCE) 369

and the mean squared error (MSE) for classification and regression problem 370

respectively. The BCE for binary classification (nuclei and background) was defined as 371

BCE(y, ŷ) =
−1

M

M∑
m=1

ym.log(ŷm) + (1− ym).log(1− ŷm) (6)

and MSE for distance map prediction was defined as, 372

MSE(d, d̂) =
−1

M

M∑
m=1

(dm − d̂m)2 (7)

where M is the 1D output map size, ŷm and d̂m are the m-th scalar values in the 373

output predicted maps, ym and dm the corresponding target values of probability maps 374

and distance maps respectively. 375

Evaluation metrics 376

To evaluate the performance of spheroid images segmentation and to be able to 377

quantitatively compare between the transferability of segmentation models trained on 378

clarification method to other clearing protocols, we used the pixel wise-metric 379

F1-score [63] for segmentation evaluation and also the Aggregated Jaccard Index 380

(AJI) [61] as an object-wise metric for touching nuclei splitting evaluation. The F1 381

measure is defined as the harmonic mean between recall and precision at the pixel level 382

and it was computed as 383

F1-score = 2.
P recision×Recall
Precision+Recall

(8)

with the Precision = TP
TP+FP and Recall = TP

TP+FN , where TP , FP and FN are 384

the true positive, false positive and false negative respectively. 385

The AJI is an extension of the global Jaccard index, where every ground truth 386

nucleus is first matched to one detected nucleus by maximizing the Jaccard index. The 387

AJI corresponds then to the ratio of the sums of the cardinals of intersection and union 388

of these matched components respectively. In addition, all detected components that do 389

not matched were added to the denominator. More formally [37], AJI can be defined as, 390

AJI =

∑L
i=1 |Gi ∩ S∗k(i)|∑L

i=1 |Gi ∪ S∗k(i)|+
∑
l∈U |Sl|

(9)

where Gi is a nucleus ground truth of L nuclei in an image, S is all the detected 391

nuclei, S∗k(i) is the segmented nucleus associated with Gi that maximizes the Jaccard 392

index, i.e. S∗k(i) = argmaxk
|Gi∩Sk|
|Gi∪Sk| and U is the set of indices of detected nuclei that 393

have not been assigned to any ground truth. 394

January 31, 2021 14/20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.31.428996doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.428996


Parameter Optimization 395

One important step in supervised learning with deep learning is the hyperparameters 396

fine tuning. This optimization step was applied to validation data set to maximize the 397

segmentation metrics such as F1-score, AJI or Jaccard index for Stardist segmentation 398

method. In our work, threshold of the probability maps α, threshold of predicted 399

distance maps β, the h-minima value λ of the dynamic morpholoy reconstruction post 400

processing step, the numbers of rays of the star-convex polygons η and threshold τ of 401

the non-maxmimum suppression (nms) were optimized empirically by varying each 402

parameter between a range of values (see SI Figure 7). Then, the value that maximized 403

a segmentation metric were selected for each segmentation method depending on the 404

RapiClear, Control and Glycerol segmentation models as shown in Table 2. 405

Parameters Segmentation methods Ranges Metrics
Segmentation models

Control RapiClear Glycerol

α
Unet α ∈ [0 1] F1-score 0.5 0.6 0.4

Stardist α ∈ [0.3 0.7] Jaccard index 0.6 0.4 0.5

β Dist β ∈ [0 2] F1-score 1.1 1.2 0.6

λ
Unet + DM

λ ∈ [0 20] AJI
8 7 2

Dist + DM 2 1 1

η
Stardist

η ∈ 2i, i ∈ [2 8] F1-score 64

τ τ ∈ [0.3 0.5] Jaccard index 0.4 0.3 0.4

Table 2. Parameters optimization step. Various thresholds were optimized for each
used segmentation method between a range of tested values. The value of threshold
that maximized a metric was selected.

Transfer learning 406

We used transfer learning [64] methodology in our study to transfer knowledge gained 407

from training segmentation model on a dataset from a clarification condition and apply 408

the pre-trained model to segment images clarified from other conditions. This was done 409

by brute transfer of the weights in the neural network without fine tuning. 410

Supporting information 411

S1 Fig. Supplementary Figures 1,2,3,4,5 and 6 412

S1 Datasets and Videos. Datasets availability and 3D spheroids 413

reconstruction videos. Annotated data sets used during the current study are 414

available and supplementary videos of 3D reconstructed spheroids for Control (non 415

cleared), Rapiclear and Glycerol cleared samples are available in the following 416

repository: https://uabox.univ-angers.fr/index.php/s/6myuGGs0JO94M8D. 417
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